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Abstract: This paper introduces a method for approximate reachability, for linear discrete time
systems, based on homothety and set invariance. The proposed method utilizes two particular
families of sets, more precisely their members, and particular forms of the approximation
maps to obtain simple inner and outer approximate reachable sets/tubes. The resulting
set–dynamics, induced by the uncertainty set, the underlying dynamics in the state space
and the approximation maps, are restricted to these particular families of sets and under
standard assumptions yield bounded and convergent approximate reachable sets/tubes. A
tractable computational procedure is suggested and a few illustrative examples are provided.
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1. INTRODUCTION

Reachability analysis is one of the central research top-
ics in the control theory due to its intimate relationship
with optimal control, set invariance, set–membership state
estimation, safety verification and control synthesis under
uncertainty, see the monographs (Aubin, 1991; Kurzhanski
and Vályi, 1997), the survey papers (Milanese and Vicino,
1991; Blanchini, 1999) and more recent references (Raković
and Mayne, 2005; Artstein and Raković, 2008; Raković,
2007). Initial ideas related to reachability analysis and
guaranteed state estimation can be traced back to the
pioneering control literature (Witsenhausen, 1968; Hermes
and Lasalle, 1969; Bertsekas and Rhodes, 1971; Schweppe,
1973; Kurzhanski, 1977). The research on reachability has
recognized that the exact reachability is computationally
demanding and has, therefore, focused on approximate
reachability. Approximate reachability methods suggested
in, for example, (Milanese and Vicino, 1991; Chernousko,
1994; Kurzhanski and Vályi, 1997; Kühn, 1998a; Alamo
et al., 2005; Kurzhanski and Varaiya, 2006) employ, es-
sentially, ellipsoidal, polytopic or even zonotopic calculus
to obtain guaranteed, possibly optimal with respect to a
utilized criterion, inner and/or outer estimates of the exact
reachable sets/tubes or sets of possible states consistent
with acquired information, system dynamics and the un-
certainty specification.

Approximate reachability methods result in “optimal ap-
proximations” obtained, often, by somehow prioritizing
“shape simplicity” and “geometric criteria” over “dynam-
ical aspects” of the approximation procedures. The “dy-

1 Corresponding Author.
2 The second author acknowledges MCYT-Spain for funding this
work DPI2007-66718-C04-01.

namical aspects” of the approximation procedure can be
addressed more directly using the set invariance theory.
Recent advances in the set invariance theory include a the-
oretical framework for the examination of the minimality
of invariant sets for the nonlinear–compact case (Artstein
and Raković, 2008) and its specialization to the linear–
convex case (Raković, 2007). Following ideas of (Artstein
and Raković, 2008), we discuss a version of approximate
reachability by utilizing homothety and set invariance. We
analyze set–dynamics, induced by the uncertainty set, the
underlying dynamics in the state space and the approx-
imation maps, evolving within two particular families of
sets whose members are homothetic copies of invariant
inner and outer basic shape sets SY and SZ . We establish
that, under modest assumptions, the resulting approxi-
mate reachable sets/tubes are bounded and convergent.

Paper Structure: Section 2 presents necessary prelimi-
naries. Sections 3 and 4 discuss the use of homothety and
invariance in approximate reachability. Sections 5 and 6
provide computational remarks, examples and conclusions.

Basic Nomenclature and Definitions: The sets of
non–negative, positive integers and non–negative real
numbers are denoted, respectively, by N , N+ and R+,
i.e. N := {0, 1, 2, . . .}, N+ := {1, 2, . . .} and R+ := {x ∈
R : x ≥ 0}. For two sets X ⊂ Rn and Y ⊂ Rn, the
Minkowski set addition is defined by X ⊕ Y := {x +
y : x ∈ X, y ∈ Y }. For a set X ⊂ Rn and a vector
x ∈ Rn we write x ⊕ X instead of {x} ⊕ X. Given the
sequence of sets {Xi ⊂ Rn}b

