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1. INTRODUCTION

Control system optimization is usually based on the error
signal or the error transfer function of the closed-loop (Doyle,
et al., 1992). The last one is called sensitivity function (SF),
so any such optimization procedures is strongly connected to
the sensitivity or the robustness of control systems (Kucera,
1981).. One widely applied possibility to optimize a proper
norm (Doyle, et al., 1992) formulated for the closed-loop SF
is to consider the criterion as a function of the loop-
parameters (design, regulator, constraints, etc.) and to solve
the strongly nonlinear constrained mathematical
programming problem. These methods do not analyze the
internal properties of the control error and the different
contributing parts of the sensitivity. Therefore a special
decomposition of the sensitivity function (control error) is
used in the paper to understand and explain the main three
contributions of the different performance components.

An important component, the realizability degradation is
used to optimize the control system. This part depends only
on the selected reference model, the nominal plant and the
designed controller.

Youla-parametrization (Maciejowski, 1989; Youla, et al.,
1976) will be used for regulator design, which has a
limitation for open-loop plants only, however, this
parametrization allows explicit algebraic design of the
controller, except the optimization step. The paper
investigates the !!H!, !!L! optimality of such systems, which
is generally a nonlinear problem. A special combined role of
the !!H!, !!L! norms is also shown, resulting structural
requirement for the form of the cost function if integrating
regulator is expected. After some low order simple examples,
when the regulator can be computed by explicit formulas an
iterative procedure is introduced for higher order general
cases.

2. CONTROL ERROR DECOMPOSITION IN TDOF
SYSTEMS

Assume that the plant to be controlled is factorable as
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where !!P+ += B A  means the inverse stable (IS) and !!P" "= B
the inverse unstable (IU) factors, respectively. In a practical
case only the model P̂  of the process is known. Assume that
the model P̂ , is similarly factorable as the process in (1)
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where !!
ˆ ˆ ˆP+ += B A  means the IS , !!

ˆ ˆP" "= B  the IU  factors,
respectively. Introduce the additive and relative model errors
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The complementary sensitivity function (CSF) of a one-
degree of freedom (ODOF) control system is
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where T̂  is the CSF of the model based ODOF system. For
a two-degree of freedom (TDOF) control system (Keviczky,
1995) it is reasonable to request the design goals by two
stable and usually strictly proper transfer functions Rr  and
Rn , that are partly capable to place desired poles in the
tracking and the regulatory transfer functions. They can even
be called as reference models, so usually Rr $ =( ) =0 1  and
Rn $ =( ) =0 1  are selected.
An important new observation that the SF ( S T= "1 ) can be
decomposed into additive components according to different
principles:
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Here S Rdes n= "( )1  is the design, S R Treal n= "( )ˆ  is the

realizability and S T T T Tid = " "( ) = "ˆ ˆ  is the modeling (or
identification) degradation, respectively. Furthermore
S Tcont = "( )1 ˆ  and S P Tperf n= "( )  are the overall control and
performance degradations, respectively. The SF depends on
the model-based SF ( ˆ ˆS T= "1 ) as
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(The realizability and identification degradations can be
called as systematic ( Ssyst ) and random ( Srand ) components,
too.)

In a general case the overall CSF of a TDOF control system
has the form T F Tr =  and a similar decomposition can be
introduced for the tracking error function S Tr r= "1  as for S
in (5):

S R R T T T

S S S

r r r r r r

des
r

real
r

id
r

= "( ) + "( ) " "( ) =
= + +

1 ˆ ˆ
(7)

The overall transfer function of the TDOF system is
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In an ideal control system it is required to follow the
transients required by Rr  and Rn  (more exactly 1"( )Rn ),
i.e., the ideal overall transfer characteristics of the TDOF
control system would be
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for the true ( y ) and model-based ( ŷ ) closed-loop control
output signals. Here y yr ,  and yn  are the reference, process
output and disturbance (or output noise) signals,
respectively.

