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Abstract: The paper discusses a computerized method for deriving of angular motion equations of obser-
vation spacecrafts, whose structural flexibility is determined by large-size solar battery panels. Reorienta-
tion dynamics problems that arise because of structural flexibility and inaccurate settings of parameters of 
the object model are considered. An adaptive system for control of such space objects is suggested. The 
system provides a robust control and stability with respect to vibrations. Robustness and stability are 
achieved by using Kalman filtration of flexible modes and by providing optimal phase oscillation condi-
tions for switching of control actions. 

 

1. INTRODUCTION 

Since mid-60s, leading world experts have been paying 
a close attention to the complex problems of deriving 
mathematical models of flexible spacecrafts (FS), de-
veloping a justified simplification of these models and 
providing a robust control with respect to a poorly de-
fined parameter vector of a flexible object (Junkins and 
Kim, 1993), (Kirk (ed.), 1990, 1993, 1996, 1999). The es-
sential control problem with flexible spacecrafts, that 
is, the interaction of the object’s attitude control sys-
tem with the flexible oscillations of the object’s struc-
ture still needs to be addressed.  

In fact, a motion control of FS often implies a conflict be-
tween the main goal of the control of the flexible object as a 
rigid body and the necessity to restrict the magnitude of 
structural vibrations that are caused by control actions of the 
main regulator. There exists a strong tendency to excite vi-
brations in the control process of the main (“rigid”) motion 
of FS. A level of oscillations that exceeds a critical value 
leads to a system instability, where the flexible oscillations 
capture the regulator. The crux of the problem is the lack of 
information with regards to the state of the flexible body as 
structural vibration detectors are not available and the 
mathematical model of the object is often defined poorly. 

Observation spacecrafts often perform reorientation maneu-
vers, which are accompanied by long lasting vibrations that 
affect the carrying body and blur the pictures generated by 
satellite surveillance technique. The paper addresses this 
problem by developing the following tools: (a) computer-
ized method of obtaining 3D-orientation motion equations 
of observation spacecrafts with respect to a flexibility of 
solar battery panels; (b) simplifying transformation of the 
obtained model to a modal-physical form with respect to 
three almost independent planes; (c) flexible object orienta-
tion adaptive control system, which 
- provides a robustness with respect to inaccurate settings of 

FS parameter vector, 

- week excitation of flexible structural vibrations, 
- minimal vibrations dissipation time after the reorientation 

is over. 
 

2. COMPUTER AIDED DERIVATION OF MOTION 
EQUATIONS FOR OBSERVATION SPACECRAFTS IN 

VIEW OF FLEXIBLE STRUCTURE. 
 

Let us consider the problem of computer aided derivation 
and transformations of motion equations for observation 
spacecrafts in view of flexible structures.  
 
We take the kinematical structure of a mechanical system as 
a main rigid carrying body with s  rigid carried bodies that 
are attached to the main one. At the attaching points there 
are the springs that imitate the flexibility of the carried bod-
ies. In such a statement the problem is solved in (Zemlyakov 
et al., 2007). Namely, the mathematical model (MM) of the 
mechanical system is derived as the equation 
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where 1 2( , ,..., )T
Nq q q q=  is the vector of generalized co-

ordinate; 3M R∈  is the vector of control moments acting 
with respect to the main body axes.  In (Zemlyakov et al., 
2007)concrete mathematical formulas for matrices ( )A q , 

( ) ( 1, ), , ( )sD q s n C S q=  are presented for computer calculating. 
   
In this work we will turn our attention on the problem how 
from MM (1) to go to more simple MM that would be more 
convenient for a system control synthesis in the case of ob-
servation spacecrafts. For this goals we need to find mathe-
matical formulas for: - linearization of the MM (1) taking 
into account small deviations from a desired motion; - trans-
fer of linearized MM (1) to the normal coordinates; - de-
composition of the linearized MM to a series partial MM; - 
transformation of a partial MM to a modal-physical model 
(MPM) (Glumov et al., 1998) that is the most convenient for 
the synthesis and analysis of a control system. 
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2.1. Linearization of   the mathematical model. 

The observation spacecraft to be regarded is moving along 
an orbit. A control system has to guarantee the prescribed 
dynamic of an orientation. It could be supposed beforehand 
that deviations of controlled coordinates are small. Then it is 
possible to linearize the MM (1) relatively desired motions, 
for example 0, 0q q q= =� , where all components of the vector 

0q are zeros except 0
1 1 const 0q q= = ≠ . In this case the 

MM (1) could be rewritten in the form 
A q C q S M+ =��                             (2) 

where ( )A A q= , ( )S S q=  for  0q q= .    

