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Abstract: This paper studies the problem of exponential stabilization of linear systems with time-varying
sampling. The sampling rate varies from sample to sample with the given probability. By applying the
input delay approach, the sampled-data system is transformed into a continuous time-delay system with
stochastic parameter. A new exponential stability criterion is derived for the sampled-data system by
using the Lyapunov functional approach. Based on this, the design procedure for stabilization controllers
is presented by means of linear matrix inequalities (LMIs). An example shows the effectiveness of the
proposed controller design methodology.

1. INTRODUCTION

In the past decades, the sampled-data control problems have
been the subject of wide research owing to the reality that
modern control systems are almost implemented in a digital
computer of one form or another. By sampled-data systems,
we refer to those systems containing both continuous-time and
discrete-time signals and components. These hybrid systems
frequently form an idealized model of computer control in
a number of engineer applications. There have been a great
number of research results concerning sampled-data systems
scattered in the literature in the past several years. To mention a
few, Chen and Francis presented a comprehensive study on the
modern sampled-data systems in (Chen and Francis [1995]). In
(Shi [1998]), the author investigated the H∞ filtering problem
for a class of uncertain continuous-time systems under sampled
measurements. In (Hagiwara et al. [2001]), the authors gave
some methods to compute the upper and lower bounds of the
norm of the frequency response operator of sampled-data sys-
tems. In (Toivonnen and Medvedev [2003]), optimal damping
of harmonic disturbances of known frequencies was studied
for sampled-data systems. Issues dealing with H∞ control and
robustness of uncertain systems were investigated in (Fridman
[2006], Shi and Nguang [2003], Tian et al. [2007]). In (Hu
et al. [2007]), the authors considered the problem of analysis
and synthesis for networked control systems that are modelled
as sampled-data systems with time delay in their discrete-time
systems.

The digital controllers are mostly designed under the condi-
tion of single sampling. However, the available data for sig-
nal processing and control are not always equidistant in some
applications. A typical example of such systems can be found
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in networked control systems, where time delay caused by
data transmission or packet dropout can occur because of the
limitation of the network resource. As the network traffic load
becomes heavy, which will increase the possibility of more
communication time or data loss, it may improve the system
performance that the sampling period gets large. Under such
conditions, it could be expected that time-varying sampling can
yield better performance than single sampling. Many existing
works deal with the problems arising from time-varying sam-
pling. The analysis and design of multirate control systems,
where input updating and output sampling are performed with
different rates, have been extensively investigated and many
results have been obtained (Polushin and Marquez [2004], Tan-
girala et al. [2001], Wang et al. [2004]). In (Nagy [2000]), the
author presented some basic design methods for the solution of
the variable sampling interval linear stochastic control problem,
where a single sampling interval model could be computed by
an optimization method for I/O description.

In this paper, the problem of exponential stabilization is studied
for linear systems with time-varying sampling. We assume
that the sampling rate varies from sample to sample with the
given probability. To make our idea more lucid and to avoid
complicated notation, we consider the case in which only two
sampling periods appear. By applying the input delay approach,
the sampled-data system is transformed into a continuous time-
delay system with stochastic parameter satisfying Bernoulli
distribution. A new exponential stability criterion is derived
for the sampled-data system by using the Lyapunov functional
approach. Based on this, the design procedure for stabilization
controllers is presented by means of linear matrix inequalities
(LMIs). An example shows the effectiveness of the proposed
controller design methodology.

Notation: The notation used throughout the paper is fairly
standard. R

n denotes the n-dimensional Euclidean space and
the notation P > 0 (≥ 0) means that P is real symmetric and
positive definite (semi-definite). In symmetric block matrices or
complex matrix expressions, we use an asterisk (∗) to represent
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a term that is induced by symmetry and diag{· · ·} stands for
a block-diagonal matrix. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic
operations. If A is a symmetric matrix, λ max(A) and λ min(A)
denote the largest and smallest eigenvalue of A, respectively.
E{x} and E{x|y} will, respectively, mean the expectation of x
and the expectation of x conditional on y.

