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Abstract: MILP (Mixed Integer Linear Programming) method for simultaneous gross error detection and 
data reconciliation has been proved to be an efficient way to adjust process data with material and other 
balance constraints. But the efficiency will decrease significantly when the MILP method is applied in a 
large-scale data rectification problem because there are too many binary variables to be considered. In this 
paper, a strategy is proposed to generate a list of gross error candidates with reliability factors. The list of 
candidates are combined into the MILP objective function to improve the efficiency and accuracy through 
reducing the number of binary variables and giving accurate weights for suspected gross errors. Industrial 
examples are provided to show the efficiency of the algorithm.  

1. INTRODUCTION 

Control and optimization of an industrial process ultimately 
depend on the accuracy and reliability of process data. 
However, in most cases, process variables are corrupted 
during the measurement, processing, and transmission of the 
measured signals. Sometimes, errors in measured data can 
lead to significant deterioration in evaluating performance of 
a plant. After the idea of data reconciliation was brought in 
1961(Kuehn and Davidson, 1961), the problem of improving 
the accuracy of process data to let them satisfy the material, 
component and energy balance with less adjustment and 
shorter time has been studied for decades. Besides the widely 
used solution of linear and nonlinear problem using matrix 
projection (Crowe, 1986, Crowe et al., 1983), many other 
methods such as MILP method(Soderstrom et al., 2001), 
PCA method(Tong and Crowe, 1995) ,MTNT method (Wang 
et al., 2004, Yang et al., 1995, Mei et al., 2006) and 
redundancy analysis method(Zhang et al., 2001) have been 
developed to solve the steady-state data rectification problem. 
More information about the history of data rectification 
methods can be obtained from a perspective written by 
Crowe (Crowe, 1996). 

MILP framework of simultaneous data reconciliation and 
gross error detection is prompted to remove random errors of 
plant data as well as identify and compensate gross errors for 
the final solution. MILP method defines an associated binary 
variable for each measurement to indicate the existence of 
gross error and add penalty in the objective function to 
activate the binary variables. However, the efficiency will 
decrease significantly when the method is applied in the 
large-scale problems, as there will be too many binary 
variables in the calculation. Fortunately, we found that before 
performing the mixed integer linear optimization, the number 
of binary variables can be reduced on the basis of historic 

data. Moreover, the fit weighting factors in the objective 
function should also improve the results. 

This article describes a method for searching gross error 
candidates in a directed diagram of process flowsheet and 
calculating their reliability factors. The gross error candidates 
are used to decide binary variables in the MILP objective 
function. This paper is organized as follows. In section 2, 
MILP method is briefly introduced. Then, the algorithm of 
gross error candidate generation based on graphic theory and 
bayesian method is described in section 3 and section 4, and 
the usefulness of the proposed algorithm is shown with some 
industrial examples in section 5. Conclusions and future 
research topics are addressed in section 6. 

2. BASIC MILP METHOD 

For a linear, time invariant and steady state system such as a 
network of flowrate, balance equation can be written as: 

=1
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i

a F k n  (1) 

Where n is the number of process nodes, s is the total number 
of streams. Fi is the true flow rates of stream i. aki is the 
correlative parameter whose value is 1, -1 or 0 depending on 
the stream i is enters, leaves or not correlate to node k.

If we consider measured value iF  consists with true value Fi,
random component i  with zero mean and a know variance 

i , and a deterministic bias i then 

i i iF F i   (2) 

The MILP method is derived from the standard formulation 
of data reconciliation: 
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By substituting the equation (2) into (3) and define each 
measurement a binary variable to indicate the existence of a 
bias, the new objective function with MILP formulation can 
be written as: 
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Here the binary variable Bi represents the existence of a bias 
in ith measurement, and Wi is the weighting factor to 
represent the importance of biased measurement, the second 
constraint ensures the upper limit of a bias and the activate 
zone of binary variables by choosing iU  as some fraction of 
the standard deviation of the measurement. In addition, 
equation (4) can be restated to remove the absolute operator 
to avoid discontinuity problem. 

