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Abstract: This paper examines a class of real-time control systems in which each control
task triggers its next release based on the value of the last sampled state. Prior work by
Lemmon et al. (2007) used simulations to demonstrate that self-triggered control systems can
be remarkably robust to task delay. This paper derives bounds on a task’s sampling period
and deadline to quantify how robust the control system’s performance will be to variations in
these parameters. In particular we establish inequality constraints on a control task’s period and
deadline whose satisfaction ensures that the closed loop system’s induced L2 gain lies below a
specified performance threshold. The results apply to linear time-invariant systems driven by
external disturbances whose magnitude is bounded by a linear function of the system state’s
norm. The plant is regulated by a full-information H∞ controller. These results can serve as
the basis for the design of soft real-time systems that guarantee closed-loop control system
performance at levels traditionally seen in hard real-time systems.

1. INTRODUCTION

Computer-controlled systems are often implemented using
periodic tasks satisfying hard real-time constraints. Under
a periodic task model, consecutive invocations (also called
“jobs”) of a task are released in a periodic manner.
Periodic task models allow the control system designer to
treat the computer-controlled system as a discrete-time
system, for which there are a variety of mature controller
synthesis methods.

Traditional methods by Astrom et al. (1990) for sample
period selection are usually based on Nyquist sampling.
Nyquist sampling ensures that the sampled signal can
be perfectly reconstructed from its samples. In practice,
however, feedback within the control system means the
system’s performance will be somewhat insensitive to
errors in the feedback signal, so that perfect reconstruction
is much more than we require in a feedback control system.
An alternative approach to the sample period selection
problem makes use of Lyapunov techniques. This was done
by Zheng et al. (1990) for a class of nonlinear sampled-data
system. Nesic et al. (1999) used input-to-state stability
(ISS) techniques to bound the inter-sample behavior of
nonlinear systems. Further work was done by Nesic et al.
(2004), Carnevale et al. (2007) where upper bounds on the
sampling periods were provided, known as the maximal
allowable transfer interval (MATI).

However, periodic task models may be undesirable in
many situations. Traditional approaches for estimating
task periods and deadlines are very conservative, so the
control task may have greater utilization than it actually
needs. This results in significant over-provisioning of the
real-time system hardware. With such high utilization,
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it may be difficult to schedule other tasks on the same
processing system. Finally, it should be noted that real-
time scheduling over networked systems may be poorly
served by the periodic task model. In many networked
systems, tasks are finished only after information has
been successfully transported across the network. It is
often unreasonable to expect hard real-time guarantees
on message delivery in communication networks. This is
particularly true for wireless sensor-actuator networks. In
these applications, there may be good reasons to consider
alternatives to periodic task models.

In recent years, a number of researchers have proposed
aperiodic and sporadic task models in which tasks are
event-triggered Arzen (1999). By event-triggering, we
mean that the system state is sampled when some function
of the system state exceeds a threshold. The idea of event-
triggered feedback has appeared under a variety of names,
such as interrupt-based feedback Hristu-Varsakelis (2002),
Lebesgue sampling Astrom (1999), or state-triggered feed-
back Tabuada et al. (2006). Event triggering usually re-
quires some form of hardware event detector to generate a
hardware interrupt to release the control task. This can
be done using either custom analog integrated circuits
(ASIC’s) or floating point gate array (FPGA) processors.
Event-triggering provides a useful way of adaptively ad-
justing task periods at run time, provided the cost as-
sociated with using ASIC/FPGA hardware is acceptable.
In some applications, however, it may be unreasonable or
impractical to retrofit an existing system with such “event
detectors”. In these cases, it may be more appropriate to
use a software approach such as self-triggering where each
task determines the release of its next job.

