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Abstract: We propose a novel framework, which, under a certain geometric condition,
enables us to decompose the second-order Lagrangian dynamics of the multiple nonholonomic
mechanical systems into two decoupled systems according to the two most fundamental aspects
of the group behaviour: shape system describing the formation aspect (i.e. group’s internal
shape); and locked system abstracting the maneuver aspect (i.e. group’s overall motion). By
controlling these decoupled locked and shape systems individually, we can then control the
formation and maneuver aspects separately without any crosstalk between them. Moreover, the
framework enables us to do this while respecting/utilizing the Lagrangian structure/passivity
of the system’s open-loop dynamics. Due to this property, we call this framework nonholonomic
passive decomposition. A control design example with numerical simulation is also given to
highlight some properties of the proposed framework.
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1. INTRODUCTION

Let us consider multiple wheeled mobile robots advanc-
ing together to a target location while keeping a tight
formation or a team of multiple mobile manipulators co-
operatively carrying a commonly grasped object with-
out any object-specific holding-fixture. Then, we can
think of the two fundamental aspects from the group
behaviour of these multiple robots: 1) formation as-
pect representing the group’s internal shape (e.g. forma-
tion/grasping shape); and 2) maneuver aspect describing
the group’s overall/average motion (e.g. centroid motion
of formation/grasped object). These two aspects are, in
fact, universally applicable whenever we deal with multi-
robot/multiagent systems.

In many applications as those mentioned above, the
formation-maneuver decoupling (i.e. no crosstalk between
these two aspects) and the capability to control these as-
pects individually and separately (yet still simultaneously)
are desirable and often even imperative. For instance, in
the above cooperative fixture-less grasping scenario, with-
out such formation-maneuver decoupling, as we speed-
up/slow-down the group’s maneuver to drive the grasped
object, this maneuver dynamics will then perturb the
formation aspect (i.e. grasping shape), thus, may result in
the (possibly dangerous) dropping of the grasped object.
On the other hand, as we change the formation shape of
the robots, the overall team may start drifting away due
to the (energy) coupling from the formation to maneuver.

This problem - how to achieve the formation-maneuver
decoupling, and, thereby, control the formation and ma-
� This work was supported in part by the National Science Founda-
tion under Grant CMMI-0727480.

neuver simultaneously, separately, and precisely - has been
largely remained as an open problem for the (multiple)
nonholonomic mechanical systems with second-order La-
grangian dynamics, mainly due to the lack of tools to fully
analyze the combined effects of the Lagrangian dynamics
and the nonholonomic constraints on the formation and
maneuver aspects. To our best knowledge, only the mean-
ingful work along this line is [12], which, however, consid-
ers only the first-order drift-free kinematic nonholonomic
systems, thus, can not handle with the dynamics-related
effects (e.g. external force, inertial coupling). Note that,
without fully considering these dynamics-related effects,
we would not be able to realize many practically important
applications demanding the tight formation (e.g. fixture-
less cooperative grasping). This neglecting (or assuming
the perfect cancellation of) the second-order Lagrangian
dynamics has been, in fact, a dominant trend even for the
control of a single nonholonomic mechanical system (e.g.
[1, 4]). See [2, 5] for some of very few exceptions for this.

In this paper, by extending the standard passive de-
composition [10, 7, 6, Lee and Li], we propose a novel
framework, which, under a certain geometric condition,
enables us to decompose the second-order Lagrangian dy-
namics of the multiple nonholonomic mechanical systems
into: 1) locked system describing the maneuver aspect; 2)
shape system representing the formation aspect; and 3)
inertia-induced (energetically conservative) coupling be-
tween them. Then, by canceling out this coupling, we
can decouple the locked and shape systems from each
other (i.e. formation-maneuver decoupling is achieved).
Moreover, by controlling these decoupled locked and shape
systems individually, we can then control the formation
and maneuver aspects separately without any crosstalk
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between them. These decoupled locked and shape sys-
tems, similar to their counterparts of the standard passive
decomposition, individually inherit the Lagrangian-like
structure/passivity from their open-loop nonholonomic
mechanical systems. Thus, many powerful control tech-
niques utilizing such passivity/Lagrangian-structure (e.g.
passivity-based control) would be applicable for each of
them, although control design to attain certain objectives
may be quite complicated (or even impossible) here be-
cause of the nonholonomic constraints. Due to this de-
composing capability and passivity preservation for the
nonholonomic mechanical systems, we call this new frame-
work nonholonomic passive decomposition, which may be
thought of as an extension of the standard passive decom-
position (i.e. formation-maneuver decomposition for the
second-order unconstrained Lagrangian systems) and the
work in [12] (i.e. formation-maneuver decomposition for
the first-order kinematic nonholonomic systems).