i=a, a ∈ N, b ∈ N, b > a, we

denote
⊕b

i=a Xi := Xa⊕· · ·⊕Xb. Given a set X and a real
matrix M of compatible dimensions (possibly a scalar) we
define MX := {Mx : x ∈ X}. Given a matrix M ∈ Rn×n,
ρ(M) denotes the largest absolute value of its eigenvalues.
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A set X ⊂ Rn is a C set if it is compact, convex, and
contains the origin. A set X ⊂ Rn is a proper C set if it is
a C set and the origin is in its non–empty interior. A set
X ⊆ Rn is a symmetric set (with respect to the origin in
Rn) if X = −X. The collection of non–empty compact sets
in Rn is denoted by Com(Rn). The collection of C sets in
Rn is denoted by ComC(Rn). The collection of proper C
sets in Rn is denoted by ComCP(Rn). For X ∈ Com(Rn)
and Y ∈ Com(Rn), the Hausdorff semi–distance and the
Hausdorff distance (metric) of X and Y are, respectively,
given by:

hL(X,Y ) := min
α

{α : X ⊆ Y ⊕ αL, α ≥ 0} and

HL(X,Y ) := max{hL(X,Y ), hL(Y,X)},

where L is a given, symmetric, proper C set in Rn.

2. PRELIMINARIES

Consider the following autonomous discrete-time linear
time-invariant (DLTI) system:

x+ = Ax + w, w ∈ W, (2.1)

where x ∈ Rn is the current state, x+ is the successor state,
A ∈ Rn×n is the state transition matrix and w ∈ Rn is
an unknown disturbance taking values in the set W ⊂ Rn.
The standing assumption in this paper is:

Assumption 1. The disturbance set W is a C set in Rn.

To discuss reachability analysis problem we follow ap-
proach of (Artstein and Raković, 2008) and associate the
map R (·) : Com(Rn) → Com(Rn) with the system (2.1)
and the disturbance set W given by:

R(X) := AX ⊕ W. (2.2)

The function R (·) maps, indeed, Com(Rn) to itself since
linear transformation of a compact set is a compact set
and the Minkowski sum of two compact sets is a compact
set. We denote by Rk (·) the kth iterate of the map R (·)
and notice that for all k ∈ N+:

Rk(X) = AkX ⊕

k−1
⊕

i=0

AiW and R0(X) = X. (2.3)

The mapping R (·) induces the set–dynamics:

X+ = R(X) = AX ⊕ W. (2.4)

The exact reach set at time k, given an initial set X0 ∈
Com(Rn) is the set Rk(X0), and is, clearly, compact.
The standard reachability analysis problem is the deter-
mination of the exact reachable tube considered henceforth
as a countably–infinite sequence of sets {Xk}

∞
k=0 where

X0 ∈ Com(Rn) is the initial condition and

Xk+1 = R(Xk) = Rk+1(X0), k ∈ N. (2.5)

The exact, explicit, solution to the reachability problem
requires prohibitive computational effort, in general case,
due to the computational complexity of the Minkowski set
addition (Gritzmann and Sturmfels, 1993).

Definition 1. Sets X ⊂ Rn and Y ⊂ Rn are called
homothetic (positively homothetic) if X = z⊕λY for some
z ∈ Rn and λ ∈ R+ (λ ∈ R, λ > 0).

Definition 2. A set Ω ⊆ Rn is an invariant set for the
system (2.1) and constraint set (X,W ) if and only if
Ω ⊆ X and Ax + w ∈ Ω for all x ∈ Ω and all w ∈ W ,
i.e. iff Ω ⊆ X and R(Ω) ⊆ Ω (AΩ ⊕ W ⊆ Ω).

We use the term invariant set rather than the term posi-
tively invariant set, no confusion should arise. We denote
by ComInv(A,W,Rn) the family of all (non–empty) com-
pact invariant sets in Rn:

ComInv(A,W,Rn) := {Ω : Ω ∈ Com(Rn), R(Ω) ⊆ Ω}.

In order to discuss convergence and boundedness of the
exact and approximate reachable sets we invoke:

Assumption 2. The matrix A is strictly stable (ρ(A) < 1).