There is relatively little prior work examining self-
triggered feedback control. A self-triggered task model was
introduced by Velasco et al. (2003) in which a heuristic
rule was used to adjust task periods. A self-triggered task
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model was also introduced by Lemmon et al. (2007) which
chose task periods based on a Lyapunov-based technique.
But the authors did not provide analytic bounds for task
periods and the task delays were considered only in the
simulation results. Different from the prior work, this
paper is the first rigorous examination of what might be
required to implement self-triggered feedback systems.

Our results pertain to linear time-invariant systems with
state feedback. Since our controller seeks to ensure L2

stability, we use a full-information H∞ controller in our
analysis. We also assume that the system has a process
noise whose magnitude is bounded by a linear function of
the norm of the system state. Under these assumptions
we obtain the state-based bounds for the task periods
and deadlines, which are based on variations of the event-
triggering conditions used by Tabuada et al. (2006). Tak-
ing advantage of these bounds, a state-based self-triggered
scheme is presented where the periods and deadlines are
strictly away from zero. On the basis of simulation results,
these bounds appear to be tight and relatively easy to
compute, so it may be possible to use them in actual real-
time control systems.

The techniques used in this paper are similar to the input-
to-state stability (ISS) methods used in Nesic et al. (2004),
Carnevale et al. (2007) for bounding the MATI. However,
our self-triggering scheme provides less conservative sam-
pling periods than those obtained using the MATI esti-
mates in Nesic et al. (2004). Another major contribution
in this paper is an explicit state-dependent bound on the
acceptable delay, something which is not found in either
Nesic et al. (2004), Carnevale et al. (2007).

The remainder of this paper is organized as follows: Section
2 introduces the system model. Section 3 derives sufficient
threshold condition that can serve as an event triggering
state sampling. In section 4, the self-triggering scheme
is presented and the system is shown to be L2 stable.
Simulations are shown in section 5. Finally, conclusions
and future work are presented in section 6.

2. SYSTEM MODEL

Consider a linear time-invariant system whose state x :
ℜ → ℜn satisfies the initial value problem,

ẋ(t) = Ax(t) + B1u(t) + B2w(t), x(0) = x0,

where u : ℜ → ℜm is a control input, w : ℜ → ℜl

is an exogenous disturbance function in L2 space, and
A ∈ ℜn×n, B1 ∈ ℜn×m, and B2 ∈ ℜn×l are real matrices
of appropriate dimensions.

Since we’re interested in controllers that are finite-gain L2

stable, assume there exists a positive semi-definite matrix
P satisfying the H∞ algebraic Riccati equation (ARE),

0 = PA + AT P − Q + R, (1)

where Q = PB1B
T
1 P and R = I + 1

γ2 PB2B
T
2 P for some

real constant γ > 0.

If we consider the standard L2 storage function V : ℜn →
ℜ given by V (x) = xT Px, then the preceding assumptions
about P allow us to show that the storage function’s
directional derivative satisfies the dissipative inequality,

V̇ (x(t)) ≤ −‖x(t)‖2
2 + γ2‖w(t)‖2

2 (2)

for all t ≥ 0. Recall that a linear system, T, is said to be
finite gain L2 stable if T is a linear operator from L2 back
into L2. The induced gain of T is

‖T‖ = sup
‖w‖L2

=1

‖Tw‖L2
.

Satisfaction of the dissipative inequality (2) is sufficient
to show that the system T characterized by the state
equation

ẋ(t) = (A − B1B
T
1 P )x(t) + B2w(t) (3)

is finite gain L2 stable from w to x with an induced gain
less than γ. For notational convenience, let Acl = A −
B1B

T
1 P and K = −BT

1 P .

This paper considers a sampled-data implementation of
the closed loop system in (3). This means that the plant’s
control, u, is computed by a computer task. This task
is characterized by two monotone increasing sequences
of time instants; the release time sequence {rk}∞k=0 and
the finishing time sequence {fk}∞k=0. We say these two
sequences are admissible if rk ≤ fk ≤ rk+1 for all k =
0, . . . ,∞. The time rk denotes the time when the kth
invocation of a control task (also called a job) is released
for execution on the computer’s central processing unit
(CPU). At this time, we assume that the system state
is sampled so that rk also represents the kth sampling
time instant. The time fk denotes the time when then kth
job has finished executing. Each job of the control task
computes the control u based on the last sampled state.
Upon finishing, the control job outputs this control to the
plant. The control signal used by the plant is held constant
by a zero-order hold (ZOH) until the next finishing time
fk+1. This means that the sampled-data system under
study in this project satisfies the following set of state
equations,