The rest of this paper is organized as follows. Some prelim-
inary materials, including the dynamics of multiple non-
holonomic mechanical systems and their related geometric
entities, will be discussed in Sec. 2. The standard passive
decomposition will be briefly reviewed in Sec. 3 along
with its shortcomings for the nonholonomic systems. The
main result - nonholonomic passive decomposition - will
be presented and detailed in Sec. 4, and a control design
example with its numerical simulation will be given in
Sec. 5. Summary and some concluding remarks on future
research will be made in Sec. 6.

2. PRELIMINARY

2.1 Multiple Nonholonomic Mechanical Systems

Let us start with the dynamics of a single nonholonomic
mechanical system, which consists of 1) the nonholonomic
Pfaffian constraints equation:

A(q)q̇ = 0 (1)
and 2) the Lagrange-D’Alembert equation of motion:

M(q)q̈ + C(q, q̇)q̇ + AT (q)λ = τ + f (2)
where q, q̇, τ, f ∈ �n are the configuration, velocity, con-
trol, and external force, M,C ∈ �n×n are the inertia and
Coriolis matrices s.t. Ṁ − 2C is skew-symmetric, A(q) ∈
�p×n (p ≤ n) defines the nonholonomic constraints,and
AT (q)λ is the constraint force, whose magnitude is spec-
ified by the Lagrange multiplier λ ∈ �p. We assume that
these nonholonomic constraints are smooth and regular
(i.e. rankA is constant). This mathematical modeling is
also equally applicable to the multiple nonholonomic me-
chanical systems, since, by combining their individual dy-
namics into their (product) configuration space M ≈ �n

(i.e., redefining q := (q1, q2, ..., qN ) with qi being i-th
robot’s configuration), we can obtain their group dynamics
exactly in the same form as in (1)-(2) [10, 7].

Using the constraints (1) and the inertia metric M(q), we
can then generate four spaces at each q: 1) constrained
codistribution C⊥, which is the row space of A(q) deter-
mining the space of the constraint forces; 2) unconstrained
distribution D�, which is the kernel of A(q) specifying the
direction of q̇ permitted by the constraints (1); 3) con-
strained distribution D⊥, which is the orthogonal comple-
ment of D� w.r.t. the M(q)-metric; and 4) unconstrained

codistribution C�, which annihilates D⊥. Note that C⊥ also
annihilates D�. Here, the first two are purely-kinematic
(i.e. only dependent on the constraints (1)), thus, easy to
compute, while the last two are inertia-dependent.

Then, at each q, the tangent space (i.e. velocity space:
TqM) and the cotangent space (i.e. force space: T ∗

q M)
respectively split s.t.

TqM = D� ⊕D⊥ and T ∗
q M = C� ⊕ C⊥ (3)

where ⊕ is the direct sum, and the velocity q̇ and the
control τ can be written as

q̇ = [D� D⊥ ]︸ ︷︷ ︸
=:D(q)

(
ν
ξ

)
, τ =

[ CT
� CT

⊥
]

︸ ︷︷ ︸
=:CT (q)

(
u
uξ

)
(4)

where D� ∈ �n×(n−p), D⊥ ∈ �n×p, C� ∈ �(n−p)×n and
C⊥ ∈ �p×n are the matrices identifying their respective
spaces. Similar also hold for f with its split coordinates
being δ, δξ. Since D⊥ describes the direction of velocity
violating the constraints (1), ξ = 0. Also, note that the
control/force in C� direction (i.e. u, δ) is fully effective not
being hindered by the constraints, while those in C⊥ (i.e.
uξ, δξ) are completely absorbed by the constraint forces.
In this paper, we assume that we can assign u arbitrarily,
that is, we have full control in C� and the control under-
actuation is only due to the nonholonomic constraints.

Here, from our construction, C⊥D� = 0, C�D⊥ = 0. Also,
to have the following mechanical power preservation s.t.

power(t) := (τ + f)T q̇ = (u + δ)T ν + (uξ + δξ)T ξ (5)
we enforce C�D� = I and C⊥D⊥ = I. This can be achieved
by simply setting C = D−1, since, from D−1D = I, the top
(n−p)×n and the bottom p×n blocks of D−1 still identify
C� and C⊥ respectively. Note also that, since ξ = 0, the
last term in (5) is actually zero.

Then, using (4) with DT
�MD⊥ = 0 (since D� and D⊥ are

orthogonal w.r.t. M(q)-metric) and ξ = 0, we can rewrite
the dynamics (2) s.t.