Proposition 4.3 of (Artstein and Raković, 2008), estab-
lished in a more general nonlinear–compact case, states
that when W ∈ Com(Rn) and Assumption 2 holds there
exists a unique set X∞ ∈ Com(Rn) that solves the set–
equation:

R(X∞) = X∞, i.e. AX∞ ⊕ W = X∞. (2.6)

The set X∞ is the minimal invariant set i.e. the set X∞

satisfies X∞ ∈ ComInv(A,W,Rn) and X∞ ⊂ Ω for all Ω ∈
ComInv(A,W,Rn) such that Ω 6= X∞. Furthermore, the
set X∞ is the stable attractor for the set–dynamics (2.4)
and is given explicitly by:

X∞ =
∞

⊕

i=0

AiW. (2.7)

If Assumptions 1 and 2 both hold, then the set X∞ is
additionally a C set in Rn but, unfortunately, not com-
putable in general case (Kolmanovsky and Gilbert, 1998).
However, computationally tractable, invariant approxima-
tions of the set X∞ can be obtained by utilizing results
of (Raković et al., 2005), or more recent results of (Artstein
and Raković, 2008; Raković, 2007) recalled by the follow-
ing, somehow summarized, observation:

Proposition 1. Suppose Assumptions 1 and 2 hold. Then
there exist a symmetric set L ∈ ComCP(Rn) and a scalar
λ ∈ [0, 1) such that, for all k ∈ N ,

AkL ⊆ λkL. (2.8)

Furthermore, for any symmetric set L ∈ ComCP(Rn) and
a scalar λ ∈ [0, 1) such that AL ⊆ λL, sets Sk given by:

Sk := Rk({0}) ⊕ λk(1 − λ)−1µL, (2.9)

where µ := HL(W, {0}) = minγ{γ : W ⊆ γL}, are
invariant sets for any k ∈ N , i.e. ∀k ∈ N : R(Sk) ⊆ Sk.

In approximate reachability analysis, the determination of
the exact trajectory {Xk}

∞
k=0 of the set–dynamics (2.4)

given X0 ∈ Com(Rn) is replaced by a more modest task
of the determination of two sequences of sets {Yk}

∞
k=0 and

{Zk}
∞
k=0 such that:

Yk ⊆ Xk = Rk(X0) ⊆ Zk, k ∈ N (2.10)

under restriction that sets Yk, k ∈ N and Zk, k ∈ N
belong to families of prescribed sets Y and Z (typically
families of ellipsoidal, polytopic or zonotopic sets) and
inner and outer inclusions are tight (Schweppe, 1973;
Kurzhanski and Vályi, 1997; Kühn, 1998b; Girard, 2005).

This, somehow, vaguely formulated program gives rise to
many interesting questions. In this note we treat only one
special aspect. Namely, we examine approximate reacha-
bility analysis when the employed families of sets Y and Z
are families of homothetic copies of particular inner and
outer basic shape sets SY and SZ , respectively.
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3. HOMOTHETY, INVARIANCE & REACHABILITY

We proceed to address approximate reachability by utiliz-
ing homothety and invariance. We employ homothety to
achieve computational efficiency and exploit set invariance
to address “dynamical aspects” of approximate reachabil-
ity analysis.

We utilize two families of sets Y and Z given by:

Y := {y ⊕ αSY : y ∈ Rn, α ∈ R+} and

Z := {z ⊕ βSZ : z ∈ Rn, β ∈ R+}, (3.1)

where inner and outer basic shape sets SY ∈ ComCP(Rn)
and SZ ∈ ComCP(Rn) are constructed/designed off–line.
We employ decoupled inner and outer approximation maps
AI (·) : Com(Rn) → Y and AO (·) : Com(Rn) → Z
given by:

AI(X) := arg inf
Y
{fI(X,Y ) : Y ∈ I(X)} and (3.2a)

AO(X) := arg inf
Z
{fO(X,Z) : Z ∈ O(X)}, (3.2b)

where fI (·, ·) : Com(Rn) × Y → R and fO (·, ·) :
Com(Rn)×Z → R are selection criteria for the inner and
outer approximation, and where for any X ∈ Com(Rn),