2.2. Transformation of the linearized mathematical model to 
normal coordinates. 

As a rule for the desired observation spacecraft orientation 
only coordinates of the vector 0 1, 2 6( , ..., )Tq q q q=  and their 
velocities are measured. Then the MM (2) more comfortable 
to present in the form 

0 6 6, ( ) ,nA q C q S M q E O q×+ = =��        (3)    

where 6 nO ×  is 6 n×  zero matrix, 6n N= − . 
 
In (2) and (3) matrices A and C are positive and negative 
definite, respectively. Then there exists (Lurye, 1961) non-
singular transformation q s= Φ , that reduces MM (3) to 

the normal coordinates 1 2( , ,..., )T
Ns s s s= . To find the 

matrix Φ , we represent MM (3) to the form 
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where 0( , )T T T
cq q q= . 

    
Proposition 1, (Zemlyakov et al., 2007). To reduce MM (4) 
to normal coordinates s , one should apply nonsingular 
transformation q s= Φ , where the matrix Φ  is given by 
the equality 
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( 6 ) 6n

A A A Q
O Q

− −

− ×

 −
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1 / 2 1
22 12 11 12, TQ a T a A A A A− −= = − ,                             (5) 

where the orthogonal matrix  T  is obtained from the rela-
tion 1/ 2 1/ 2

22
TT a C a T− − = Ω .  

In the vector s  we note subvectors  0 1 2 6( , ,..., )Ts s s s=  and  

7 8( , ,..., )T
c Ns s s s= . Then the MM (3) relatively normal 

coordinates takes the form  
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where 1/ 2
11R A−= ,  1/ 2 1

12 11
T TH T a A A− −= − .  

Now we introduce for the MM (6) the transforma-

tion
1
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 and as a result we receive a 

MM that contains a coordinate of stiff motion  x  
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2.3. Construction of mathematical models of partial motion 
with respect to each of measurable coordinates.  

With the MM (7) it appears the possibility to separate the 
partial MM that represents the spatial motion of our me-
chanical system with respect to only one of the coordinates 

of the vector 0q , for example, ( 1, 6)iq i =  

1
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0
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where 1
11 11( ) ( )i ia A S q−= ,   1

11( )iA−  is the i-th row of the 

matrix 1
11A− ,   ih  is the  i-th column of the matrix  H .  

 
2.4. Constructing of modally physical models of partial mo-
tions [4].  

We consider the diagonal n n× - matrix iH with diagonal 
consisting of the components of the column vector ih , i.e. 

1 2diag( , ,..., )i
i i niH h h h= . Now it is possible to formulate  

Proposition 2, (Zemlyakov et al., 2007).  The nonsingular 

transformation    
1
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  allows to receive the 

modally physical models of partial motions [4] in the form 

1

1

1

0
,

, ,

i ii n
i ii

n

n
i

i i i i j
j

x ax O
M

O x Kx

q x x x x

×

×

=

      
+ =        Ω     

= + = ∑

��
�� ��

� � �

           (9)      

where  11( )i iT iK L H HS q= . 
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The modal-physical model (MPM) (9) takes into account 

disturbances to coordinate ( 1, 6)iq i =  from the spatial 
interconnected motions of all other coordi-
nates ( 1, , )jq j N j i= ≠ . Sometimes such an intercon-
nection so small that it is possible to neglect it. If so then the 
MPM (9) becomes more simply 
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where i
ia  and  i

jk  are components of vector ia  and  matrix  
iK  respectively. 

In (Glumov et al., 1998) MPM for one angle coordinate 
without interconnected disturbances takes the more concrete  
form   
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where ( )1, 3ix q i= =  is a measured and controlled angu-

lar coordinate; x is a coordinate of “rigid”  motion; x~ is an 
additional angle motion of the main body due to the elastic 
oscillations of connected bodies;  I is a central spacecraft 
moment of inertia; , 1,i i nω =�  are the fundamental frequen-

cies of elastic oscillations; ik�  are coefficients excitability 
for elastic modes; )(uM  is a control action; ( , , )u u x x t= �  
is a control law.  
  