Dν(q)ν̇ + Qν(q, q̇)ν = u + δ (6)
Qξν(q, q̇)ν + (D⊥)T AT (q)λ = uξ + δξ (7)

where Dν = D�MD� ∈ �(n−p)×(n−p), and[
Qν Qνξ

Qξν Qξ

]
:= DT

[
MḊ + CD

]
.

Here, (6) is the dynamics (2) projected on D�, thus no
constraint force shows up there. Also, (7) is the projection
on D⊥ where the term with Qξν is so called the second
fundamental form [3], which quantifies the tendency of
the system to deviate from D�. No acceleration terms
shows up in (7), since D� and D⊥ are orthogonal w.r.t.
the M(q)-metric. Thus, from (7), we can directly compute
the Lagrangian multiplier as a function of q, q̇, uξ, δξ.

Here, since ξ = 0, we have
κ(t) := 1

2 q̇T M(q)q̇ = 1
2νT Dν(q)ν.

It is also not so difficult to see that
Ḋν − 2Qν = DT

�[Ṁ − 2C]D� + ḊT
�MD� − DT

�MḊ�
which is skew-symmetric. Combining these, we can show
that both the original dynamics (1)-(2) and its projection
(6)-(7) possess (energetic) passivity property [8]: ∀T ≥ 0,∫ T

0

(τ + f)T q̇dt =
∫ T

0

(u + δ)T νdt = κ(T ) − κ(0). (8)
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2.2 Formation and Maneuver

For a group of multiple systems, we can think of two
aspects from their group behaviour: 1) formation aspect
- group’s internal shape; and 2) maneuver aspect - group’s
overall motion. For instance, consider three wheeled mobile
robots with (pi, θi) as their (x, y)-position and orientation
(i = 1, 2, 3). Then, their (x, y)-formation shape (i.e. (p1 −
p2, p2 − p3) ∈ �4) and misalignment (i.e. (θ1 − θ2, θ2 −
θ3) ∈ �2) may represent the formation aspect, while their
centroid motion (i.e. (p1 + p2 + p3)/3 ∈ �2) and bulk
orientation (i.e. (θ1+θ2+θ3)/3 ∈ �) the maneuver aspect.

In this paper, we suppose that this formation aspect can
be represented by the mapped point of a smooth function

h : �n → �m, m ≤ n (9)
which we also assume to be a submersion (i.e. its Jacobian
is full-rank). Then, the level set of h, defined s.t.

Hc := {q ∈ �n | h(q) = c, c ∈ �m } (10)
is a (n−m)-dim. (smooth) submanifold and the collection
of them forms a foliation with each submanifold being its
leaf [11]. We call this map h formation map and its range
space (identified by �m here) formation manifold N . See
Fig. 1 for an illustration, where 1) the formation aspect
(i.e. shape system) is represented by the mapped point in
N ; and 2) the maneuver aspect (i.e. locked system) by the
trajectory moving parallel on the level set Hh(q).

In many applications, we want to decouple these forma-
tion and maneuver aspects from each other. For instance,
suppose that the above three wheeled mobile robots carry
a commonly grasped object by keeping a certain grasping
shape (i.e. formation) among them without any holding-
fixture. Then, without such a formation-maneuver decou-
pling, if we speed-up (or slow-down) the collectives of the
robots to drive the object (i.e. maneuver control), this
maneuver change can perturb the formation aspect (i.e.
grasping), thus, possibly incur the dropping of the object!
The standard passive decomposition[10, 7, 6, Lee and Li]
enables us to achieve this formation-maneuver decoupling
and, thereby, control each of them independently - unfortu-
nately, only for the unconstrained mechanical systems. In
this paper, we will extend this standard passive decompo-
sition to the nonholonomic Lagrangian mechanical systems
and name it nonholonomic passive decomposition (Sec. 4).
To do this, let us first briefly summarize the standard
passive decomposition and reveal some of its shortcomings
for the nonholonomic mechanical systems.

3. STANDARD PASSIVE DECOMPOSITION

Consider Fig. 1. Then, at each q, for the velocity q̇ to be
parallel w.r.t. the level set Hh(q), it needs to satisfy

Lq̇h =
∂h

∂q
q̇ = 0

where Lq̇h is the Lie derivative of h along q̇. In other words,
the kernel of ∂h/∂q ∈ �m×n defines the distribution (i.e.
subspace of velocity) parallel to the level set. Then, similar
to Sec. 2.1, using the M(q)-metric, we can define the
following four vector spaces: 1) normal codistribution Ω⊥
is the row space of ∂h/∂q representing the force directions
normal to the level set Hh(q); 2) parallel distribution
Δ� is the kernel of Ω⊥, thus, parallel to Hh(q) and

Group 
manifold M

νL

level 
sets

Formation
manifold N

nonholonomic
constraints

h(q)=c νE

Locked
system

Formation
map h

q
.