ẋ(t) = Ax(t) + B1u(t) + B2w(t)
u(t) = −BT

1 Px(rk)
(4)

for t ∈ [fk, fk+1) and all k = 0, . . . ,∞. The state
trajectories x satisfying (4) are continuous so that the
initial state at time fk is simply x(fk) = limt↑fk

x(t).

We let Tk = rk+1 − rk denote the kth inter-release time
(also called sampling or task period) and Dk = fk − rk

denote the time interval between the kth job’s release and
finishing time, which is called delay or jitter of the kth
job. By construction of the control, we know that this
original system is L2 stable with gain less than γ. This
paper’s main results establish nontrivial bounds on the
sequence of sampling periods {Tk}∞k=0 and delays {Dk}∞k=0
such that the resulting release and finishing time sequences
are admissible and the sampled-data system preserves the
original system’s L2 stability.

3. L2 STABILITY

Consider the sampled-data system in (4) with a set of
admissible release and finishing time sequences. For all k,
define the kth job’s error function ek : [rk, fk+1) → ℜn by
ek(t) = x(t) − x(rk). This error represents the difference
between the current system state and the system state
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at the last release time, rk. This section presents two
inequality constraints on ek(t) (see theorem 1 and corollary
2 below) whose satisfaction is sufficient to ensure that the
sampled-data system’s L2 gain is less than γ/β for some
parameter β ∈ (0, 1]. For notational convenience, we use
xr, xr− , xr+ , xt, wt to represent x(rk), x(rk−1), x(rk+1),
x(t), w(t), respectively.

Theorem 1. Consider the sampled-data system in (4)
with admissible release and finishing time sequences. Let
x(r0) = x0 and β be any real constant in the interval (0, 1]
with Q = PB1B

T
1 P . If

eT
k (t)Qek(t) < (1 − β2)‖xt‖2

2 + xT
r Qxr (5)

holds for all t ∈ [fk, fk+1) and k = 0, . . . ,∞, then the
sampled-data system is finite-gain L2 stable from w to x
with a gain less than γ/β.

Proof. Consider V (x) = xT Px where P is defined in
(1). By completing square, the directional derivative of

V for t ∈ [fk, fk+1) satisfies V̇ ≤ −‖xt‖2
2 + eT

t Qet −
xT

r Qxr +γ2‖wt‖2
2. Applying (5) to this inequality, we have

V̇ ≤ −β2‖xt‖2
2 +γ2‖wt‖2

2, which ensures the sampled-data
system is finite-gain L2 stable from w to x with a gain less
than γ/β.

In our following work, we’ll find it convenient to use a
slightly weaker sufficient condition for L2 stability which
is only a function of the state error ek(t). The following
corollary states this result.

Corollary 2. Consider the sampled-data system in (4)
with admissible sequences of release and finishing times.
Let x(r0) = x0 and Q = PB1B

T
1 P . For any β in the

interval (0, 1], let M = (1 − β2)I + Q. If the state error
trajectory satisfies

ek(t)T Mek(t) ≤ xT
r Mxr (6)

for all t ∈ [fk, fk+1) and k = 0, . . . ,∞, then the sampled-
data system is finite-gain L2 stable from w to x with a
gain less than γ/β.

Proof. Equation (6) implies ek(t)T Mek(t) ≤ (1 −
β2)‖xr‖2

2 + xT
r Qxr, which can be further developed as

ek(t)T Qek(t) ≤ (1 − β2)‖xt‖2
2 + xT

r Qxr. By applying the-
orem 1, we can conclude that the sampled-data system is
L2 stable from w to x with a gain less than γ/β.

