
     

A Robust Auto-tuning on-line Trend Extraction Method  

 

S. Charbonnier, C. Damour 
 

Laboratoire d'Automatique de Grenoble (UMR 5528 CNRS, INPG, UJF) 

BP 46, 38402 St Martin d’Hères France 

tel : (33) 476-82-64-15 - fax : (33) 476-82-63-88  

email : Sylvie.Charbonnier@inpg.fr 
 

Abstract: On-line trend extraction is the first step to be achieved by a pattern-matching diagnostic system. 

Indeed, most pattern-matching diagnostic methods are based on the classification of qualitative or semi-

qualitative trends extracted from one or several signals. The relevance of the trend extracted is a key point 

for the diagnostic system accuracy. This paper presents a trend extraction method which is robust to the 

presence of artefacts and step-like variations and does not require a priori tuning of the parameters of the 

method. The parameters are tuned on line by the algorithm itself (auto-tuning method), using a robust 

estimate of the signal variability. Results obtained on both simulated data and real data show the efficiency 

of the method. 

 

1. INTRODUCTION 

The dynamical behaviour of complex systems may be 

difficult to translate into a mathematical model. The 

development of diagnostic systems for theses processes 

requires the use of adapted methods, which are not based on a 

dynamical model. Among the methods available, pattern 

matching consists in detecting on line the occurrence of a 

specific pattern (or temporal shape) on one or several signals 

monitored on the system. This method can be used any time a 

fault signature can be described by a mono or multivariable 

temporal shape. Pattern matching has been applied to several 

processes, such as chemical or bio-chemical processes 

(Bakshi and Stephanopoulos, 1994, Rengaswamy and 

Ventaakasubramanian, 1995, Colomer et al, 2002, Dash et 

al., 2003), to determine unstable conditions in a blast furnace 

for instance (Gamero et al, 2006). Trends extracted are linear 

or quadratic. Another field of application is Intensive Care 

Unit patient’s monitoring, where the aim of a diagnostic 

system is to recognize on line a change in the patient’s health 

state and to be able to filter false alarms by detecting un-

physiological changes (Hunter and McIntosh, 99, Calvelo et 

al. 2000). Trends extracted in this application field are 

usually linear. 

Diagnosis by pattern matching is achieved in two steps :  

- in a first step, the signals monitored on the system 

are converted on-line into temporal trends. The signal trend 

consists of a succession of contiguous temporal episodes 

describing the temporal evolution of the signal. 

  - in a second step, the trends are used as inputs to a 

decision system whose outputs correspond to the faults to be 

diagnosed on line. The decision system can be either a 

classifier tuned using a training data-base or a knowledge-

based system built using expert’s rules. 

Both steps – trend extraction and decision- are equally 

important to obtain a reliable diagnostic system. Indeed, 

errors on the trend are propagated into the decision module 

and may result in diagnostic errors.    

In previous papers (Charbonnier et al. 2005), we presented a 

methodology to extract on line trends from an univariate time 

series, which was more specially developed for physiological 

parameters recorded on line on patients hospitalised in ICU. 

The high level of noise corrupting these signals as well as the 

presence of step variations that must be preserved on the 

trend makes it difficult to apply trend extraction methods 

using the first and second derivative of the signal, such as the 

ones used on signals recorded on chemical systems.  

The trend is a succession of contiguous temporal episodes. In 

our method, an episode is defined by equation (1): 

            Episode = {primitive, k0, y0, kf, yf}          (1) 

with: k0 the time when the episode begins, y0 the signal value 

at time k0, kf the time when the episode ends, yf the signal 

value at time kf. Three primitives are used to describe the 

signal trend: Steady, Increasing, Decreasing, corresponding 

to the physicians’ vocabulary. 

The method consists in splitting the signal into line segments 

using least square linear approximation and then classifying 

the segments into episodes. Though good results were 

obtained on a large variety of physiological signals 

(Charbonnier and Gentil, 2007), the method can still be 

improved. Indeed, we observed on simulated data that the 

method was sensitive to the presence of numerous or large 

artefacts (ie sudden variations due to measurement errors) 

and that shifts could be observed between the beginning of a 

step variation and its corresponding episode. Moreover, the 

method requires the tuning of three parameters whose values 
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must be found manually for each signal. This makes the 

method difficult to use when the number of signals monitored 

is large.  