I(X) := {Y ∈ Y : Y ⊆ X} and (3.3a)

O(X) := {Z ∈ Z : X ⊆ Z}. (3.3b)

The inner and outer approximate reachable sets/tubes are
obtained, for k ∈ N , by:

Yk(X0) = AI(Rk(X0)), Zk(X0) = AO(Rk(X0)), (3.4)

where X0 ∈ Com(Rn) is the given initial condition for
the set–dynamics (2.4) and the implicit rather than the
explicit form of the exact reachable sets Rk(X0), given
by (2.3), is preferably employed for computational pur-
poses. By construction it follows that:

Proposition 2. Suppose that the inner and outer approxi-
mation maps, AI (·) and AO (·), are non–empty, bounded
and single–valued for all X ∈ Com(Rn). Then for any
X0 ∈ Com(Rn) and all k ∈ N :

Yk(X0) ⊆ Rk(X0) ⊆ Zk(X0),

HL(Rk(X0), Zk(X0)) ≤ hL(Zk(X0), Yk(X0)) and

HL(Rk(X0), Yk(X0)) ≤ hL(Zk(X0), Yk(X0)), (3.5)

with Yk(X0) ∈ Y and Zk(X0) ∈ Z given by (3.4).

Utilization of set invariance as the second ingredient for
approximate reachability is motivated by:

Proposition 3. Suppose Assumption 1 holds and that a set
S ∈ ComCP(Rn) is an invariant set, i.e. R(S) ⊆ S and, in
addition, that γS is not an invariant set for any γ ∈ [0, 1).
Then for any set X = x ⊕ λS, x ∈ Rn, λ ∈ R+ the inner
and outer relations

y ⊕ αS ⊆ R(X) ⊆ z ⊕ βS (3.6)

hold for y = z = Ax, some α ∈ [0, β] and some β ∈ R+

which, in addition, is such that 1 ≤ β ≤ λ when λ ≥ 1 and
such that 1 ≥ β ≥ λ when λ ∈ [0, 1].

Motivated by Propositions 2 and 3 we consider the inner
and outer approximate reachable sets/tubes given by:

YkN̄+l := AI(Rl(YkN̄ )), ZkN̄+l := AO(Rl(ZkN̄ )), (3.7)

where N̄ ∈ N+, l ∈ N[1,N̄ ] := {1, 2, . . . , N̄} and k ∈ N .

The integer N̄ , referred to as the cycle length, is introduced

to reduce computational complexity. Additionally, we em-
ploy initial conditions Y0 ∈ Y and Z0 ∈ Z for the “Y ”
and “Z” set–dynamics (3.7) instead of X0 ∈ Com(Rn)
as in (3.4). We require that initial conditions Y0 ∈ Y
and Z0 ∈ Z satisfy Y0 ⊆ X0 ⊆ Z0 in order to have
consistent approximation reachability method. Similarly
to Proposition 2, if Y0 ⊆ X0 ⊆ Z0 and the inner and outer
approximation maps (AI (·) and AO (·)) are non–empty,
bounded and single–valued for all X ∈ Com(Rn), then
the inner and outer relations Yp ⊆ Rp(X0) ⊆ Zp hold for
all p ∈ N when set sequences {Yk}

∞
k=0 and {Zk}

∞
k=0 are

generated by (3.7).

Remark 1. When the cycle length is one, i.e. N̄ = 1, the
considered approximation method reduces to:

Y + = AI(R(Y )) and Z+ = AO(R(Z)). (3.8)

The set–dynamics (3.8) form the one–step approximate
reachability method. Facts that set–dynamics (3.8) are
restricted to families of sets Y and Z and are induced
by compositions of the inner and outer approximation
maps, AI (·) and AO (·), and the map R (·) provide an
explanation, from the dynamical point of view, of the
“wrapping effect”. Inappropriately chosen families of sets
Y and Z and approximation maps AI (·) and AO (·) can
destabilize even the stable set–dynamics induced by the
map R (·) and, hence, produce the “wrapping effect”.