Remark 3. The inequalities in equations 5 or 6 can both
be used as the basis for an event-triggered feedback control
system, which is very similar to the state-triggering scheme
proposed by Tabuada et al. (2006) for asymptotic stability.
The main difference between that result and this one is
that our proposed event-triggering condition provides a
stronger assurance on the sampled-data system’s perfor-
mance as measured by its induced L2 gain.

4. ADMISSIBLE RELEASE AND FINISHING TIMES

This section introduces the self-triggering scheme to char-
acterize the admissible sequences of release and finishing
times that ensure the sampled data system in (4) is L2

stable with a specified gain.

For notational convenience, let zk : [rk, fk+1) → ℜn and
ρ : ℜn → ℜ be given as

zk(t) =
√

(1 − β2)I + Q ek(t) =
√

Mek(t) (7)

ρ(x) =
√

xT Mx (8)

where
√

M is a matrix square root. So if we can guarantee
for any δ ∈ (0, 1] that

‖zk(t)‖2 ≤ δρ(xr) (9)

for all t ∈ [fk, fk+1) and k = 0, . . . ,∞, then the hypotheses
in corollary 2 are satisfied and we can conclude that the
sampled-data system is finite-gain L2 stable from w to x
with a gain less than γ/β.

With delays, we can partition the time interval [rk, fk+1)
into two subintervals [rk, fk) and [fk, fk+1), where the
associated differential equations are

ẋt = Axt − B1B
T
1 Pxr− + B2wt and

ẋt = Axt − B1B
T
1 Pxr + B2wt,

respectively. We can use differential inequalities to bound
zk(t) for all t ∈ [rk, fk+1) and thereby determine suf-
ficient conditions assuring the admissibility of the re-
lease/finishing times while preserving the closed-loop sys-
tem’s L2-stability. The next two lemmas characterize the
behavior of zk(t) over these two subintervals.

Lemma 4. Consider the sampled-data system in (4). As-
sume that M has full rank and ‖wt‖2 ≤ W‖xt‖2 holds for
all t ∈ ℜ with some non-negative real W . For any non-
negative integer k and some ǫ ∈ (0, 1), if the kth release
time rk and finishing time fk satisfy

0 ≤ Dk = fk − rk ≤ L1(xr, xr− ; ǫ) (10)

for all t ∈ [rk, fk), then the kth trigger signal, zk, satisfies

‖zk(t)‖2 ≤ φ(xr, xr− ; t − rk) ≤ ǫρ(xr) (11)

for all t ∈ [rk, fk), where

L1(xr, xr− ; ǫ) =
1

α
ln

(

1 + ǫα
ρ(xr)

µ1(xr, xr−)

)

, (12)

α =
∥

∥

∥

√
MA

√
M

−1
∥

∥

∥
+ W

∥

∥

∥

√
MB2

∥

∥

∥

∥

∥

∥

√
M

−1
∥

∥

∥
,

φ(xr, xr− ; t − rk) =
µ1(xr, xr−)

α

(

eα(t−rk) − 1
)

,

µ1(xr, xr−) =
∥

∥

∥

√
M

(

Axr − B1B
T
1 Pxr−

)

∥

∥

∥

2

+W
∥

∥

∥

√
MB2

∥

∥

∥
‖xr‖2 .

Proof. For t ∈ [rk, fk), the derivative of ‖zk(t)‖2 satis-
fies the differential inequality d

dt
‖zk(t)‖2 ≤ α‖zk(t)‖2 +

µ1(xr, xr−). Solving this differential inequality with the
initial condition zk(rk) = 0, we have ‖zk(t)‖2 ≤
φ(xr, xr− ; t − r) for all t ∈ [rk, fk). Combining this in-
equality with the inequality φ(xr, xr− ;Dk) ≤ ǫρ(xr) de-
veloped from (10) yields ‖zk(t)‖2 ≤ φ(xr, xr− ; t − r) ≤
φ(xr, xr− ;Dk) ≤ ǫρ(xr), which leads to (11) holding for
all t ∈ [rk, fk).