The aim of this paper is thus to present a modified version of 

the methodology which is able to overcome these drawbacks, 

ie an auto-tuning trend extraction method robust to the 

presence of artefacts and step variations. 

The outline of the paper is as follows. The previous version 

of the method is briefly described and reasons for its 

inadequacy to handle artefacts and step detection are given in 

section two. The modifications of the method are presented in 

section 3.  Results obtained by the previous method and the 

new one on a set of simulated signals are compared and 

analysed in section 4 and an example of the results obtained 

by the new method on a real signal is presented. 

2.  ON LINE TREND EXTRACTION  

2.1 Trend extraction 

The methodology developed to extract on-line the trend from 

an univariate time series is briefly described in this section. It 

was published in Charbonnier et al, 2005. The trend is a 

succession of contiguous temporal episodes. An episode is 

defined by equation (1). 

The methodology consists of three successive steps, 

completed on-line at each sampling time. 

First step : Segmentation of the data and residual 

calculation. A segmentation algorithm splits the data on line 

into successive line segments expressed by equation (2): 

y(k)=pi(k-koi)+yoi (2) 

with koi the time when the segment begins, pi its slope and yoi 

the ordinate at time koi.  Two successive segments may be 

discontinuous. The segmentation algorithm uses the 

cumulative sum (CUSUM) to determine on line the moment 

when the linear approximation is no longer acceptable and 

when the new linear function (eq. (2)) that now best fits the 

data must be calculated. The CUSUM is the cumulative sum 

of the differences between the signal ym(k) and the linear 

model extrapolation y(k), computed at each sampling time. At 

time ki,1, when the CUSUM value crosses a first threshold 

(th1, first tuning parameter), the corresponding signal is 

stored in a block (named block of abnormal values). It is 

stored while the value of the CUSUM remains below a 

second threshold. At time ki,2, named the segmentation time, 

when the CUSUM crosses the second threshold (th2, second 

tuning parameter), the algorithm calculates the new linear 

approximation on the data stored in the block of abnormal 

values, ie data recorded between ki,1 and ki,2, using the least 

squares criterion. The CUSUM is reset and the block of 

abnormal values is emptied (Figure 1).  
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Figure 1 : Segmentation algorithm 

The difference between the linear approximation calculated 

by the segmentation algorithm, y(k), and the measured signal, 

ym(k), is calculated. This variable is called the residual Res(k) 

(eq. 3). It corresponds to the part of the signal that is filtered 

by the segmentation algorithm. 

( ) ( ) ( )mRes k y k y k= −  (3) 

The signal decomposition into line segments is mainly tuned  

by parameter th2, which fixes the filtering effect. Any 

transient variation which change integral is lesser than th2 is 

filtered. As instance, a step transient of amplitude A and 

duration ∆ is filtered if the product A.∆ is less than th2. 

Second step : Transformation of segments into episodes. At 

each segmentation time ki,2, the new segment is transformed 

into one or two episodes, depending on the value of the 

discontinuity between the previous and current segment. If 

the absolute value of the difference between the value at the 

beginning and the end of the segment (see Var on Figure 1) 

is greater than thc, the primitive is either increasing or 

decreasing, depending on the sign. Else, it is steady. The 

meaning of thc is thus that any variation whose amplitude is 

greater than thc is significant from an operator’s point of 

view. Any variation whose amplitude is less than thc is 

filtered.  

Third step: Aggregation. The current episode is then 

aggregated, if possible, with the previous one to form the 

longest possible episode. For a detailed description of the on-

line implementation, see (Charbonnier et al., 2005). 

2.2. Drawbacks  

The method is sensitive to large artefacts and step variations. 

An artefact is a sudden and large variation of the signal 

lasting a few sampling periods, mainly due to measurements 

errors. The method used to calculate the linear approximation 

in the segmentation algorithm is the least squares 

approximation. This method gives correct results if the noise 

corrupting the data can be assumed to be gaussian white 

noise. However, when artefacts occur on the signal, the 

assumption is no longer valid and the results may be biased. 

Moreover, if a step variation occur on the signal when the 

value of the CUSUM is between th1 and th2 (a step variation 

is present in the part of the signal used to calculate the new 
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linear approximation), the least square approximation 

provides inaccurate parameters and the step variation may be 

represented by a sharp linear variation.  