3. GENERATE GROSS ERROR CANDIDATES 

Because the data reconciliation and gross error detection 
problems are formulated as MILP frameworks, it is easy to 
apply other techniques to enhance the performance. 
Soderstrom(2001) suggests using some standard statistical 
tests for bias as constrains, however, these modifications not 
offer much benefits over the basic method. And moreover, as 
an optimization problem, this technique is significantly more 
computationally intensive. Generate a list of gross error 
candidates and reduce the number of binary variables in the 
objective function is obviously an efficient way to improve 
the efficiency of the MILP method. 

An efficient method based on graph theory and Bayesian 
method is prompted for generate gross error candidates with 
weighting factors and reduce the binary variables in the 
objective function. This method can generate gross error 
candidates with prior information and need less computation 
time. 

In 1988, Tamhane, Jordache and Mah(Tamhane et al., 1988a, 
Tamhane et al., 1988b) used Bayesian approach to detect 
gross error, in which the prior probabilities of gross error 
occurrence are updating in the light of accumulating data. 
And the probability of gross error occurrence for instrument 
Si is: 

( ) ( ( ))( ) 1 1, 2,....,
( ) ( ( ))

i i i i
i

i i i i

l m m tP t i n
l l m t  (5) 

Where li is the number of previous failure for instrument Si
and mi is the sum of previous lifetimes for instrument Si and 

denotes the gamma function. ( )

Once the prior probabilities are confirmed, the next step is to 
use these probabilities to generate gross error candidates 
before using the MILP method. This step can be modified or 

even removed when there are expert experiences or no 
accumulated process data. 

In the view of graph theory, the flowsheet can be regard as a 
directed graph. As illustrated in figure 1, spanning tree is the 
subgraph of a graph and this subgraph doesn’t contain any 
loop. So the streams in the flowsheet can be divided into two 
sets: branches and chords of the spanning tree. Obviously, the 
true value of every branch can be obtained through true 
values of some chords. For an example, the branches of 
spanning tree No.1 in Fig1 is stream 2, 3 and 4, so the chords 
will be stream 1 and 5. So the true value of stream 2 and 
stream 4 is as same as the true value of stream 1, and true 
value of stream 3 is identical to the sum of true values of 
stream 1 and stream 5. In this case, we called these chords as 
independent variables (IV) and branches as dependent 
variables (DV). 

Figure 1 Spanning trees for a simple flowsheet 

Usually, there are a large number of spanning trees in a given 
graph, so the choice of independent variables is not exclusive. 
In this method, because the independent variables are used as 
benchmarks in the gross error candidate generation, we 
choose the chords of graph’s maximal spanning tree as 
independent variables. And the weight of the given flowsheet 
is defined as prior probabilities calculated by (5). 

Because the maximal spanning tree is the spanning tree with 
the largest weight, the sum of the weights of all chords is 
minimal, which means these independent variables have 
lowest probabilities to have gross error. These independent 
variables will be used as benchmarks in the gross error 
generation. If a measured value doesn’t contain any gross 
error, 

iF  will only consists with true value Fi and random 
component 

i
 with zero mean and a know variance

i
. So 

the sum of measured values is 
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Because there are random component i  in the iF , the 
measured value of dependent variables only can be estimated 
from measured value of independent variables. If we still 
choose chords of spanning tree No.1 in Fig 1 as independent 
variables, the estimated value of stream 2 and stream 4 is the 
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measured value of stream 1 and the estimated value of stream 
3 is the sum of measured values of stream 1 and stream 5. So 
the relationship between estimated value IVF  and measured 

value IVF  can be calculated as: 

IV IV DV IV DV IV DV I
DV R DV R DV R

F F F F V (7)

where R is the set of independent variables used to estimate 
the dependent variable. And 2(0, )i iN  leads to 

2 2(0, )DV IV DV IV
DV R DV R

Z N
.

Statistic Z is established to indicate the measurement bias for 
dependent variables that has an upper threshold limit of Z
for a level of significance .