Lemma 5. Consider the sampled-data system in (4). As-
sume that M has full rank and ‖wt‖2 ≤ W‖xt‖2 holds for
all t ∈ ℜ with some non-negative real W . For a given inte-
ger k and some ǫ ∈ (0, 1), assume that rk−1 ≤ fk−1 ≤ rk.
For any η ∈ (ǫ, 1], let dη = fk + L2(xr, xr− ;Dk, η), where
L2 : ℜn ×ℜn ×ℜ× (0, 1] → ℜ is given by

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15240



L2(xr, xr− ;Dk, η)

=
1

α
ln

(

1 + α
ηρ(xr) − φ(xr, xr− ;Dk)

µ0(xr) + αφ(xr, xr− ;Dk)

)

µ0(xr) =
∥

∥

∥

√
MAclxr

∥

∥

∥

2
+ W

∥

∥

∥

√
MB2

∥

∥

∥
‖xr‖2 .

(13)

If 0 ≤ Dk ≤ L1(xr, xr− ; ǫ), then dη > fk and ‖zk(t)‖2 ≤
ηρ(xr) for all t ∈ [fk, dη].

Proof. The hypotheses of this lemma also satisfy the
hypotheses of lemma 4 so we know that

‖zk(fk)‖2 ≤ φ(xr, xr− ;Dk) ≤ ǫρ(xr) ≤ ηρ(xr). (14)

By (13) and (14), we have L2(xr, xr− ;Dk, η) > 0 which
implies dη > fk. Assume the system state xt satisfies the
differential equation ẋt = Axt −B1B

T
1 Pxr + B2wt for t ∈

[fk, dη]. Using an argument similar to that in lemma 4, we
can show that ‖zk(t)‖2 satisfies the differential inequality
d
dt
‖zk(t)‖2 ≤ α‖zk(t)‖2 + µ0(xr). Solving this differential

inequality using (14) as the initial condition, we know

‖zk(t)‖2 ≤ eα(t−fk)φ(xr, xr− ;Dk) + µ0(xr)
α

(

eα(t−fk) − 1
)

for all t ∈ [fk, dη]. Because the right side of the equation
above is an increasing function of t, we get ‖zk(t)‖2 ≤
ηρ(xr) for all t ∈ [fk, dη].

According to lemma 5, for a constant δ ∈ (ǫ, 1), if
Dk ≤ L1(xr, xr− ; ǫ), then rk+1 = fk + L2(xr, xr− ;Dk, δ),
and fk+1 ≤ fk + L2(xr, xr− ;Dk, 1) imply ‖zk(rk+1)‖2 ≤
δρ(xr) and ‖zk(fk+1)‖2 ≤ ρ(xr), respectively. We will use
this fact below to characterize a self-triggering scheme
that preserves the sampled-data system induced L2 gain.
Theorem 7 formally states this self-triggering scheme. The
proof of theorem 7 requires the following lemma showing
that the bound for delays given in lemma 4 is bounded
below by a positive function of xr− .

Lemma 6. Consider the sampled-data system in (4). As-
sume that M has full rank and ‖wt‖2 ≤ W‖xt‖2 holds
for all t ∈ ℜ with some non-negative real W . If for a
constant δ ∈ (ǫ, 1), the release time rk−1 and rk satisfy
‖zk−1(rk)‖2 ≤ δρ(xr−) for all k, then L1 given by (12)
satisfies L1(xr, xr− ; ǫ) ≥ ξ(xr− ; ǫ, δ) > 0, where

ξ(xr− ; ǫ, δ) =
1

α
ln

(

1 +
ǫ(1 − δ)ρ(xr−)

δρ(xr−) + µ0(xr−)/α

)

(15)

Proof. A lower bound on ρ(xr) is obtained by ρ(xr) ≥
‖
√

Mxr−‖2 − ‖zk−1(rk)‖2 ≥ ρ(xr−) − δρ(xr−). Similarly,
an upper bound on µ1(xr, xr−) is obtained: µ1(xr, xr−) ≤
µ0(xr−)+αδρ(xr−). Putting both inequalities together we
see that L1(xr, xr− ; ǫ) ≤ ξ(xr− ; ǫ, δ) > 0.