2. MAIN RESULTS

2.1 Problem Formulation

Consider the following linear system:

ẋ(t) = Ax(t)+Bu(t) , (1)

where x(t) ∈ R
n is the state vector; u(t) ∈ R

p is the control
input; A and B are system matrices. For the state-feedback
sampled-data control with zero-order hold (ZOH), the con-
troller takes the following form:

u(t) = ud(tk) = Kx(tk), tk ≤ t < tk+1, (2)

where ud is a discrete-time control signal; tk denotes the sam-
pling instant. Under control law (2), the closed-loop system is
given by

ẋ(t) = Ax(t)+BKx(tk) , tk ≤ t < tk+1. (3)

It is assumed that we have two sampling periods, denoted as c1

and c2 with 0 < c1 < c2, and the probability of the occurrence
of each is known, that is,

Prob{tk+1 − tk = c1}= β ,

Prob{tk+1 − tk = c2}= 1−β .

Now, for tk ≤ t < tk+1 we denote

tk = t − (t − tk) , t −d(t),

where d(t) is a time-varying delay, which is less than a sam-
pling period. Then, the closed-loop sampled-data system in (3)
can be transformed into the following continuous-time system
with time delay:

ẋ(t) = Ax(t)+BKx(t −d(t)) , tk ≤ t < tk+1.

Now, introduce two time-varying delays τ1(t) and τ2(t), which
satisfy

0 ≤ τ i(t) < ci, τ i(tk) = 0,

τ̇ i(t) = 1, t 6= tk, i = 1,2.

Thus we have

Prob{d(t) = τ1(t)}= β ,

Prob{d(t) = τ2(t)}= 1−β , tk ≤ t < tk+1, (4)

which leads to

Prob{0 ≤ d(t) < c1} = β +
c1

c2
(1−β ) ,

Prob{c1 ≤ d(t) < c2} =
c2 − c1

c2
(1−β ) ,

tk ≤ t < tk+1.

Now introduce the following stochastic variable

α(t) =

{

1 0 ≤ d(t) < c1,

0 c1 ≤ d(t) < c2.

Then, we have

Prob{α(t) = 1}= Prob{0 ≤ d(t) < c1}
= β +

c1

c2
(1−β ) , α,

Prob{α(t) = 0}= Prob{c1 ≤ d(t) < c2}

=
c2 − c1

c2
(1−β ) , 1−α. (5)

From (5), we can obtain

E{α(t) = α, E{(α(t)−α)2} = α(1−α).

Now, introduce two time-varying delays

0 ≤ d1(t) < c1, 0 ≤ d2(t) < c2 − c1.

Thus, the closed-loop system in (3) can be expressed as

ẋ(t) = Ax(t)+α(t)BKx(t −d1(t))

+(1−α(t))BKx
(

t − d̃2(t)
)

, tk ≤ t < tk+1, (6)

where

d̃2(t) = c1 +d2(t).

We can rewrite (6) as

ẋ(t) = Ax(t)+αBKx(t −d1(t))+(1−α)BKx
(

t − d̃2(t)
)

+(α(t)−α)[BKx(t −d1(t))−BKx(t − d̃2(t))],

tk ≤ t < tk+1. (7)

Now, we give the following definition of exponential stability
which will be used in the exponential stability analysis.

Definition 1. System (6) is said to be exponentially stable in the
mean square if there exist constants µ > 0 and δ > 0 such that

E{‖x(t)‖2} ≤ µe−δ t sup
−2c2≤θ≤0

E{‖φ(θ)‖2},

where x(t) = φ(t), t ∈ [−2c2,0] is the initial condition and φ is
a continuous function.

2.2 Exponential Stability Analysis

This subsection is concerned with the problem of exponential
stability analysis.

Theorem 1. System (6) is exponentially stable in the mean
square if there exist matrices P > 0, Q1 ≥ 0, Q2 ≥ 0, R1 > 0,

R2 > 0, and S, W, U, V satisfying
[

Ξ1 +Ξ2 +ΞT
2 +Ξ3 Ξ4

∗ Ξ5

]

< 0, (8)

where

Ξ1 =











PA+AT P+Q1 0 αPBK 0 (1−α)PBK
∗ Q2 −Q1 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ 0











,

Ξ2 = [ S U −W W −S −V V −U ] ,

Ξ3 = ΨT
1 ZΨ1 +ΨT

2 ZΨ2,

Ξ4 = [
√

c1S
√

c1W gU gV ] ,

Ξ5 = diag{−R1,−R1,−R2,−R2 } ,

Ψ1 = [ A 0 αBK 0 (1−α)BK ] ,
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Ψ2 = [ 0 0 f BK 0 − f BK ] ,

Z = c1R1 +(c2 − c1)R2,

f =
√

α(1−α),

g =
√

c2 − c1. (9)

Proof. Define the following Lyapunov-Krasovskii functional:

V (t) = xT (t)Px(t)+
∫ t

t−c1

xT (s)Q1x(s)ds

+
∫ t−c1

t−c2

xT (s)Q2x(s)ds+
∫ t

t−c1

∫ t

s
ẋT (θ)R1ẋ(θ)dθds

+
∫ t−c1

t−c2

∫ t

s
ẋT (θ)R2ẋ(θ)dθds, (10)

where P > 0, Q1 ≥ 0, Q2 ≥ 0, R1 > 0, R2 > 0 are matrices to be
determined. The infinitesimal operator L of V (t) is defined as

LV (t) , lim
△→0+

1

△{E{ V (t +△)| t}−V (t)}. (11)

Then, from (10) and (11) and taking expectation, we can obtain

E{LV (t)} ≤ E{ςT (t)[Ξ1 +Ξ2 +ΞT
2 +Ξ3 +Ξ6]ς(t)+

10

∑
i=7

Ξi},

(12)
where

ςT (t) =
[

xT (t) xT (t − c1) xT (t −d1(t)) xT (t − c2)

xT (t − d̃2(t))
]

,

Ξ6 = c1SR−1
1 ST + c1WR−1

1 W T +(c2 − c1)UR−1
2 UT

+(c2 − c1)V R−1
2 V T

,

Ξ7 = −
∫ t

t−d1(t)
[ςT (t)S + ẋT (s)R1]R

−1
1 [ST ς(t)+R1ẋ(s)]ds,

Ξ8 = −
∫ t−d1(t)

t−c1

[ςT (t)W + ẋT (s)R1]R
−1
1 [W T ς(t)+R1ẋ(s)]ds,

Ξ9 = −
∫ t−c1

t−d̃2(t)
[ςT (t)U + ẋT (s)R2]R

−1
2 [UT ς(t)+R2ẋ(s)]ds,

Ξ10 = −
∫ t−d̃2(t)

t−c2

[ςT (t)V + ẋT (s)R2]R
−1
2 [V T ς(t)+R2ẋ(s)]ds.

(13)

Note that Ri > 0, i = 1,2, thus Ξi, i = 7, . . . ,10, are all non-
positive. By Schur complement, (8) guarantees

Ξ1 +Ξ2 +ΞT
2 +Ξ3 +Ξ6 < 0. (14)

We proceed to prove that system (6) is exponentially stable
in the mean square. Under condition (8), we obtain that there
exists a sufficiently small constant λ > 0 such that the left of
(14) is less than −λ I. Therefore, from (12), it is easy to show
that

E{LV (t)} ≤ −λE{ςT (t)ς(t)}. (15)

By Itô’s formula Mao et al. [1998], we obtain that

E
{

eεTV (T )
}

= E
{

eε0V (0)
}

+
∫ T

0
εeεtE{V (t)}dt +

∫ T

0
eεtE{LV (t)}dt

≤ G sup
−2c2≤θ≤0

E{‖φ(θ)‖2}+
∫ T

0
eεtE{ςT (t)Λς(t)}dt, (16)

where

H = max(λ max(P),λ max(Q1),λ max(Q2),λ max(R1),λ max(R2)),

F = 2εc2eεc2H,

M = max(λ max(‖A‖2),λ max(‖BK‖2)),

G = H(1+2c2 +4c2
2M)+ c2F(1+2c2M),

Λ = diag{εH +F + c2FM−λ ,−λ ,αc2FM−λ ,−λ ,

(1−α)c2FM−λ} .

Then, by choosing ε > 0 such that εH +F +c2FM−λ ≤ 0, we
obtain that

E{V (T )} ≤ Ge−εt sup
−2c2≤θ≤0

E{‖φ(θ)‖2}. (17)

Since V (T ) ≥ λ min(P)xT (T )x(T ), it can be shown from (17)
that

E{xT (T )x(T )} ≤ Ḡe−εT sup
−2c2≤θ≤0

E{‖φ(θ)‖2}, (18)

where

Ḡ =
G

λ min(P)
.

Therefore, by Definition 1, system (6) is exponentially stable in
the mean square. The proof is completed. ¤

2.3 Stabilization Controller Design

This subsection is devoted to solving the problem of state-
feedback controller design based on Theorem 1.