Shape
system

h(q)

Fig. 1. Geometry of formation map and level sets.

constitutes the velocity space of the maneuver aspect;
3) normal distribution Δ⊥ is the orthogonal complement
of Δ� w.r.t. the M(q)-metric, whose image via h on N
describes the formation aspect’s evolution; and 4) parallel
codistribution Ω� annihilates Δ⊥ and encodes the force
directions affecting only the maneuver aspect along Hh(q).
Again, the former two are purely-kinematic (i.e. dependent
only on h), while the latter two are inertia-dependent.

Then, similar to (3)-(4), we have, at each q,

TqM = Δ� ⊕ Δ⊥, T ∗
q M = Ω� ⊕ Ω⊥ (11)

and we can write q̇ and τ by (similar also hold for f)

q̇ = [ Δ� Δ⊥ ]︸ ︷︷ ︸
=:Δ(q)

(
vL

vE

)
, τ =

[
ΩT

� ΩT
⊥

]
︸ ︷︷ ︸

=:ΩT (q)

(
τL

τE

)
(12)

where the matrices Δ� ∈ �n×(n−m), Δ⊥ ∈ �n×m,
Ω� ∈ �(n−m)×n and Ω⊥ ∈ �m×n identify their respective
spaces. Similar to (4), we enforce ΩΔ = I. In particular,
we set Ω⊥ = ∂h/∂q with rescaling/permutating Δ s.t.

Δ = [ Δ�α Δ⊥β ] (13)

where α = (Ω�Δ�)−1 and β = (∂h
∂q Δ⊥)−1. By doing so,

we can not only ensure ΩΔ = I but also vE = dh/dt so
that vE is explicitly related to the formation aspect h(q).
Note that, simply setting Ω = Δ−1 here as done in Sec.
2.1 does not generally guarantee vE = dh/dt.

Then, using ΔT
�MΔ⊥ = 0, we can decompose the original

dynamics (2) into: with argument omitted for brevity,

MLv̇L + CLvL + CLEvE + ΔT
�AT λ = τL + fL (14)

ME v̇E + CEvE + CELvL + ΔT
⊥AT λ = τE + fE (15)

where ML = ΔT
�MΔ�, ME = ΔT

⊥MΔ⊥, and[
CL CLE

CEL CE

]
:= ΔT [MΔ̇ + CΔ]. (16)

Note that the first dynamics (14) is the projection of the
original dynamics (2) onto Δ� (i.e. maneuver aspect),
while the second (15) onto Δ⊥ (i.e. formation aspect).
We call the dynamics of vE in (15) shape system, since it
describes the group’s internal shape (i.e. formation aspect)
with the explicit relation vE = dh/dt. On the other hand,
the dynamics of vL in (14) we call locked system, since
it describes the group’s overall motion (i.e. maneuver
aspect), especially when the formation h(q) is locked so
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that the system’s motion is confined within a single level
set. Here, due to the orthogonality of Δ� and Δ⊥ w.r.t.
the M(q)-metric, there is no coupling between the locked
and shape systems via the acceleration channel.
Proposition 1. [9, 8] Consider the decomposed dynamics
(14)-(15). Then,

(1) ML and ME are symmetric and positive-definite.
(2) ṀL − 2CL and ṀE − 2CE are skew-symmetric.
(3) CLE = −CT

EL.
(4) Kinetic energy and power are decomposed s.t.

κ(t) = κL(t) + κE(t)
τT q̇ = τT

L vL + τT
E vE

where κL = vT
LMLvL/2 and κE = vT

EMEvE/2.

Proof. Probably, the only not-obvious items here would
be items 2 and 3, which can be proved similarly to Sec.
2.1 by observing that the following is skew-symmetric:[

ṀL − 2CL −2CLE

−2CEL ṀE − 2CE

]
=

d[ΔT MΔ]
dt

− 2ΔT [MΔ̇ + CΔ]

= ΔT [Ṁ − 2C]Δ + Δ̇T MΔ − ΔT MΔ̇.

Thus, if there are no constraints (i.e. AT = 0), 1) we
can achieve the formation-maneuver decoupling by simply
canceling out the coupling terms CLEvE , CELvL; 2) we
can control the (decoupled) locked and shape systems
individually and separately without any crosstalk between
them; and 3) we can utilize the Lagrangian-like struc-
ture/passivity of the locked and shape systems in designing
controllers for them (e.g. passivity-based control).