With the preceding technical lemma we can now state a
self-triggered feedback scheme which can guarantee the
sampled-data system’s induced L2 gain.

Theorem 7. Consider the sampled-data system in (4). As-
sume that M has full rank and ‖wt‖2 ≤ W‖xt‖2 holds
for all t ∈ ℜ with some non-negative real W . For given
ǫ ∈ (0, 1) and δ ∈ (ǫ, 1), we assume that

• The initial release and finishing times satisfy

r−1 = r0 = f0 = 0

• For any non-negative integer k, the release times are
generated by the following recursion,

rk+1 = fk + L2(xr, xr− ;Dk, δ) (16)

and the finishing times satisfy

rk+1 ≤ fk+1 ≤ rk+1 + ξ(xr; ǫ, δ). (17)

where L2 and ξ are given in (13) and 15, respectively. Then
the sequence of release times, {rk}∞k=0, and finishing time,
{fk}∞k=0, are admissible and the sampled-data system is
finite gain L2 stable from w to x with an induced gain less
than γ/β.

Proof. By the definition of ξ in (15), we can easily see that
ξ(xr; ǫ, δ) > 0 for any non-negative integer k and therefore
the interval [rk+1, rk+1 + ξ(xr; ǫ, δ)] is nonempty for all k.
Next, we insert (16) into (17) to show that for all k,

fk+1 ≤ fk + L2(xr, xr−);Dk, 1). (18)

With the preceding two preliminary results, we now use
mathematical induction to show that under the theorem’s
hypotheses, the following statement holds for all k:

rk ≤ fk ≤ rk+1

‖zk(t)‖2 ≤ δρ(xr) for all t ∈ [fk, rk+1]
‖zk(t)‖2 ≤ ρ(xr) for all t ∈ [fk, fk+1].

(19)

It is easy to show the inductive statement hold for k = 0.
We now turn to the general case for any k. For a given k,
assume the statement in (19) hold and consider the k+1st
job. Since the hypothesis of lemma 6 is satisfied, we have
ξ(xr); ǫ, δ) ≤ L1(xr+ , xr; ǫ). We can use it in (17) to obtain

0 ≤ Dk+1 ≤ L1(xr+ , xr; ǫ). (20)

From (20) and the fact that δ ∈ (0, 1) we know that the
hypotheses of lemma 5 hold and we can conclude that

fk+1 ≤ rk+2

‖zk+1(t)‖2 ≤ δρ(xr+) for t ∈ [fk+1, rk+2]
(21)

Combining (17) with the above (21) yields rk+1 ≤ fk+1 ≤
rk+2. Therefore, the first two parts of the statement
are established for the case k + 1. Let dk+1

1 = fk+1 +

L2(xr+ , xr;Dk+1, 1). According to (18), fk+2 ≤ dk+1
1 .

Combining this and (17), (21) yields [fk+1, fk+2] ⊆
[fk+1, d

k+1
1 ]. We know that the validity of (20) satisfies

the hypotheses of lemma 5 and therefore conclude that
‖zk+1(t)‖2 ≤ ρ(xr+) for all t ∈ [fk+1, fk+2] ⊆ [fk+1, d

k+1
1 ],

which completes the third part of the statement for k + 1.

We may therefore use mathematical induction to conclude
that the inductive statement holds for all non-negative
integers k. The first part of the statement simply means
that the sequences {rk}∞k=0 and {fk}∞k=0 are admissible.
The third part of the inductive statement implies that the
hypotheses of corollary 2 are satisfies, thereby ensuring
that the system’s induced L2 gain is less than γ/β.