4. SIMPLE APPROXIMATE REACHABLE SETS

Evidently, computational efficiency of approximate reach-
ability is achieved by utilizing simple inner and outer
approximating maps AI (·) and AO (·) and adequate fam-
ilies of sets Y and Z. However, the simplicity obtained
by utilizing homothety requires a careful selection of in-
ner and outer basic shape sets SY and SZ in order to
obtain bounded and convergent approximate reachable
sets/tubes. We discuss now a more concrete and fairly
simple approximation method exploiting invariant inner
and outer basic shape sets SY and SZ .

Given any arbitrary X0 = x0⊕X̃ ∈ Com(Rn) with 0 ∈ X̃,
let:

α0 := sup
α

{α : αSY ⊆ X̃, α ∈ R+} and

β0 := inf
β
{β : X̃ ⊆ βSZ , β ∈ R+}, (4.1)

so that Y0 := x0 ⊕ α0SY ⊆ X0 ⊆ x0 ⊕ β0SZ =: Z0.
Since the families of sets Y and Z, specified in (3.1),
are, respectively, families of homothetic copies of inner
and outer basic shape sets SY and SZ , the approximate
reachable sets/tubes are completely characterized by the
tube center sequences {yk}

∞
k=0 and {zk}

∞
k=0 and the tube

cross–section scaling sequences {αk}
∞
k=0 and {βk}

∞
k=0 and

take the form:

Yk = yk ⊕ αkSY and Zk = zk ⊕ βkSZ , ∀k ∈ N. (4.2)

Further computational efficiency is achieved by requiring
that the tube center sequences {yk}

∞
k=0 and {zk}

∞
k=0 co-

incide and by generating the corresponding tube center
sequence {xk = yk = zk}

∞
k=0 according to:

x+ = Ax. (4.3)

In order to be consistent with (3.7), the tube cross–section
scaling sequences {αk}

∞
k=0 and {βk}

∞
k=0 are generated via:

αkN̄+l := ϕl(αkN̄ ) and βkN̄+l := µl(βkN̄ ), (4.4)
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with functions ϕl (·) : R+ → R+ and µl (·) : R+ → R+

given, for l ∈ N[1,N̄ ], by:

ϕl(α) := sup
γ≥0

{γ : γSY ⊆ AlαSY ⊕
l−1
⊕

i=0

AiW} and

µl(β) := inf
γ≥0

{γ : AlβSZ ⊕

l−1
⊕

i=0

AiW ⊆ γSZ}, (4.5)

where N̄ ∈ N+ is the cycle length, l ∈ N[1,N̄ ] and k ∈ N .

When Assumption 1 holds and when SY ∈ ComCP(Rn)
and SZ ∈ ComCP(Rn), it is, in principle, possible to pre–
compute functions ϕl (·) , l ∈ N[1,N̄ ] and µl (·) , l ∈ N[1,N̄ ]

as solutions to a set of, relatively simple, one–dimensional
parametric programs (Bank et al., 1983). Additionally,
functions ϕl (·) , l ∈ N[1,N̄ ] and µl (·) , l ∈ N[1,N̄ ] are,
respectively, continuous concave and convex functions if
Assumption 1 holds and the inner and outer basic shape
sets SY and SZ are proper C sets in Rn.

Remark 2. Summarizing, simplified approximate reach-
able tubes, {Yk}

∞
k=0 and {Zk}

∞
k=0, as well as approximate

reachable sets, Yk = xk ⊕ αkSY , k ∈ N and Zk = xk ⊕
βkSY , k ∈ N , are completely characterized by the follow-
ing difference relations:

xkN̄+l = AkN̄+lx0,

αkN̄+l = ϕl(αkN̄ ) and βkN̄+l = µl(βkN̄ ), (4.6)

where N̄ ∈ N+ is the cycle length and is fixed, l ∈ N[1,N̄ ],

k ∈ N and y0 = z0 = x0 and α0 and β0 given as in (4.1).

In order to discuss boundedness and potential convergence
of the approximate reachable sets we also invoke:

Assumption 3. There exists a (finite) integer k̃ ∈ N such

that Rk̃({0}) ∈ ComCP(Rn) and the cycle length N̄

satisfies ∞ > N̄ ≥ k̃.