3. SOME PECULIARITIES OF AN INTERCONNECTION 

OF THE FS ORIENTATION SYSTEM WITH THE 
STRUCTURE VIBRATIONS 

 
One of the principal problems of the FS orientation is the 
essential interconnection of the control system with the 
structure vibrations. This interconnection becomes espe-
cially strongly at applying relay or discrete control and at a 
boundedness of the information about the flexible object's 
state vector. 
 
It is well-known (Rutkovsky and Sukhanov, 1996) that 
when the regulator with discrete variable of the control ac-
tion level is used the vibrations are excited and amplitudes 
of the elastic modes ( ) ( )i it x tρ = �  are changed at each in-
stant of the control action switching. In this case, as a rule, a 
dominant mode ( ),dx t d i∈� , is appeared. Its amplitude 

( )d tρ  increases more quickly in compare with the others 
and in some time the inequality ( ) ( )d i dt tρ ρ ≠>>  will be cor-
rect. So the summary intensity of the vibrations 

( ) ( )it x tρ =∑ �  can be estimated as ( ) ( )dt tρ ρ≈ . In 
(Rutkovsky and Sukhanov, 1996) it was shown that at 

* 2,m md u d dm k −ρ µ µ ≈ ω� ��  ( ( )um m u�  is the base control 

that is synthesized if the spacecraft would be rigid) the proc-
ess of the amplitude ( )tρ  changing can be described as 
follows 

*

1
( ) cos [sign ( )]

k
m

k k d j j j
j

t m uρ ρ ρ µ δ β
=

≈ + ⋅ ∑ ��      (11) 

where jδ  is the coefficient of the control action level chang-
ing at the j-th switching, jβ  is the corresponding phase of 

the dominant mode,  ( ) ( ) ( )
jj j t tm u m t dm u dt == =� � . 

Consequently, the character of the amplitude dρ  changing 
is defined by the totality of the system's state at the switch-
ing instants, that is the amplitude kρ  can increase or de-
crease in accordance with the sign ( )jm u� , and by the value 
of the phase ( )j jtβ β= . As an optimal condition with re-

spect to the phase jβ  is the case when the amplitude kρ  
after the switching will be the smallest from all possible 
ones at prescribed direction of the control action switching 
sign ( )jm u� . Optimal conditions are defined by the correla-
tion 

2   sign ( ) 1,

(2 1)  sign ( ) 1, 0,1,2,... .
j

j
j

n m u

n m u n

π
β

π

∀ = +=  + ∀ = − =

�

�
 (12) 

 
The changing of the sign ( )jm u�  to the opposite in (12) 
leads to the worst condition of switching and leads to the 
maximal increase of the amplitude kρ . All intermediate 
values of the phase 2 (2 1), 0,1,2,...j n n nβ = π ∨ π + =  define 
either favorable (decrease of the amplitude) or unfavorable 
(increase of the amplitude) conditions of the switching. 
 
Thus, the phases of the vibration amplitudes at the switching 
instants define the character of the oscillating processes at 
the FS' control. Let us note that exceeding of the intensity 

( ) ( )t x tρ = �  of a critical level crρ  (mainly at the expense of 

the dominant mode dx�  growth) leads to the system instabil-
ity (to the "capture" of the regulator by vibrations). 
 

4. SYNTHESIS OF ADAPTIVE ALGORITHM OF THE 
FS REORIENTATION 

 
Manoeuvres of the initial orientation and further reorienta-
tions at the change of the watched object are the most im-
portant regimes of the observation spacecrafts operation. 
Very often, these manoeuvres are realized with the help of 
control moments created by flywheels. 
 
Discrete analog of linear PD-algorithm (at each interval of 
the digitization 0 constT =  corresponding constant moment 
is applied to the satellite) is used usually in this case. After 
completion of the initial orientation or reorientation the con-
trol system realizes the process of stabilization. One of the 
wellknown algorithms of relay-logistic type (Raushenbakh 
and Tokar, 1974)  is a base algorithm for this regime. At 
using the algorithms of such type in the system stable limit 
cycle takes place that guarantees required accuracy and eco-
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nomics control. In any case discontinuous character of the 
control actions is the cause of the excitation of the solar 
panels vibrations. 
 
For the vibrations damping it is possible to use suggested in 
(Rutkovsky and Sukhanov, 1974) the principle of the phase 
control of the single-frequency FS (FS with only one elastic 
mode). This principle is based on the use of the algorithm 
with precise information about elastic mode phase. Briefly, 
the essence of this algorithm can be explained like that. 
 