Remark 8. ξ(xr; ǫ, δ) is the deadline for the delay Dk.

Remark 9. By the way we construct δ, we see that it
controls when the next job’s finishing time. We might
therefore expect to see a larger δ result in larger sampling
periods. This is indeed confirmed by the analysis. Since

Tk ≥ rk+1 − fk = L2(xr, xr− ;Dk, δ)

and since L2 is an increasing function of δ we can see that
larger δ result in larger sampling periods.
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Remark 10. By our construction of ǫ, we see that it
controls the current job’s finishing time. Since this

Dk = fk − rk ≤ ξ(xr− ; ǫ, δ)

and since ξ is an increasing function of ǫ, we can expect
to see the allowable delay increase as we increase ǫ. Note
also that ξ is a decreasing function of δ so that adopting a
longer sampling period by increasing δ will have the effect
of reducing the maximum allowable task delay.

The following corollary to the above theorem shows that
the task periods and deadlines generated by our self-
triggered scheme are all bounded away from zero. This
is important in establishing that our scheme does not
generate infinite sampling frequencies.

Corollary 11. Assume the assumptions in theorem 7 hold.
Then there exist two positive constants ζ1, ζ2 > 0 such
that Tk ≥ ζ1 and ξ(xr; ǫ, δ) ≥ ζ2.

Proof. From theorem 7, we know Dk ≤ ξ(xr; ǫ, δ) ≤
L1(xr, xr− ; ǫ). Therefore, by lemma 4, φ(xr, xr− ;Dk) ≤
ǫρ(xr). Then it is easy to show

Tk ≥ 1
α

ln
(

1 +
α(δ−ǫ)λ(

√
M)

‖
√

MAcl‖+W‖
√

MB2‖+αǫλ(
√

M)

)

and

ξ(xr; ǫ, δ) ≥ 1
α

ln

(

1 +
ǫα(1−δ)λ(

√
M)

‖√MAcl‖+W‖
√

MB2‖+δαλ(
√

M)

)

.

5. SIMULATION

The following simulation results were generated for self-
triggered feedback systems. The plant was an inverted
pendulum on top of a moving cart with state equations

ẋt =







0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g/ℓ 0






xt +







0
1/M

0
−1/(Mℓ)






u +







1
1
1
1






wt

where M was the cart mass, m was the mass of the
pendulum bob, ℓ was the length of the pendulum arm, and
g was gravitational acceleration. For these simulations, we
let M = 10, ℓ = 3, g = 10, γ = 200, and β = 0.5. The

system’s initial state was the vector x0 = [ 0.98 0 0.2 0 ]
T
.

The control gain is K = [ 2 12 378 210 ].

5.1 Self-triggered Feedback

The simulations in this subsection examined the self-
triggering feedback scheme in theorem 7. In this case we
assumed wt = 0 and set ǫ = 0.65, δ = 0.7. The task release
time rk+1 was computed at fk using (16) and the finishing
times were assumed to satisfy fk+1 = rk+1 + ξ(xr; ǫ, δ).

Let xs
t denote the self-triggered system’s response and xc

t

the continuous-time system’s response. The top plot of Fig.
1 plots the error signal ‖xs

t − xc
t‖2 as a function of time.

The error signal is small over time, thereby suggesting that
the continuous-time and self-triggered systems have nearly
identical impulse responses

The bottom plot of Fig. 1 plots the task periods, Tk,
(crosses) and deadlines, ξ, (dots) generated by the self-
triggered scheme. The sampling periods range between
0.027 to 0.187. These sampling periods show significant
variability. The shortest and most aggressive sampling
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Fig. 1. A self-triggered system (δ = 0.7, ǫ = 0.65, wt = 0)

periods occurred in response to the system’s non-zero
initial condition. Longer and relatively constant sampling
periods were generated once the system state has returned
to the neighborhood of the system’s equilibrium point.
This seems to confirm the conjecture that self-triggering
can effectively adjust task periods in response to changes
in the control system’s external inputs.