Unfortunately, a direct application of this standard passive
decomposition to the nonholonomic systems seems not so
promising here, particularly as shown by the presence of
ΔT

�AT λ,ΔT
⊥AT λ in (14)-(15). In addition to possibly make

the control design/analysis much more complicated, these
constraints terms may impose a fundamental restriction
on the formation-maneuver decoupling. This is because,
they may create uncancelable energy-coupling between the
locked and shape systems. To better see this, observe the
following: from (14)-(15) with Prop. 1,

dκL

dt
= −vT

LCLEvE − vT
LΔT

�AT λ + (τL + fL)T vL

dκE

dt
= −vT

ECELvL − vT
EΔT

⊥AT λ + (τE + fE)T vE (17)

where, from the item 3 of Prop. 1, (1) and (12), we have
vT

LCLEvE + vT
ECELvL = vT

L [CLE + CT
EL]vE = 0 (18)

vT
LΔT

�AT λ + vT
EΔT

⊥AT λ = λT Aq̇ = 0.

This shows that both the Coriolis coupling terms (i.e. via
CLE , CEL) and the constraints coupling terms (i.e. via
ΔT

�AT λ,ΔT
⊥AT λ) define (conservative) locked-shape en-

ergy coupling. However, although the former is cancelable
(i.e. design (τL, τE) = (CLEvE , CELvE), convert to τ by
(12), and project on C� by (4)), the latter is not. As long as
there is such uncancelable locked-shape energy coupling,
there will be no hope for us to achieve the formation-
maneuver decoupling. Here, note that ΔT

�AT λ,ΔT
⊥AT λ

are in general not individually zero (see Remark 2).

In the next section, we will show that, for the nonholo-
nomic mechanical systems under a certain geometric con-
dition, by extending this standard passive decomposition,

D

D

Fig. 2. Example of D� 
= (D� ∩ Δ�) ⊕ (D� ∩ Δ⊥).

we can still achieve the locked-shape decoupling without
any such uncancelable energy-coupling between them. We
will call this new decomposing procedure nonholonomic
passive decomposition.
Remark 2. In general, vT

LΔT
�AT λ and vT

EΔT
⊥AT λ are not

individually zero, although their sum is so as shown above.
For instance, for a wheeled mobile robot with h(x, y, θ) =
x, vT

LΔT
�AT λ = −λv c θ s θ and vT

EΔT
⊥AT λ = λv s θ c θ,

where λ = (fx s θ − fy c θ), f := (fx, fy) is the (x, y)-
external force, and v is the forward-velocity of the robot.

4. NONHOLONOMIC PASSIVE DECOMPOSITION

Let us introduce the following decomposibility condition:

D� = (D� ∩ Δ�) ⊕ (D� ∩ Δ⊥) (19)

for every q, where we assume D� ∩ Δ� 
= ∅ and D� ∩
Δ⊥ 
= ∅. Once we have this condition, as we will see below,
we can still decouple the dynamics of the nonholonomic
mechanical system (evolving in D�) into those of D� ∩
Δ� (i.e. maneuver aspect) and D� ∩ Δ⊥ (i.e. formation
aspect), thus, can achieve the formation-maneuver decou-
pling. This decomposibility condition (19) also implies the
split of the dual-space C� s.t.: for all q,

C� = (C� ∩ Ω�) ⊕ (C� ∩ Ω⊥)

since, 1) due to (19), we can split the basis of D� into
V1 := {e1, ..., er} ≈ D� ∩Δ� and V2 := {er+1, ..., en−p} ≈
D�∩Δ⊥ with 〈〈ei, ej〉〉 = eT

i M(q)ej/2 = δij , where δij = 1
if i = j and δij = 0 otherwise; and 2) the basis of C�, then,
can also be split into W1 = {d1, ..., dr} ≈ C� ∩ Ω� and
W2 = {dr+1, ..., dn−p} ≈ C�∩Ω⊥ s.t. 〈di, ej〉 = diej = δij .
Here, by A ≈ B, we mean A identifies B.

Note that this decomposibility condition (19) is not always
granted (e.g. counter-example in Remark 2), although it
is very tempting to believe so from (3) and (11). This is
because some of the directions of Δ� or Δ⊥ can be cut off
by the ∩-operation (with D�), thus, with those directions
missing, D� ∩ Δ� and D� ∩ Δ⊥ may not span the whole
D�-space. See Fig. 2 for an illustration. See also Remark 4
for a sufficient condition for this decomposibility condition.