Let 0 ( , )u f x t=  , x x x+ �� , is the base algorithm which is 
synthesized provided that the spacecraft is rigid. Then the 
algorithm 1( , )u f u β=  with additional signal about the 
phase β  will be called as an extended one. The switching 

instant jt  of the control action will be called as phase-

controlled if it depends on not only the coordinate ( )x t  but 
the phase β  also. At this the direction of the control action 
( sign ( )jm u� ) switching is defined uniquely by the base 
algorithm but the switching is delayed until the phase ( )tβ  
will be equal to its optimal value or its favorable one. 
 
Using correlation (11) it is possible to obtain the increment 
of the elastic mode in the i-th period of the limit cycle con-
taining R switchings of the control action: 

1
1

cos [sign ( )] i

Rm
i i r r r

r
m uρ ρ ρ µ δ β−

=
∆ − ≈ ⋅ ∑ ��  (13) 

It is obvious that for stability of the control system motion it 
is necessary to have optimal or favorable values of the 
phases rβ  at least at 2R  points of the switchings. In this 
case at const [1, ]r r Rδ = ∀ ∈  the increment 0j∆ρ ≤  that guaran-
tees damping of the vibrations. 
 
For this algorithm using to orientation of multi-frequency FS 
with poorly defined parameters and at absence of the elastic 
modes sensors it is necessary to solve two tasks: 1) to get 
and realize the algorithm of the dominant mode number 
identification, 2) synthesize the subsystem of the elastic 
modes ( )ix t�  and the object's parameters estimation, that 
makes it possible to calculate the current value of the phase 

( )tβ . 
 
4.1 The algorithm of the dominant mode number identifica-

tion 
 
Let { }Z z=  is the block of the measurements at the discrete 
instants zzt T∈ . The process of the dominant mode chang-
ing can be defined by the function's analysis that is given by 
blocks ,m mZ T . These blocks are obtained on the basis of 

processing of the rectified output signal xΣ  of the FS orien-
tation sensors. At the presence of dominant mode the major-
ity of the differences [ ] { [ ] [ 1]}m m mt l t l t l= − − , that are the adja-
cent elements of the block { [ ]}mmT t l= , coincide with the 
semiperiod of the mode ( )dx t� , that is [ ] 0.5m dlt l T∆ ≈ � . Using 

the average 
1

1

2 [ ]
1

L

d m
l

T t l
L

−

=

= ∆
− ∑�  , ( dim mL T= ) the domi-

nant mode frequency 12d dTω π −= �  is defined. For identifi-
cation of the dominant mode number the differences 

( 1, )i d i n
ω ω ω

=
∆ = −  are investigated and it is assumed 

dd i=  according to the minimal difference 

mini i d i
∆ = − =ω ω ω . Here , 1,i i nω = , are known fre-

quencies of the elastic modes that are taken into account. 
This result is considered as the correct, if the correlation 

0,01i d∆ ≤ ≈ω ω δ  is fulfilled. 
 
Availability of this algorithm is illustrated by the example of 
simulation (Fig. 1) of multi-frequency FS (n=6) motion. 

During the observed interval, the second dominant mode 
2dx =�  was damped and the fourth one 4dx =�  occurs. This fact 

is fixed very clearly by step-like changing of the output sig-
nal ( )d t  of the identification subsystem.  
 
4.2 Estimation of the FS elastic modes by Kalman filter 
 
In synthesis of the base algorithm for spacecrafts orienta-
tion, as a rule, the signals of the attitude sensors and rate 
sensors are used. The absence of the reliable devices for 
coordinates ix�  measurement is the cause that bounds the 
use of the suggested approach in synthesis of the FS high-
effective control. 
 
This problem and the problem of inaccurate setting parame-
ters of the object can be solved with the help of the method 
of joint estimation of the parameters and modal-physical 
coordinates of the FS motion (Sukhanov et al., 2003). This 
method is based on the combination of the Kalman discrete 
filtration and the theory of the statistical hypothesizes test-
ing. 
 
Taking into account the transducers noises the MPM (10) of 
the FS in discrete form can be written as follows: 

1 1 1 1 1

1 1 1 1

( ) ( )
( ) , ,

k k k k k k k

k k k k k k

X Ф Y X д Y u
Y W Y M Y

+ + + + +

+ + + +

= + +

+Ψ =
         (14) 

Z H Y X Vk k k k+ + + += +1 1 1 1( ) ,          (15) 

Fig. 1.  The example of the dominant mode number 
identification. 