Z Z   (8) 

There is a remaining problem that independent variables have 
certain probabilities to include gross error, and cause the 
Type I Error of gross error candidates in the dependent 
variables. In order to solve this problem, if an independent 
variable contains gross error, we assume that all the 
dependent variables corresponding to this independent 
variable will be suspected. The probability of gross error 
occurrence between this independent variable and all the 
corresponding dependent variables will be compared to 
decide the gross error candidate. Assume that the probability 
of gross error occurrence is 0.2 for streams 2, 3, 4 and 0.1 for 
stream 1 in Fig 1. If streams 2, 3 and 4, which are 
corresponding to stream 1, are suspected with gross errors, 
stream 1 will be added into gross error candidate list because 
the probability of all stream 2, 3 and 4 have gross error will 
be 0.23 which is smaller than the probability of gross error 
occurrence for stream 1. Once there are candidates in the 
independent variables, all dependent variables not in the 
candidate list will be removed from graph and new iteration 
will be performed in the subgraph till there are no new gross 
error candidates in the subgraph. Details of the gross error 
candidate generation method are described as follows: 

Step1. Weight all measured streams with their probabilities 
of gross error occurrence calculated by (5). 

Step2. Finding the maximal spanning tree of the graph, 
classify the streams into independent and dependent variables. 

Step3. Establish statistic Z for each dependent variable 
according to (7), put the dependent variable into suspected set 
if Z Z .

Step4. Check if there are any independent variables that all 
the corresponding dependent variables are in suspected set. If 

there is such independent variable IV and IV D
DV R

P P

Step5. Merge all dependent variables not belong in the 
suspected set into the nearest node that belong to any chords 
or streams in S to generate a subgraph then go to Step2. 

4. USE CANDIDATES IN THE MILP METHOD 

Gross error candidates generated in the last section will be 
introduced into equation (4) to improve its calculation 
efficiency. This step is accomplished by removing the binary 
variables in equation (4) that represent the streams not in the 
candidates. And the problem can be represented as: 

1 1ˆ ˆ( )

ˆ. 0

i i i i i j
i S j Si j

i i i i i

i

jF F W B F

s t F
U B U B

B binary

F

 (9) 

When there are equivalent sets in the detected biases, the 
updated weighting factors can be farther used to output 
suspect biases with higher probabilities. This strategy can be 
regard as the utilization of both spatial and temporal 
redundancy of the measurement network. In order to 
understand this method easily, a flow chart represent the 
improved method is show in Figure 2. 

Figure 2 Flowchart of the improved method 
V ,

raise the PIV to 1 and put this independent variable into 
suspected set S then go to Step5, else stop and output 
suspected set S.
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5. SIMULATION STUDY 

The system chosen for study was an industrial steam 
metering process (Serth and Heenan, 1986). And this system 
was also used for comparison in many other gross error 
detection methods (Rollins et al., 1996). The system used for 
simulation is illustrated in Figure 3 and the true flow rates 
can be found in Table 1. 

Figure 3 System of Steam Metering Process 

Table 1 True Values for The flow rates in Steam Metering 
Process 

No True Flow 
Rate

No True Flow 
Rate

1 0.86 15 1.5

2 1 16 0.591

3 111.82 17 0.81825

4 109.95 18 0.40575

5 53.27 19 0.19875

6 112.27 20 0.2625

7 2.32 21 2.1818

8 164.05 22 0.13625

9 0.86 23 0.06475

10 52.41 24 1.166

11 14.86 25 2.1363

12 67.27 26 2.033

13 111.27 27 1.7693

14 91.86 28 1.8058 

Monte Carlo simulations are conducted in this section to 
evaluate the performance of the proposed method. In order to 
compare the simulation done by Soderstrom (2001), the 
number of biased variables was fixed at 3, 5 or 7 and the sign 
of the bias was randomly assigned with equal probability. 
Because there are prior probabilities of gross error occurrence 
for each variable, so the location of the biased variables was 
chosen according to the prior probabilities. As same as the 
simulation study made by Soderstrom (2001), the magnitude 
of the bias was chosen to be between 12.5% and 62.5% of 
true value of the measured variable in Table 1 and the 
standard deviation of the measurements are chosen to be 

0.025i iF  to enable a comparison to the simulation of 
original MILP method.  All simulation in the paper was 
performed using MATLAB and LINGO 9 optimization 
software. 