Assumption 4. The inner and outer basic shape sets SY ∈
ComCP(Rn) and SZ ∈ ComCP(Rn) are invariant sets.

Given the cycle length N̄ ∈ N let:

ϕ∗
N̄

:= σ−1, σ := inf
α≥0

{α : SY ⊆ AN̄SY ⊕ α

N̄−1
⊕

i=0

AiW},

µ∗
N̄

:= ρ−1, ρ := sup
β≥0

{β : AN̄SZ ⊕ β

N̄−1
⊕

i=0

AiW ⊆ SZ},

ϕ∗
l := ϕl(ϕ

∗
N̄

) and µ∗
l := µl(µ

∗
N̄

), (4.7)

where l ∈ N[1,N̄−1] and ϕl (·) and µl (·) are given by (4.5).
Under Assumptions 1–4 the tube cross–section scaling
sequences {αk}

∞
k=0 and {βk}

∞
k=0 contain convergent sub-

sequences {α̃k}
∞
k=0 and {β̃k}

∞
k=0 with, for all k ∈ N ,

α̃k = αN̄k and β̃k = βN̄k.

Proposition 4. Suppose Assumptions 1–4 hold. Then scalar
sequences {α̃k}

∞
k=0 and {β̃k}

∞
k=0 generated by:

α̃k+1 := ϕN̄ (α̃k) and β̃k+1 := µN̄ (β̃k), k ∈ N, (4.8)

where ϕN̄ (·) and µN̄ (·) are given by (4.5) converge, expo-
nentially fast, to ϕ∗

N̄
and µ∗

N̄
given by (4.7), respectively,

for any arbitrary α̃0 ∈ R+ and β̃0 ∈ R+.

Proposition 4 yields the following fact:

Corollary 1. Suppose Assumptions 1–4 hold and consider
scalar sequences {αk}

∞
k=0 and {βk}

∞
k=0 generated by (4.4)

for arbitrary α0 ∈ R+ and β0 ∈ R+. Then, for all ε > 0
there exists a (finite) k̄ ∈ N such that |βkN̄+l − αkN̄+l| ≤
|µ∗

l −ϕ∗
l |+ε, for all k ∈ N, k ≥ k̄ and all l ∈ N[1,N̄ ], where

ϕ∗
l and µ∗

l are given by (4.7).

To simplify statements we introduce:

Assumption 5. For a given X0 ∈ Com(Rn), {Xk}
∞
k=0

is the exact infinite time reachable tube, i.e. Xk+1 :=
R(Xk), ∀k ∈ N and set sequences {Yk}

∞
k=0 and {Zk}

∞
k=0

are given by {Yk = xk ⊕ αkSY }∞k=0 and {Zk = xk ⊕
βkSZ}

∞
k=0 where {xk}

∞
k=0, {αk}

∞
k=0 and {βk}

∞
k=0 are se-

quences generated by (4.6) with initial conditions x0 ∈ Rn,
α0 ∈ R+ and β0 ∈ R+ guaranteeing the inner and outer
relations x0 ⊕ α0SY ⊆ X0 ⊆ x0 ⊕ β0SZ .

Combining Propositions 2, 3, 4 and Corollary 1 we have:

Proposition 5. Let X0 ∈ Com(Rn) be arbitrary and sup-
pose Assumptions 1–5 hold. Then: (i) Yk ∈ Y and Zk ∈ Z,
∀k ∈ N (ii) Yk ⊆ Xk ⊆ Zk,∀k ∈ N , (iii) HL(Yk, Zk) ≤
(βk−αkγyz)HL(SZ , {0}), ∀k ∈ N , where γyz := maxγ{γ :
γSZ ⊆ SY }, and (iv) for all ε > 0 there exists a (finite)
k̄ ∈ N such that for all k ∈ N, k ≥ k̄ and all l ∈ N[1,N̄ ]

HL(YkN̄+l, ZkN̄+l) ≤ (µ∗
l − ϕ∗

l γyz)HL(SZ , {0}) + ε.