Then, using the fact that q̇ ∈ D� and τ ∈ C�, we can
write q̇ and τ s.t.
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q̇ = [D� ∩ Δ� D� ∩ Δ⊥ ]︸ ︷︷ ︸
=:V(q)

(
νL

νE

)

τ =
[
(C� ∩ Ω�)T (C� ∩ Ω⊥)T

]
︸ ︷︷ ︸

=:WT (q)

(
uL

uE

)
(20)

where, similar to (12), each block of V(q),W(q) iden-
tifies its corresponding vector spaces. To preserve the
mechanical power (i.e. τT q̇ = uT

LνL + uT
EνE), here, we

also enforce W(q)V(q) = I. This can be achieved by
scaling/permutating V(q) as done in (13).

By applying (20), we can then decompose the original
nonholonomic Lagrangian dynamics (1)-(2) into:

DL(q)ν̇L + QL(q, q̇)νL + QLE(q, q̇)νE = uL + δL (21)
DE(q)ν̇E + QE(q, q̇)νE + QEL(q, q̇)νL = uE + δE (22)

where, similar to (14)-(15), diag[DL,DE ] := VT MV and[
QL QLE

QEL QE

]
:= VT

[
M V̇ + CV

]
. (23)

Here, we call the dynamics of νL in (21) unconstrained
locked system, since it is the original locked system dy-
namics of vL in (14) projected to the unconstrained D�.
Similarly, we call the dynamics of νE in (22) unconstrained
shape system. Now, we present our main result.
Theorem 3. Consider the nonholonomic mechanical sys-
tem (1)-(2) with the formation map h (9). Then, if the
decomposibility condition holds (19), we can decompose
the system dynamics (1)-(2) into (21)-(22), where

(1) DL and DE are symmetric and positive-definite.
(2) ḊL − 2QL and ḊE − 2QE are skew-symmetric.
(3) QLE = −QT

EL.
(4) Kinetic energy and power are decomposed s.t.

κ(t) = 1
2νT

L DLνL + 1
2νT

EDEνE

τT q̇ = uT
LνL + uT

EνE

and, furthermore, κL = νT
L DLνL/2, κE = νT

EDEνE/2
and uT

LνL = τT
L vL, uT

EνE = τT
E vE , where κ, κL, κE

are the kinetic energies of the total system, original
locked, and shape systems, respectively.

Furthermore, by cancelling out the coupling terms QLEνL

and QELνE in (21)-(22), we can achieve the formation-
maneuver decoupling.

Proof. Here, we only prove (parts of) items (2)-(4), since
the rests are either easy to prove or straightforward to
deduce from the given proof. First, observe that, from (23),[

ḊL − 2QL −2QLE

−2QEL ḊE − 2QE

]
=

d[VT MV]
dt

− 2VT [M V̇ + CV]

= VT [Ṁ − 2C]V + V̇T MV − VT M V̇
which is skew-symmetric. This proves items (2)-(3). Also,
by equating (12) and (20),

Δ�vL = (D� ∩ Δ�)νL, Δ⊥vE = (D� ∩ Δ⊥)νE

ΩT
�τL = (C� ∩ Ω�)T uL, ΩT

⊥τE = (C� ∩ Ω⊥)T uE (24)
thus, we have

νT
L (D� ∩ Δ�)T M(D� ∩ Δ�)νL = vT

LΔT
�MΔ�vL

which proves νT
L DLνL/2 = κL, since the left term is

νT
L DLνL, while the right term 2κL. Using (24) with ΩΔ =

I and WV = I, we can also prove τT
L vL = uT

LνL, since

Locked system
(unconstrained)

uL

νL

Nonholonomic Mechanical System

Couplings

δL

νL

Shape system
(unconstrained)

uEE

νE νE

νEQLE

QELνL

External
-ports

Control
-ports

δ

Fig. 3. Energetics of nonholonomic passive decomposition

τT
L vL = τT

L Ω�Δ�vL = uT
L(C� ∩ Ω�)(D� ∩ Δ�)νL = uT

LνL.

Similar also holds for the unconstrained shape system.

Therefore, with the decomposibility condition (19), by
cancelling out the coupling terms QLEνE , QLEνE , we can
still decouple the formation and maneuver aspects from
each other for the nonholonomic mechanical systems. Here,
note that this decoupling control 1) requires only the
measurement of (usually available) q, q̇; and 2) cancels out
the conservative energy coupling, that is, similar to (18),
νT

L QLEνE + νT
EQELνL = 0 from item (3) of Th. 3.