Three parameters (th1, th2, thc), which were defined in section 

2.1., are to be tuned a priori for each signal. This can be a 

very tedious task if several signals are recorded on a process. 

th1 and th2 tune the segmentation, yet th1 does not 

significantly change the decomposition into segments as long 

as its value is not significantly greater than the noise level. th2 

determines the filtering effect. If it is too small, a new 

segment is calculated frequently, and the filtering effect is 

poor. Else, if it is too large, important transient variations 

may be missed. 

If the value of thc is too low, small variations are classified as 

increasing or decreasing episodes. This can result in 

successive erroneous increasing/decreasing episodes due to 

noise. Inversely, if the value of thc is too high, significant 

variations are missed. 

2. MODIFIED VERSION 

3.1. Robustification of the method 

The method is made less sensitive to artefacts and step 

changes in two ways :  

- The linear approximation method was changed. 

The Siegel’s repeated medians filter was used instead of the 

least squares method (Fried et al., 2006). This method 

calculates the parameters of a linear function that minimize 

the median of the absolute difference between the signal and 

the linear approximation. It is very powerful when artefacts 

are present thanks to the median insensitivity to large values. 

However, when a step variation is present in the data to be 

approximated, the output of the segmentation algorithm is a 

step, but its time of occurence can be shifted in time.  

- A method to detect abrupt changes (artefacts or 

step changes) in the signal was implemented. An abrupt 

change in the level of the signal lasting less than D (tuning 

parameter) sampling periods is an artefact. It is automatically 

removed from the data set used to calculate the linear 

approximation. An abrupt change lasting more than D 

sampling periods is a step change. The calculation of the new 

linear approximation is achieved twice : at first using the data 

stored in the block of abnormal values recorded before the 

occurrence of the abrupt change, then using the data recorded 

during the D sampling periods after the abrupt changes. 

The detection of abrupt changes was performed in the 

following way : 

The signal ym(k) is derived numerically to remove the 

continuous component of the signal (eq.4).  

)1()()(' −−= kykyky mmm  (4) 

The median of the derived signal is calculated on a moving 

time window of size N (eq. 5). 

))(()( '
: iymediankmed mkNki −==  (5) 

σ , (eq. 6), the median calculated on the time window N of 
the absolute difference of the derived signal and its median is 

calculated to provide an estimation of the variability of the 

derived signal which is more robust to the presence of 

artefacts than the classical standard deviation.  

))()(()(
'

: kmediymediank mkNki −= −=σ  (6) 

An abrupt change is detected at time k+1 if the absolute value 

of the difference of the derivative of the signal at this time 

and the median of the derived signal calculated on the time 

window N is greater than α times σ (eq. 7). 

If  

1kat  detected changeabrupt 

)()()1(
'

+→

≥−+ kkmedkym ασ
 (7) 

The time window, N, was chosen equal to 60 sampling 

periods, which is a tread off between signal stationarity 

assumption and accurate estimation of the variability. α was 
chosen equal to 5. Indeed, if the derivative of the signal is a 

constant value C corrupted with Gaussian white noise of 

standard deviation σ, 99% of the derived signal is between  

[C-3.16σ, C+3.16σ]. Choosing α equal to 5 makes it sure to 
detect changes which are much larger than the level of noise. 

These values of N and α do not depend on the signal 
monitored and can be used to process any signal. The 

detection threshold is a function of the signal variability, 

which is estimated on-line. 

3.2. Auto-tuning of the parameters 

In this version, the three tuning parameters (th1, th2, thc) are 

not fixed but are modified on line, at each segmentation time 

ki,2, according to the signal variability. The signal variability 

is estimated using the signal residual (eq. (3)), which is the 

part of the signal filtered by the segmentation algorithm. The 

residual is a non stationary signal, of zero mean and time 

varying variance.  

The residual variability is estimated in a similar way as 

section 3.1.: The median of the residual is calculated on a 

time window of size Nr preceding the segmentation time ki,2 

(eq. 8). 

))(()(
2,2, :2, jresmediankmed

iri kNkjires −==  (8) 

σres is the median of the absolute difference of the residual 

and its median calculated on the time window Nr (eq. 9).  

))()((

)(

2,:

2,

2,2, ireskNkj

ires

kmedjresmedian

k

iri
−

=

−=

σ
 (9) 

The median is used instead of the mean and standard 

deviation to reduce the influence of artefacts on the signal. 