Theorem 2. There exists a state-feedback controller such that
the closed-loop system in (6) is exponentially stabilizable in
the mean square if there exist matrices P̄ > 0, Q̄1 ≥ 0, Q̄2 ≥
0, R̄1 > 0, R̄2 > 0, and K̄, S̄, W̄ , Ū , V̄ , satisfying







Π1 +Π2 +ΠT
2 Π4 Π3 Π7

∗ Π5 0 0
∗ ∗ Π6 0
∗ ∗ ∗ Π6






< 0, (19)

wherewhere

Π1 =











AP̄+ P̄AT + Q̄1 0 αBK̄ 0 (1−α)BK̄

∗ Q̄2 − Q̄1 0 0 0
∗ ∗ 0 0 0

∗ ∗ ∗ −Q̄2 0
∗ ∗ ∗ ∗ 0











,

Π2 =
[

S̄ Ū −W̄ W̄ − S̄ −V̄ V̄ −Ū
]

,

Π3 =











√
c1P̄AT gP̄AT

0 0

α
√

c1K̄T BT αgK̄T BT

0 0

(1−α)
√

c1K̄T BT (1−α)gK̄T BT











,

Π4 =
[√

c1S̄
√

c1W̄ gŪ gV̄
]

,

Π5 = diag{R̄1 −2P̄, R̄1 −2P̄, R̄2 −2P̄, R̄2 −2P̄} ,

Π6 = diag{−R̄1,−R̄2} ,

Π7 =











0 0
0 0

f
√

c1K̄T BT f gK̄T BT

0 0

− f
√

c1K̄T BT − f gK̄T BT











. (20)

Moreover, if the above condition is feasible, a desired controller
gain matrix is given by

K = K̄P̄−1
. (21)
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Remark 1. Theorem 2 presents a sufficient condition for the
state-feedback controller design which guarantees the exponen-
tially stability in system (6). By using a LMI approach, the
sufficient condition is derived by a congruence transformation
and some changes of matrix variables. The details of the proof
can be found in the full version of the paper.

3. ILLUSTRATIVE EXAMPLE

In this section, an example is provided to illustrate the results
developed above.

Example 1. Consider a satellite system with parameters as
follows:

A =







0 0 1 0
0 0 0 1

−0.3 0.3 −0.004 0.004
0.3 −0.3 0.004 −0.004






, B =







0
0
1
0






.

The eigenvalues of A are −0.004+0.7746 j, −0.004−0.7746 j,
0, 0; thus the above system is not stable. It is assumed that we
have two sampling periods, with probabilities given by

Prob{c1 = 0.1 s} = 0.9, Prob{c2 = 1 s} = 0.1. (22)

By using Theorem 2, we obtain the following matrices:

P̄ =







3.2253 2.1707 −0.6695 −0.9542
2.1707 4.7945 0.8466 −0.3548
−0.6695 0.8466 1.4630 −0.0296
−0.9542 −0.3548 −0.0296 0.8621






,

K̄ = [−0.1964 −1.0056 −1.4743 0.3194 ] .

Therefore, according to (21), the gain matrix for the state-
feedback controller is given by

K = [−0.7572 0.3861 −1.5850 −0.3631 ] .

We illustrate that the closed-loop system is exponentially stable
in the mean square under the above obtained controller. The

initial condition is assumed to be [−0.4 0.1 −0.7 0.5 ]
T

. The
state responses are depicted in Fig. 1, from which we can see
that all four state components converge to zero, showing the
effectiveness of the controller design.

By calculation according to Theorem 1, this system is expo-
nentially stable under any single sampling period less than 0.8
s. In the following, we will show that when the probability is
taken into consideration, the maximum value c2 could be much
larger such that the system is exponentially stabilizable. Firstly,
we assume that c1 = 0.1, and we are interested in finding the
maximum value of c2 by Theorem 1, for different values of β ,
such that the system is exponentially stabilizable. The results
are listed in Table 1.

β 0.9 0.8 0.7 0.6 0.5 0.4

c2 2 1.6 1.4 1.2 1.1 1.0

Table 1. The upper bounds of c2 for different β when c1 = 0.1

Then, we assume that the probability is fixed with β = 0.9, and
we will use Theorem 1 to calculate the maximum value of c2

for different values of c1, such that the system is exponentially
stabilizable. The results are listed in Table 2.

c1 0.01 0.05 0.1 0.2 0.4 0.7

c2 2.2 2.1 2 2 1.5 1

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time(s)

S
ta

te
 r

e
s
p

o
n

s
e

Fig. 1. State response

Table 2. The upper bounds of c2 for different c1 when β = 0.9

From these tables, we can see that when the probability is
taken into consideration, the maximum sampling period may
be larger compared with the single sampling case.
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