At this point, the following question may arise: what hap-
pened to those uncancelable constraints energy-coupling
in (17)? It turns out that the decomposibility condition
(19) prevents such uncancelable energy coupling via the
constraints. This can be shown by: from (24) with A ∈ C⊥,

vT
LΔT

�AT = νT
L (D� ∩ Δ�)T AT = 0

vT
EΔT

⊥AT = νT
E(D� ∩ Δ⊥)T AT = 0. (25)

This implies that vT
LΔT

�AT λ = 0 and vT
EΔT

⊥AT λ = 0 indi-
vidually in (17), thus, there will be no uncancelable con-
straints energy-coupling. This manifests the importance
of the decomposibility condition (19) for the formation-
maneuver decoupling.

By using (21)-(22) with Th. 3, we can show that
dκL

dt
= −νT

L QLEνE + (uL + δL)T νL

dκE

dt
= −νT

EQELνL + (uE + δE)T νE (26)

which reveals the energetic structure of (21)-(22) (or (1)-
(2)) as given in Fig. 3. Note also that, here, if the couplings
in (21)-(22) are canceled out (so that the terms with
QLE , QEL in (26) disappear), the decoupled unconstrained
locked and shape systems will individually possess passiv-
ity similar to (8). This individual passivity of the locked
and shape systems would be useful in designing/analyzing
controls for them.

Control design for uL, uE is further facilitated by the fact
that τT

L vL = uT
LνL and τT

E q̇E = uT
EνE . That is, if we

design the (raw) controls τL, τE (in T ∗
q M) as if there are no

constraints, and then, project them into the (generatable)
controls uL, uE (in C�), by applying these uL, uE , we
will still get some effects of the intended controls τL, τE ,
since these projected controls uL, uE will still generate the
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intended “control-power” (i.e. τT
L vL, τT

E q̇E) in (17). Even
so, due to the nonholonomic constraints, the control(-
vectors) uL, uE here will in general produce only partial
effects of the intended controls τL, τE as shown by

uL = SL(q)τL, uE = SE(q)τE (27)
where, from (24), SL := (D� ∩ Δ�)T (Ω�)T and SE :=
(D� ∩ Δ⊥)T (Ω⊥)T are “fat” matrices, showing the elimi-
nation of the intended control actions in C⊥.

In the next section, using these ideas, we will design a
simple control for the maneuver driving with formation
keeping. Before doing so, let us conclude this section by a
few remarks.
Remark 4. The decomposibility condition (19) is ensured
if Δ⊥ ∈ D� or Δ� ∈ D�. To see this, suppose that
Δ⊥ ∈ D�. Then, due to the tangent space split (11),
the remaining space D� − Δ⊥ is necessarily contained
in Δ�. Moreover, in this case, the original shape system
(15) will become constraint-free (with ΔT

⊥AT = 0), thus,
we can control the formation aspect (i.e. h(q)) without
being hindered by the constraints. Similar argument (e.g.
constraint-free maneuver control) also holds if Δ� ∈ D�.
Remark 5. We would still be able to achieve the formation-
maneuver decoupling/decomposition with the following
(weaker) version of the decomposibility condition (19):

D� = (D� ∩ Δ�) ⊕ (D� ∩ Δ⊥) ⊕ (D� ∩ Δc)
where Δc is the extra-directions needed to span D�. Any
motion in (D� ∩ Δc) will, then, change the formation
and maneuver aspects simultaneously, thus, break down
the formation-maneuver decoupling. To overcome this, we
may supplement V(q) (20) with D� ∩ Δc. Then, similar
to (21)-(22), we would again have the three decomposed
systems (let’s say DL,DE ,Dc) projected on D�, thus, by
stabilizing Dc with the cancellation of the couplings among
DL,DE ,Dc, we would still be able to decouple the locked
and shape systems (DL,DE). More details on this weaker
decomposibility will be reported in future publications.
Remark 6. Note that the results presented here (e.g.
formation-maneuver decoupling under the decomposibil-
ity condition (19)) are easily extended to the first-order
kinematic nonholonomic systems. For instance, the motion
feasibility condition in [12] is equivalent to D� ∩ Δ� 
= ∅
here. This first-order kinematic model of the nonholo-
nomic systems, however, does not allows us to address
the (inertia-induced) formation-maneuver coupling (i.e.
QLEνE , QELνL in (21)-(22)) and the external forces, both
of which are of paramount importance in many applica-
tions (e.g. fixture-less cooperative grasping).

5. CONTROL DESIGN EXAMPLE: MANEUVER
DRIVING WITH FORMATION KEEPING

Suppose that we want to drive the maneuver s.t. νL(t) →
νd

L(t) (e.g. drive the centroid of the grasped object),
while keeping the formation s.t. h(q) = hd (e.g. rigidly
maintaining the fixture-less cooperative grasping shape).
To achieve this objective, using the control design ideas
given in Sec. 4, we design the controls as follows:

uL = QLEνE + DLν̇d
L + QLνd

L − BL(νL − νd
L) (28)

uE = QELνL − BEνE − SE [KE(h(q) − hd)] − δE (29)
where BL, BE ,KE are suitably-defined gain matrices.
Here, note that the spring term in (29) is designed for τE

of (15) as if there are no constraints, and then projected
into uE via (27).