Express the deviation between the ideal ( y o) and the
realizable best ( y ) closed-loop output signals as
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where Sperf
r  is the performance degradation for tracking and

S Sperf
w

perf=  is the performance degradation for the
disturbance rejection (or control) behaviors, respectively.
Similar equation can be obtained for the deviation between
the ideal ( y o) and the model based ( ŷ ) closed-loop outputs
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One can see that the realizability degradation(s) play an
important role forming #ŷ  (and indirectly #y ).

It is important to note that the term Sreal  (and Sreal
r ) can be

made zero for IS processes only, however, for IU plants the
reachable minimal value of Sreal  (and Sreal

r ) always depends
on the invariant factors and never becomes zero. In the sequel
YP based control system will be discussed.

3. DECOMPOSITION IN YOULA-PARAMETRIZED
SYSTEMS

If the applied regulator design is based on the Youla-
parametrization (YP) (Maciejowski, 1989; Youla, et al.,
1976) then the realizable best all stabilizing and the model
based regulators are
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where the "parameter" Q  ranges over all proper ( Q $ =!( )  is
finite), stable transfer functions. The CSF's of the true and
model-based ODOF control systems are
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Only in case of YP one can also compute the realizable best
CSF
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The SF of the model based and true closed-loops are now
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The realizable best SF, corresponding to T*  is
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The decomposition of the SF is

S R R T T T S S S= "( ) + "( ) " "( ) = + +1 n n des real id
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The decomposition of the tracking error function for the YP
is
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where
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4. A GTDOF CONTROLLER FOR STABLE LINEAR
PLANTS

In many practical cases the plant to be controlled is stable,
and a TDOF control system is required because of the high
performance dual tracking and regulatory requirements
(Keviczky, 1995; Keviczky and Bányász, 2001). An ideal
solution for this task is the generic two-degree of freedom
(GTDOF) scheme introduced in (Keviczky and Bányász,
1999). This framework and topology is based on the YP
(Maciejowski, 1989) providing stabilizing regulators for
open-loop stable plants.

Pr
yr y

Kr

+

+ +

+
+

-

yn

C

R K
R K P
n n

n n1"
PP

Fig. 1. The generic TDOF (GTDOF) control system

A GTDOF control system is shown in Fig. 1. The realizable
best regulator of the GTDOF scheme can be given by an
explicit form for !!" = 0
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where
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is the associated optimal Y-parameter furthermore
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It is interesting to see how the transfer characteristics of the
closed-loop look like:
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where y t  is the tracking (servo) and yd  is the regulating
(disturbance rejection or control) independent behavior of the
closed-loop response, respectively.

So the invariant factor P" can not be eliminated,
consequently the ideal design goals Rr  and Rn  are biased by
G Pr "  and G Pn " . We can not reach the ideal tracking
y P yr

o
r r=  and regulatory y R yn

o
n n= "( )1  behaviors (see

(12)), because of the invariant factor (mainly zeros) in the IU
factor P". (In a general case the time delay should also be
considered here as an invariant factor.) The realizable best
transients, corresponding to (10) and (25), are given by
R G Pr r "  and 1"( )"R G Pn n  respectively, where Gr  and Gn

can optimally attenuate the influence of P". The unity gain
of Rn  ensures integral action in the regulator, which is
maintained if and only if the applied optimization provides
G Pn " =( ) =$ 0 1  (or including Rn  the condition is
R G Pn n "( ) =1 1 ).

The model based version of the YP regulator ˆ ˆC C P= ( )  in

the GTDOF scheme means that P  is substituted by P̂  in
equations (22)-(24).

The decomposition of the SF in the true GTDOF control
system by (19) is
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Fig. 2. Reduced form of !!H! optimality for Sreal
x

!