Indeed, artefacts have little influence on the value of σres as 
long as their cumulated duration is strictly less than half the 
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size of the time window Nr. Nr was fixed to 60 for the same 

reasons as exposed in section 3.1. 

th1, th2, thc are adapted at ki,2 from eq. (10), using two tuning 

parameters, β and ∆. 

2/)(

)(

)(

2,1

2,2

2,

ires

iresc

iresc

kth

kthth

kth

σ

βσ

βσ

=

∆=∆=

=

 (10) 

In this version, the meaning of thc has changed. An increasing 

(or decreasing) episode is no longer an episode whose 

amplitude is greater than a fixed value, corresponding to the 

minimal value above which a variation is considered 

significant from an operator’s point of view. An episode is 

increasing if its amplitude is significantly greater than the 

level of noise, from a statistical point of view. Thus, the value 

of β can be fixed for any signal at 3 or 4, depending on the 
sensitivity to changes required for the diagnosis of the 

process. Indeed, under the assumption that the signal is a 

constant C corrupted with additional Gaussian white noise of 

standard deviation σ (the trend is steady), 99% of the signal 

remains between the bounds [C-3.16σ, C+3.16σ]. th2 is tuned 

by the parameter ∆, which expresses the delay the algorithm 
takes to detect a step change of amplitude thc (see section 

2.1). ∆ can be given the same value to any variable recorded 
on the process. th1 is tuned so its value remains below the 

noise level. 

4. RESULTS 

4.1. Results on simulated data 

The performances of the previous trend extraction algorithm 

(PTE) and the new one (NTE) presented in this paper were 

compared on simulated data. 

Robustness to abrupt changes 

To analyse the robustness of NTE to artefacts and step 

changes, a set of simulated data was generated (Figure 2, 

upper part). It is composed of a deterministic reference signal 

r with additional Gaussian white noise with standard 

deviation σ. The reference signal is composed of constant 
parts and abrupt changes (amplitude A). Two artefacts 

occurring less than N (N=60) sampling periods (eq. 5) before 

the step change, of amplitude Ar and duration 5 sampling 

periods, are added to the signal. For each simulation, 

σ6== rAA . D, the maximal length of an artefact is fixed to 

10 sampling periods. 

A set of simulated data was carried out with σ varying from 

0.2 to 3. 20 simulations were performed for each σ. NTE and 
PTE were applied to each simulation. To compare the results 

obtained by the two methods, criterion C was calculated on 

each simulation. C is the maximal value of the absolute 

difference between the reference signal r and the output from 

the segmentation algorithm y, calculated in the vicinity of the 

3 abrupt changes (10 sampling periods around the abrupt 

change). 
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Figure 2 : Simulated data ; Upper part : abrupt changes, 

arrows show the two additional artefacts Lower part : steady, 

increasing, decreasing 
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Figure 3: Detection of abrupt changes. Criterion C for 

different values of σ (�: PTE, �: NTE) 

Figure 3 presents the median value of C on the 20 

simulations carried out for each σ, with σ varying from 0.2 to 
3. It can be seen than C is much smaller when NTE is used. 

The value of C is about the value of σ, meaning that the 
abrupt changes are detected at the exact time of occurrence. 

On the contrary, C is just slightly smaller than the amplitude 

of the abrupt changes (the dotted line is showing the 

amplitude of the abrupt changes for the corresponding σ), 
showing that abrupt changes detected with PTE do not match 

abrupt changes on the reference signal.  

Auto-tuning parameters 

To evaluate the ability of NTE to correctly extract the trend 

from any signal without a-priori tuning the three parameters 

th1, th2, thc, another set of simulated data composed of a 

reference signal r with additional Gaussian white noise with 

standard deviation σ was generated (Figure 2, lower part). 
The reference signal is composed of a constant part (steady), 

a linearly increasing part (amplitude Ai ; increasing), a 

constant part (steady), a linearly decreasing part (amplitude -

Ai ; decreasing) and a constant part (steady). Simulations 

were carried out with σ varying from 0.2 to 3. For each 

simulation, 6=
σ
iA . Thus, the amplitude of the increase varies 

from 1 to 18 while the signal to noise ratio is kept constant. A 

set of 20 simulations was achieved for each σ.  
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PTE was tuned to obtain correct results on the simulations 

carried out with σ=1. For NTE, β was chosen equal to 4 and 

∆ to 60 sampling periods. 