Proposition 5 states that the proposed, and clearly sim-
ple, approximate reachability method results in bounded
inner and outer approximate reachable sets/tubes. How-
ever, introduced computational simplifications may lead to
slightly weaker convergence properties. In particular, sets
{ϕ∗

l SY : l ∈ N[1,N̄ ]} and {µ∗
l SZ : l ∈ N[1,N̄ ]} might form

attractive (set–valued) limit cycles for the “Y ” and “Z”
set–dynamics, respectively. Let:

µ̄ := max
l∈N[1,N̄]

µ∗
l and Z̄ :=

⋃

l∈N[1,N̄]

µ∗
l SZ = µ̄SZ ,

ϕ̄ := min
l∈N[1,N̄]

ϕ∗
l and Ȳ :=

⋂

l∈N[1,N̄]

ϕ∗
l SY = ϕ̄SY , (4.9)

where ϕ∗
l and µ∗

l are given by (4.7). By utilizing Proposi-
tion 5 and (4.9) we obtain:

Proposition 6. Let X0 ∈ Com(Rn) be arbitrary and sup-
pose Assumptions 1–5 hold. Then, for all k ∈ N : (i) Yk ∈ Y
and Zk ∈ Z, (ii) Yk ⊆ Xk ⊆ Zk, (iii) hL(Zk, Z̄) → 0,
hL(Yk, Z̄) → 0, hL(Ȳ , Yk) → 0 and hL(Ȳ , Zk) → 0 as
k → ∞ and, in addition, (iv) for all ε > 0 there exists
a (finite) k̄ ∈ N such that HL(Yk, Zk) ≤ HL(Ȳ , Z̄) +
ε = hL(Z̄, Ȳ ) + ε for all k ∈ N, k ≥ k̄.

Our concluding result identifies an exceptional case when
the Hausdorff distance between the inner and outer approx-
imate reachable sets converges to 0 as k → ∞.

Theorem 1. Let X0 ∈ Com(Rn) be arbitrary, suppose
Assumptions 1–5 hold and, in addition, that the inner
and outer basic shape sets coincide and are equal to the
minimal invariant set, i.e. SY = SZ = X∞ =

⊕∞
i=0 AiW .

Then for all k ∈ N , Yk ∈ Y, Zk ∈ Z and Yk ⊆ Xk ⊆ Zk

and, furthermore, HL(Yk,X∞) → 0, HL(Zk,X∞) → 0
and HL(Yk, Zk) → 0 as k → ∞.

Remark 3. We close this section by pointing out that
Theorem 1 identifies, indeed, an exceptional case. Namely,
since families of polytopes, zonotopes and ellipsoids are
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not closed under the limit taking operation, no standard
(practical) approximate reachability analysis method can
guarantee convergence of the Hausdorff distance between
the inner and outer approximate reachable sets to 0 even
in the case when Assumptions 1–3 hold and W is, in addi-
tion, a polytope/zonotope or an ellipsoid (excluding trivial
cases). It is hopefully clear that, results of Proposition 1, 5
and 6 and Theorem 1 can be utilized in a direct way to
obtain a computationally efficient method for approximate
reachability analysis resulting in bounded and convergent
approximate reachable sets/tubes. Finally, it is direct,
though with an increase of computational complexity, to
design an approximate reachability analysis method using
homothety and invariance guaranteeing that the Hausdorff
distance between the inner and outer approximate reach-
able sets is arbitrarily small in the limit.

5. COMPUTATIONS & ILLUSTRATIVE EXAMPLES

If sets SY , SZ and W are bounded and closed polyhedra
then functions ϕl (·) and µl (·) with l ∈ N[1,N̄ ] are, re-
spectively, piecewise affine concave and convex continuous
functions and are computable by solving a set of, relatively
simple, one dimensional parametric linear programs.

The approximate reachable sets/tube are obtained by:

(i) designing the sets SY and SZ off–line using, for
instance, Proposition 1,

(ii) computing ϕl (·) and µl (·) with l ∈ N[1,N̄ ] off–line,

(iii) computing x0, α0 and β0 by (4.1) for a given X0 ∈
Com(Rn) on–line, and

(iv) evaluating difference relations (4.6) on–line.