5.THE !!H!, !!L! OPTIMAL REALIZABILITY LOSS

It is obvious from the previous sections that the optimization
of the realizability loss requires the minimization of some
J Sreal

x
real
x

x r,n
=

=
 norms for tracking (r) and the disturbance

rejection (n), respectively. These SF components have the
general form of S R G Preal

x
x x= "( )"1 ˆ , which can be simply

rearranged equivalently to S R G Preal
x

x x= " ' "
ˆ  as the Fig. 2

(a) and (b) show: consequently ' =G R Gx x x . Because the
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reference models have unity gains, it is enough to ensure the
condition 
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0
1 to the integral behavior of the

regulator. If the excitation is not a Dirac impulse or a white
noise it is reasonable to use the more general form of
S Y R G Preal

r
x x x= " '( )"ˆ , where   Y y s j

x x= ( ) = "L  is the

Laplace transform of the well known test signals. In the
sequel the infinite norms are investigated.

The goal of this optimization step is to minimize the
realizability loss J real

x  using the optimal embedded filters
' =G Gx x

opt  attenuating the influence of the invariant model
factor P̂" as
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Here an s j"  form for the excitation Yx  was applied and Rx

is a unity gain reference model. This formulation corresponds
to a generalized approach for infinite norms, i.e.
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This norm is the !!H! system (or operator) norm for j = 0
and is the !!L! signal norm for j / 1, One must know that the

!!L! norm is usually formulated for real functions and not for
complex functions as here. It is also important to note that
this "generalized supremum norm" is bounded for j = 0  and
for j / 1 if the low-pass Yx  is multiplied by a high-pass

control error term R G Px x" '( )"ˆ , which is satisfied for closed-
loop system with type number higher than zero.

The optimal solution lies in optimal interpolation theory and
is known as the Nevanlinna-Pick problem (Wang and Chen,
1988). Assuming m"  number of unstable zeros in P̂" the
optimal W o minimizing W

!
 is an all-pass form
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where h  is a Hurwitz polynomial of degree at most m" "( )1 .

The computation of h#  can be obtained by mirroring the
zeros of h  through the imaginary axis. The constant µ and
the coefficients of h  are real and are uniquely determined by
the following - so-called - interpolation constraints
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where !!z z zm1 2, , ,*
"
 denote the distinct zeros of P̂". (The

multiplicity of zeros can be easily considered by additional
differential interpolation constraints.) Because of the
interpolation constraints (30), the m"  number of unknown
parameters - m" "( )1  is in h  and the m" -th is the µ itself -
can be obtained from the m"  number of equations. It can
also be observed that P̂" is certainly the divisor of
R s Wjx " , thus
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where the notation of !!Rx x x= B A  and !!
ˆ ˆP" "= B  are used

again and the form
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was introduced for the embedded filter. Comparing the two
sides of (31) the polynomials !!D  and !!N  can be obtained by

!!D A= x h (33)

and
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where the last division is with no residue. The equation (30)
can be rearranged into a "quasi" linear equation system in
case of m"  disjunct real zeros zi
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for the computation of h  and µ. The minimum of the cost
function is given by
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After some straightforward manipulations one can obtain that
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so it is easy to see that 
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' = ="

(
"

(
G G

s s
x x

ˆ ˆB B
0 0

1 , providing

integrating regulator, can be obtained if, and only if j / 1,
i.e. only for !!L! optimality. The original formulation of the

!!H! optimality of Sreal
x

!
 using the classical operator norm

( j = 0 ) can not provide an integrating regulator.
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Example 1.
Assume a first order reference model R sTx w= +( )1 1  and be

!!B̂" = "1 sT . Because m" = 1  the interpolation polynomial h

is of zero order and the trivial h h= =# 1 constant can be
selected. So µ can be easily obtained from the interpolation
constraint (35): µ = =( ) = +( )R z T T T Tx w1 1 .  The
denominator polynomial of 'Gx  is !!D = +1 sTw  from (33).
Apply j = 0  first. Because of the orders in the right side of
(34) a scalar !!N = k  can be used now

1 1 1" "( ) = +( )k sT sTw µ (38)

The solution gives !!N = = +( )k T T Tw w  and µ is the same
as obtained before. The !!H! optimal filter is

!!
' = = =

+ +
G

h
T

T T sTx
x

w

w w

N
D

N
A

1
1

(39)

and it is easy to check that 
!!
' 1"

(
G

s
xB̂

0
1, i.e. the optimal

regulator is not integrating.