Three criteria were used to compare the results : 

- C1 : The mean of the absolute difference between 

the reference signal and the output from the segmentation 

algorithm calculated during the whole simulation. 

- C2 : The number of sampling periods detected as 

steady by the trend extraction method and actually 

corresponding to constant parts (in percentage of the number 

of constant sampling periods on the reference signal r) 

- C3 : The number of sampling periods detected as 

increasing/decreasing by the trend extraction method and 

actually corresponding to increasing or decreasing parts (in 

percentage of the number of increasing/decreasing sampling 

periods on the reference signal r) 

Figure 4 presents the median value of C1 calculated on the 

20 simulations, for σ varying from 0.2 to 3. About the same 

results are obtained with both methods for σ=0.5 to 1.2. 

Then, when σ increases, PTE cannot cope with the increase 
in the noise level. The value of th2 is not large enough for the 

PTE segmentation algorithm to correctly filter the noise on 

the signal. When σ =0.2, C1 increases too because the PTE 
algorithm filtering effect is too high, and transient parts are 

not correctly segmented. On the contrary, results obtained 

with NTE are correct for the whole range of σ. 
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Figure 4 : Filtering effect of the segmentation algorithm; 

Criterion C1 for different values of  σ (�: PTE, �: NTE) 

Figure 5 presents C2 versus C3, obtained with PTE and with 

NTE. It shows that NTE obtained correct results for the 

whole range of σ. The points are in the vicinity of the optimal 
point (1,1). C2 is nearly 100%, meaning that all the steady 

parts are correctly detected. C3 is between 70% and 90%. 

100% is not reached because of the quite high noise to signal 

ratio (18 %), which makes the beginning and end of the 

increasing (decreasing) periods difficult to detect with 

accuracy. This fact is emphasized for σ=0.2, where the 
performance decreases to (0.85, 0.55). PTE obtains correct 

results for σ=0.5 to 1.5. For σ=0.2, the value of th2 and thc 

are too large for the algorithm to detect any increasing or 

decreasing episode (point (1,0)). When σ is greater than 1.8, 
th2 and thc are too small, which results in the segmentation 

algorithm filtering effect to be too weak. Thus, many 

increasing/decreasing episodes due to the noise are extracted 

during the steady parts and the criteria are shifted towards 

(0.5, 0.5).  
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Figure 5 : Detection of trends : Criterion C3 versus criterion 

C2, for different values of σ (�: PTE, �: NTE) 

4.2. Results on real data 
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Figure 6 : Results of NTE on Systolic Arterial Blood Pressure 
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Figure 7 : Results of NTE on Systolic Arterial Blood Pressure 

data – Zoom in time 

NTE (tuned with β=4 and ∆=60) was applied on the systolic 
arterial blood pressure (SABP) recorded during 4 hours on a 

patient hospitalised in Intensive Care Unit. Results are 

displayed Figure 6. It shows that NTE is able to correctly 

extract the trend of this signal without a priori tuning.  During 

the first part of the recording, the patient was asleep. He 

woke up during the recording which results in a significant 

change in the variance of the signal around 6000 sampling 

periods. A small amplitude change in SABP, occurring 

slightly after 2000 seconds, is detected in the first part of the 

recording whereas changes of the same amplitude are filtered 

in the second part. This example shows the interest to apply 

NTE on physiological signals, since their variance can vary 

greatly, depending on the patient’s clinical state. Step-like 

variations are correctly detected by NTE (Figure 7). These 

un-physiological increases, due to medical care, can be easily 

recognized by a pattern matching system, which can avoid 
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triggering an alarm, as proposed in Charbonnier and Gentil, 

2007. 

5. CONCLUSION 

A new trend extraction method is presented in this paper, 

which is robust to the presence of artefacts and step-like 

variations and does not require a priori tuning of the three 

parameters of the method initially proposed. Detection of 

abrupt changes in the signal and artefact filtering are 

achieved using a robust linear approximation method and a 

robust estimate of the variability of the signal, based on the 

median. The tuning of the method is achieved by statistical 

reasoning and adapted on-line. Instead of three fixed 

parameters (th1, th2, thc) that had to be tuned in the previous 

method for each signal, only one parameter, ∆, is still to be 
tuned. It fixes the delay accepted to detect the smallest 

change on the process variables. The same value of ∆ 
provided correct results for simulated signals with variation 

range from 1 to 15 as well as on real physiological data. 
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