We provide three academic examples illustrating the pro-
posed method and, in particular, claims of Theorem 1.

Example 1. The first example is the system with:

A =
1

2

[

0 1
−2 0

]

,W = {x ∈ R2 : −1 ≤ x1 ≤ 1, x2 = 0},

and the inner and outer basic shape sets coincide and
satisfy SY = SZ = X∞ = 2B∞ (hereafter B∞ is the
closed unit ∞–norm ball). Figure 1 illustrates that, when

Fig. 1. Simple Approximate Reachable Sets for N̄ = 1.

the cycle length is N̄ = 1 the approximate reachable
sets Yk and Zk, k = 0, 1, . . . , 5, shown in darker and

lighter gray–scale shading, inner and outer bound the
exact reachable sets Xk, k = 0, 1, . . . , 5, shown in medium
gray–scale shading, for a particular X0 ∈ Com(Rn). The
approximate reachable sets are only bounded and their
Hausdorff distance does not decrease (though, neither it
increases) since Assumption 3 is violated for the cycle
length N̄ = 1, as evident from functions ϕ1 (·) and µ1 (·)
given by ϕ1(α) = α when α ∈ [0, 1) and ϕ1(α) = 1

2α + 1
2

when α ≥ 1, and µ1(β) = 1
2β + 1

2 when β ∈ [0, 1) and
µ1(β) = β when β ≥ 1. Figure 2 shows the case when
N̄ = 2 and our assumptions are satisfied. In addition, to
ϕ1 (·) and µ1 (·) we employed functions ϕ2 (·) and µ2 (·)
given by ϕ2(α) = 1

2α + 1
2 and µ2(β) = 1

2β + 1
2 , which are

contractive and have 1 as the common fixed point. Direct

Fig. 2. Simple Approximate Reachable Sets for N̄ = 2.

inspection of Figure 2 reveals that approximate reachable
sets inner and outer bound the exact reachable sets and
get closer at every 2k, k ∈ N and would, consequently,
converge to 2B∞, as expected by Theorem 1.

Example 2. The second example is the system with:

A =

[

0.9035 0.2936
−0.2936 0.9035

]

,

W = {x ∈ R2 : −0.1 ≤ x1 ≤ 0.1, −1 ≤ x2 ≤ 1} and
the inner and outer basic shape sets satisfy SY = SZ =
X∞. The minimal invariant set X∞ is in this example
computable and admits representation with either 20
vertices or 20 facets. The cycle length is N̄ = 6 and

Fig. 3. The Space–Time Evolution of Reachable Sets.
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our assumptions are satisfied. The space–time evolution
of the inner, exact and outer set–dynamics for a given
X0 ∈ Com(Rn) is shown in Figure 3, which also illustrates
that sets Yk and Zk, shown in darker and lighter gray–
scale shading, inner and outer bound sets Xk, shown in
medium gray–scale shading, and HL(Yk, Zk) converges to
0 as expected by Theorem 1.

Example 3. The third example is the system with:

A =
1

10

[

6 0 0
0 5 5
0 −5 5

]

, W = [−1, 1] × B1,

where B1 is the closed unit 1–norm ball. The inner and

Fig. 4. 3−D Simple Approximate Reachable Sets/Tubes.

outer basic shape sets SY and SZ are equal to the minimal
invariant set X∞, which admits finite representation with
either 16 vertices or 10 facets. The cycle length is N̄ = 3
and our assumptions are satisfied. Assertions of Theorem 1
are evidenced in Figure 4 in which sets Yk and Zk, shown
in darker and lighter gray–scale shading, inner and outer
bound sets Xk, shown in medium gray–scale shading and
HL(Yk, Zk) converges to 0.

6. CONCLUSIONS

This note considered a method for approximate reach-
ability utilizing homothety and set invariance. The of-
fered approximate reachability method is computationally
efficient and, under relatively modest and standard as-
sumptions, yields bounded and convergent approximate
reachable sets/tubes.
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