Example 2.
Apply j = 1 now, consequently (33) remains and only (38)
will change to

!!1 1 1" "( ) = +( )N sT sT s j
w µ (40)

Searching a first order !!N = +( )k s1 2  polynomial (40) will
have the form

1 1 1 1" +( ) "( ) = +( )k s sT sT s j2 µw (41)

Comparing the coefficients of the two sides the solution
gives

k = 1   ;   µ =
+

T
T T

T
w

   ;   2 =
+

T
T T
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w

(42)

The !!L! optimal filter is
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' = = =

+
+

G
h

s
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x w

N
D

N
A

1
1

2
(43)

and it is easy to check that 
!!
' ="

(
G

s
xB̂

0
1, i.e. the optimal

regulator is integrating.

It is important to note that examples 1 and 2 are for a low
order case ( m" = 1), when h = 1, just to demonstrate the
computations. For higher order cases this optimality (the
solution of Eqs. (30), (35)) requires to solve a nonlinear
equations system. The original nonlinear task can be
decomposed into a nonlinear (to determine µ and h ) and a
linear problem (to compute !!N  by a simple polynomial
division). Investigate first (30) and (35), which can also be
written in a matrix form

r F z h= ( ) ( )µ µ, , ,r h (44)

where

!!r = [ ]"r rm1 *
T

     ;    !!z = [ ]"z zm1 *
T

(45)

!!h µ µ, , , ,h h hm( ) = [ ]1 1* T      ;    m m1 1= "" (46)
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Here

f z r z z h zik i

k

i i
k

k

m

i i i= ( ) " ( )
3
45

6
78

= ( )9

=

9: µ
1

1

; sign (48)

The "quasi" linear term is used because the f ik  elements
depend on µ, too. In such cases only iterative solutions can
be formulated. One of the simplest method is the relaxation
type iterative algorithm

h F z rµ µl l lh r+ +
"( ) = ( )[ ]1 1

1
, , , (49)

Having obtained the iterative solution for µ and h  the
polynomial !!N  is computed from (34).

It is interesting to note that the order of the embedded filter
'Gx  does not depend on j  only on the invariant factor !!B̂"

(i.e., m" ) and the reference model Rx .

Example 3.
Consider a second order I U  process polynomial

!!B" = "( ) "( )1 11 2sT sT  with T1 1=  and T2 2= . Select a unity
gain first order reference model with Tw = 0 5. . In this case
h s h s( ) = +1 1  is first order because m" = 2  and m1 1= . This
is already a nonlinear problem as indicated above. The
solution of (44), however still does not need the iterative
algorithm, instead a second order polynomial equation
system

µ µ2 1 2

1 2
2 1 1 2

1
2

1
2 1

2 1
2 1 1 2

0

0

+
+
"

"( ) " =

+
+
"

"( ) " =

T T
T T

r r r r

h h
r r
r r

T T T T
(50)

can be formulated which has explicit analytical solution.
Investigating the roots (both µ and h1 must be positive) the
following optimal solution is obtained for j = 0 :

µ = 0.9572     and     h1 = 0.1789 (51)

Then !!N  can be computed from the division (34)

!!N = 0 0428. (52)

The !!L! optimal filter is

!!
' = = =

+( ) +( )
G

h sx
x 0.1789s

N
D

N
A

0 0428
1 0 5 1

.
.

     and
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Gx 0.1789s
=

+
0 0428

1
.

(53)

so the regulator is not integrating. Applying the iterative
algorithm (49) for j = 1 the following numerical solutions
are obtained

µ = 3.1397     and     h1 = 0.6498 (54)

The convergence of the iteration was very fast. Then !!N  can
be computed from the division (34)

!!N = +1 0 5. s (55)

and the !!L! optimal filter is

!!
' = =

+
+( ) +( )

=
+

G
h

s
sx

x 0.6498s 0.6498s
N

A
1 0 5

1 0 5 1
1

1
.