Then, using (21) with its passivity property, we can easily
show that, if δL = 0, νL(t) → νd

L(t). Furthermore, using
the passivity property of (22) with τT

E vE = uT
EνE and

vE = dh/dt (see Sec. 3), we have:
d(κE + ϕE)

dt
= −νT

EBEνE

where ϕE := (h−hd)T KE(h−hd)/2 is the spring potential.
Thus, if we start with νE(0) = 0, the formation error
(as measured by ϕE) will be always less than or equal
to the initial error ϕE(0) due to the positive-definite
damping dissipation νT

EBEνE . Note also that, if we start
with h(0) = hd and νE(0) = 0, the formation control
(29), even without its damping/spring terms, can still
maintain h(t) = hd ∀t ≥ 0 due to the formation-maneuver
decoupling. Here, we do not include the δL-cancellation in
(28), since, in some applications, it is desirable to perceive
such external forces (e.g. teleoperation).

We apply these controls (28)-(29) to three wheeled mobile
robots (with different masses and not-coinciding geomet-
ric/inertial centers). We choose h(q) = [p1 − p2 − pd

12; p2 −
p3 − pd

23; θ1 − θ2; θ2 − θ3] ∈ �6 with hd = 0, where pd
12, p

d
23

are the position-offsets to make a triangle formation. We
start with h(0) = hd and νE(0) = 0. Then, the controls
(28)-(29) will ensure h(t) = hd ∀t ≥ 0 (refer the simulation
results below to see this is indeed true). Thus, we assume
θ1 = θ2 = θ3 in deriving the decomposition. Then, the
system satisfies the decomposibility condition (19) (yet,
Δ� /∈ D� and Δ⊥ /∈ D�), and νL ∈ �2 describes the
angular-rate/forward-velocity of the triangle formation.
Simulation results are presented in Figs. 4 and 5, each of
which consists of: 1) snapshots of robots’ triangle forma-
tion (i.e. vertex corresponding to robot) and trajectories
of robots/object; and 2) plots of formation error ||h(t)||,
maneuver error ||νL − νd

L|| and the triangle’s angular-
rate θ1 (with θ1 = θ2 = θ3). In Fig. 5, the three robots
cooperatively carry a commonly grasped inertial/flexible
object, while, in Fig. 4, no object is used.

First, note that, due to the formation-maneuver decou-
pling, desired formation can be maintained (i.e. ||h(t)|| =
0) even with the νd

L-switchings. Moreover, with the can-
cellation of δE in (29), we can perfectly reject the dis-
turbance on the formation from the object’s inertial force
(i.e. ||h(t) = 0|| ∀t ≥ 0). Without this δE-cancellation
and the formation-maneuver decoupling, formation was
perturbed and grasping was lost (not shown here). Note
also that the object’s inertia affects the triangle’s motion
(e.g. ||νL − νd

L|| has non-zero offset in Fig. 5). This implies
that, in a νL-teleoperation mode, humans will perceive this
inertial effect (and other external forces, too).

6. SUMMARY AND FUTURE WORKS

We propose a novel nonholonomic passive decomposition,
that enables us to decouple the formation and maneuver
aspects of the multiple nonholonomic mechanical systems
with the second-order Lagrangian dynamics and, thereby,
control these two aspects individually and separately with-
out any crosstalk between them. This is done while uti-
lizing the Lagrangian-structure/passivity-property of the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4372



−7 −6 −5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

6

7
(x,y)−Trajectories of Robots: no Grasped Object

x−position[m]

y−
p

o
si

ti
o

n
[m

]

robot 1

robot 2

robot 3

0 1 2 3 4 55
0

2

4

6

time[sec]

n
o

rm
/r

ad

Formation/Manuever Error and Orienation: no Object

||h||

||ν
L
−νd

L
||

θ
1

Fig. 4. Driving and formation-keeping of three wheeled
mobile robots

nonholonomic mechanical system’s open-loop dynamics.
Some directions we will pursue for future works are as
follows: 1) how to design controls for the unconstrained
locked/shape systems while considering the nonholonomic
constraints; 2) analyzing the geometric structure of the
inherited ambient nonholonomic constraints in the uncon-
strained locked and shape systems; and 3) robustification
and real-time numerical procedure of the decomposition
for real-world complex systems (e.g. team of many mobile
manipulators).
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