5.2 Self-triggered versus Periodically Triggered Control

The simulations in this subsection directly compare the
performance of self-triggered and “comparable” periodi-
cally triggered feedback control systems. These simulations
were done on the inverted pendulum system described
above. The self-triggered simulations assumed that ǫ =
0.65 and δ = 0.7 and task delays were set equal to the
deadlines given by the function ξ.

The state trajectories were compared against periodically
triggered systems with a “comparable” task period and
delays. The comparable task period was the mean sample
period, 0.0673, over the interval when the system is near
its equilibrium point generated by a self-triggered system
whose exogenous inputs were chosen to be a noise process
in which ‖wt‖2 ≤ 0.01‖xs

t‖2. The delay was set equal to
the minimum predicted deadline, 0.004. Fig. 2 plots the
sample periods, Tk, and predicted deadlines generated by
such a self-triggered system.

We compared the self-triggered and periodically triggered
system’s performance by examining their normalized tra-
jectory errors, E(t|xt), given by

E(t|xt) =

∣

∣

∣

√

V (xt) −
√

V (xc
t)

∣

∣

∣

√

V (xc
t)

,

where V (x) = xT Px and P satisfying (1). This normal-
ization of the trajectory error allows us to fairly compare
those states (i.e. the pendulum bob angle) that are most
directly affected by input disturbances. Let xp

t denote the
periodically triggered system’s response. Fig. 3 plots the
time history of the normalized errors, E(t|xs

t ) and E(t|xp
t ),

for the inverted pendulum using the input signal, wt = µt+
νt where ν is the disturbance satisfying ‖νt‖2 ≤ 0.01‖xs

t‖2

and µ : ℜ → ℜ takes the values

µt =

{

sgn(sin(0.7t)) if 0 ≤ t < 10
0 otherwise

.
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Fig. 2. Sample periods and deadlines for a self-triggered
system (ǫ = 0.65, δ = 0.7, ‖wt‖2 ≤ 0.01‖xs

t‖2)
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Fig. 3. Normalized trajectory errors versus time for a
self-triggered system (ǫ = .65 and δ = 0.7) and a
periodically triggered system

Fig. 3 clearly shows that the self-triggered error is signifi-
cantly smaller than the error of the periodically triggered
system. This error is a direct result of the self-triggered
system’s ability to adjust its sample period. Fig. 4 plots the
sampling periods generated by the self-triggered system for
the preceding system. This plot shows that the sampling
period readjusts and gets smaller when the square wave
input hits the system over the time interval [0, 10]. These
results again demonstrate the ability of self-triggering to
successfully adapt to changes in the system’s input distur-
bances.

We then compare the sampling period in the self-triggered
system with the bound of MATI in Nesic et al. (2004) given

by τMATI = 1
L

ln L+γ̄
ρ̄L+γ̄

= 0.0112, where, for the inverted

pendulum model, ρ̄ = 0, L = max(0.5λmax(−B1K −
KT BT

1 ), 0), and γ̄ is the L2 gain for the closed-loop system
(ẋ = Aclx + B1Ke + B2w) from (e, w) to −Aclx. Clearly
the average period, 0.0673, generated by the self-triggered
scheme is longer than the bound of MATI.

6. CONCLUSION

This paper has presented a self-triggered feedback scheme
with guaranteed L2 stability. Simulation results show that
the proposed self-triggered scheme perform better than
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Fig. 4. Sampling period versus time for the self-triggered
system (ǫ = 0.65, δ = 0.7, wt = µt + νt)

comparable periodically triggered feedback controllers.
The results in this paper, therefore, appear to provide
a solid analytical basis for the development of aperiodic
sampled-data control systems that adjust their periods and
deadlines to variations in the system’s external inputs.
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