.
   and

G
s

x 0.6498s
=

+
+
1 0 5

1
.

(56)

It is important to investigate the realizability of the optimal
regulator (22) based on the above !!H!, !!L! optimal embedded
filter 'Gx , i.e.

C
G P

G P* =
'

" '
+
"

"

x

x

1

1
(57)

Simple calculations give that the order of !!N  is

!!n n jN = + "x 1 (58)

where nx  is the order of the denominator of Rx , so the pole
access of C*  is

#n m nC = " (59)

where m  and n  are the orders of polynomials !!B  and !!A ,
respectively. This means that the optimal regulator is
realizable, iff. n m= , when the pole access of the process is
zero. For the first example if the process is given by
P sT sT= "( ) +( )1 1 1  the optimal regulator is

C
T
T

sT
sT T T* =

+
+ +( )

w

w w

1
1 2

1 (60)

6. CONCLUSIONS

The relatively easy and reasonably optimal solution of a
generally very sophisticated control problem strongly
depends on the proper decomposition of the original
paradigm. These decompositions correspond to a natural
control engineering practice, where the best reachable design
goal and the way how to obtain it appear in a generally
iterative sequential procedure.

The !!H!, !!L! optimality of the realizability loss, which is a
major component of the sensitivity function, is investigated.

If any external excitation is assumed, then a combined
application of the !!H!, !!L! norms is necessary. An
interesting result that the optimization provides integrating
regulator, iff an excitation form Y s s j

x ( ) = "  is assumed with
j / 1 which corresponds to !!L! optimality. The classical !!H!

optimality does not provide integrating regulator.

Simple, easy to repeat low order examples, when the optimal
parameters can be calculated explicitly, are first presented to
demonstrate the computation of the optimal embedded filters
for different cases.

Finally an iterative method is also introduced to solve the
!!H!, !!L! optimality of the realizability loss for higher order
general cases.

The results can be easily applied for discrete time systems,
too, where !!B"

" contains the unstable zeros of !!B" mirrored on

the unit circle and Y z z
j

x ( ) = "( )"1 . The major advantage of
the application to discrete time system is, that the inclusion
of the process time delay is relatively easy, because the
transfer functions remain in the class of rational functions.

REFERENCES

Doyle J.C., Francis B.A. and Tannenbaum A.R., Feedback
Control Theory, Macmillan P.C., 1992, pp. 227.

Keviczky L., Combined identification and control: another
way , (Invited plenary paper.) 5th IFAC Symp. on
Adaptive Control and Signal Processing, ACASP'95,
Budapest 1995, pp.13-30.

Keviczky L. and Bányász Cs., Optimality of two-degree of
freedom controllers in !!H2- and !!H!-norm space, their
robustness and minimal sensitivity, 14th IFAC World
Congress, Beijing 1999, Vol. F, pp. 331-336.

Keviczky L. and Bányász Cs., Iterative identification and
control design using K-B parametrization, In: Control
of Complex Systems, Eds: K.J. Åström, P. Albertos,
M. Blanke, A. Isidori, W. Schaufelberger and R. Sanz,
Springer 2001, pp. 101-121.

Kucera V., Exact model matching, polynomial equation
approach, Int. J. Systems Sci., Vol. 12 (1981), pp.
1477-1484.

Maciejowski J.M., Multivariable Feedback Design,
Addison Wesley 1989, pp. 424.

Youla D.C., Jabri H.A. and  Bongiorno J.J., Modern
Wiener-Hopf design of optimal controllers: part II: the
multivariable case, IEEE Transaction Automatic
Control, AC-21 (1976), pp. 319-338.

Wang S. and Chen B., Optimal model matching control for
time-delay systems, Int. J. Control, Vol. 47(1988),
No. 3, pp. 883-894.

_________________________________________________

This work was supported in part by the Hungarian Scientific
Research Fund (OTKA) and the Control Engineering
Research Group of the HAS, at the Budapest University of
Technology and Economics.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8796