Average number of type I error (AVTI) and overall power 
(OP) (Narasimhan and Jordache, 2000) were applied to 
evaluate the performance of the improved method. The 
criteria are defined as follows: 

Number of  gross errors correctly identifiedOP =
Number of  gross errors simulated

 (10) 

Number of  gross errors wrongly identifiedAVTI =
Number of  simulation trials made

 (11) 

Both OP and AVTI are calculated after 100 simulation runs 
in different conditions. 

Table 2. Results for the improved method ( )= 0.05

No. High 
Weight Biases

Percentage 
(Approximately)

No. Biased 
Stream OP AVTI

0 0 0.701 0.211

1 33.3% 0.763 0.271

2 66.7% 0.803 0.235

3 100%
3

0.905 0.255

0 0 0.626 0.532

1 33.3% 0.721 0.633

3 66.7% 0.750 0.668

5 100%

5

0.840 0.771

0 0 0.613 0.947

2 33.3% 0.678 0.961

4 66.7% 0.726 1.030

7 100%

7

0.780 1.160

Several interesting comparison can be made by checking the 
simulation results presented below. One of these is the 
influence of choosing more reliable independent variables. In 
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the simulation trials, the number of higher weight bias is set 
as 0, 1/3, 2/3, 1 times of number of the random selected 
biases. Higher the weight (prior probability of gross error 
occurrence) the stream has, less probability that this stream 
will be chosen as independent variable. Nearly all the OP is 
increased together with the No. Higher Weight Bias while the 
AVTI remains at the same level. When all biased streams are 
weighted with higher value, the OP increases significantly. 
But it is rarely that all the biased streams have higher weights, 
however, the result seems acceptable when few biased 
streams are given higher weights. Figure 4 and Figure 5 
shows that good results can be obtained by fewer high weight 
biased streams. 

Figure 4. The Influence of high weight biases percentage on 
Overall Power

The number of the dependent variables is equal to the number 
of branches in the flowsheet, so the relationship between the 
number of dependent variables, independent variables and the 
total number of the measurements are: 

1DVn n  (12) 

1IVn s n  (13)

Figure 5. The Influence of high weight biases percentage on 
Average Type I Error

When the independent variable has bigger , the bias in the 
streams with small true value might be ignored in the 
candidate generation. This problem may be improved by 
adjusting the weights of streams with small (increase a 
little to raise the probability of being independent variable). 

Once the equivalent set exists because the candidate streams 
form a loop in the graph representing the flowsheet (Jiang 
and Bagajewicz, 1999), a solution can be used by updating 
weights to give the gross error candidates with larger 
probabilities.

Simulation times for different conditions are presented in 
Table 3. The results show that the solution times for gross 
error candidate generation (Average CPU Times 1) are rather 
limited. The solution times are increased due to the increase 
in the number of biased streams. And the trend is opposite 
when the percentage of high weight biases is increased. All 
simulations are performed in the Dell Inspiron 600m laptop. 

Table 3. Average CPU Times for 3 biased streams test 

Percentage of High 
Weight Bias 

Average CPU 
Time 1(S) 

Average CPU 
Time 2 (S) 

0% 0.183 1.033

33.3% 0.170 0.982

66.7% 0.162 1.114

100% 0.142 1.042

6. CONCLUSIONS 

This paper proposes an improved MILP method for 
simultaneous gross error detection and data reconciliation. 
The data reconciliation and gross error detection based on the 
framework of MILP has a great advantage of process system 
integration in process industry. Effective gross error 
candidate generation method is applied before the solution of 
mixed integer linear programming. The simulation results 
show that choosing reliable independent variables can 
improve the accuracy of measurements. This method was 
found to have better performance over the original MILP 
method. Reduction of binary variables in the objective 
function leads to a superior improvement of the calculation 
efficiency. This improvement will make the MILP method 
more suitable for application in the large-scale process 
industries.
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NOMENCLATURE 
A constraint matrix

aki  correlative parameter 

B binary variable 

DV  dependent variable 

F true flow rate 

F  measured value

IV independent variable
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l number of previous failure 

m sum of previous lifetimes

n number of process nodes 

R set of independent variables used to estimate the 

dependent variable 

s number of streams 

W weighting factor 

i  deterministic bias 

i  random error 

( )  gamma function 

i
 standard deviation
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