3( ) 10 ;x t d−×�

 t, c 

( )x t�
( )d t  
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where 1 1( , , , , , , )T
k k k k k nk nkX x x x x x x= � �� � � � �…  is the coordi-

nate vector, 1 1( , , , , )T
k k k nk nkY k k= ω ω� �…  is the object pa-

rameter vector; ( , )T
k k kZ x x∗ ∗= �  is the measurement vector, 

kW  and kV  are the noises of the object and measurements. 
For fixed vector kY Y= ,equations (14) and (15) are linear 
with respect to the vector X k . In this case for the joint es-
timation of the vectors X k  and Y  it is possible to use 
aforementioned method. Taking as the hypothesizes Dj , 

j l= 1, ,  the assembly of the parameters Y  concrete values, 

that is D y y yj
j

s
j

n
j T= ( , , , , )1 2… … , the optimal estima-

tions of the vectors X N  and YN  can be obtained from the 
system of equations for estimations, covariance matrices and 
functionals (Sukhanov et al., 2003) 
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∑

 
In Fig. 2 the example of the simulation of the estimation 
processes of the object's parameters and the dominant mode 
is shown. It was assumed that for each number of the hy-
pothesizes j l= 1, , the vector Y  components are constant, 
that is [1, ]jY const j l= ∀ ∈ . The initial values of the vector 

Y j  components y ji  were chosen between their possible 

maximal and minimal values for j l= 1, . 
 
Further they are changed discretely with corresponding dig-
itization steps. Using equations (16) the final values of the 
functionals I jN  were calculated. The hypothesis with the 

number ν  was chosen as the most probable where ν  corre-
sponds to the minimum of the functional I IN

j
jNν = min . 

The estimation �X Nν  is the optimal one of the vector X N  

and the components of the vector Yν  are the estimations of 
the vector Y components. 
 
Fig. 2 is shown that at initial displacements ˆ (0) 1,4 (0)i iω ≤ ω� �   
it is guaranteed not only admissible rate of the estimations 
convergence but their high accuracy. This information is 
sufficient for the dominant mode current phase ( )tβ  calcula-
tion at any instant. 
 
4.3  Adaptive system of the FS orientation 
 
On the basis of the dominant node number identification and 
calculation current value of the phase ( )d tβ  the task of the 
FS orientation system design is solved. 
 
Block-scheme of the adaptive orientation system, that is 
realized phase control of the multi-frequency FS, is shown 
in Fig. 3.  
 

This system can guarantee high accuracy of the reorienta-
tion, stabilization with respect to a new direction and damp-
ing of the constriction vibrations. In Fig. 3 rez  is the signal 
of reorientation. The control loop of the main ("rigid") FS 
motion is depicted by a dot line. It includes an additional 
link that realizes the time-delay of the control action switch-
ing until the phase dβ  will be as optimal. The value of the 
phase 

dβ   is calculated in the informational module of the 
time-delay switching subsystem. In this module, the time-
delay *

sw sw( )dt tτ β= −  is calculated also. Here *
swt  is the in-

stant, when the phase 
dβ  is equal to its optimal value, swt  is 

the instant of the control action switching according to the 
base algorithm ( , )u u z t= . So  ( ) ( )u t u t τ= − . 
 

Fig.2,a. The error of estimation of 
the dominant mode coordinate 1x� :    

а) 1x∆� ,   b) 1
2 xσ+ � , c) 1

2 xσ− � ,   

4
1 10x∆ ⋅�  

a 

b 

c 

 

4
1 10ω∆ ⋅�  

Fig. 2,b. The error of estimation of 
the dominant mode frequency 1ω� :     

а) 1ω∆ � ,   b) 12 ωσ+ , c) 12 ωσ− ,   

a 

b 
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Fig. 3.  Block-scheme of adaptive control system for FS. 
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After reorientation of the satellite, the system passes to the 
regime of the controlled coordinate x stabilization with re-
spect to the new position of an observation axis. At thus 
corresponding stable limit cycle is formed. In half of its 
switching points the optimal phases β  realized as it was 
suggested early. 
In fig. 4 the example of the adaptive system operation is 
shown. The processes of stabilization ( 0 300t s< <  and 
400 800s t s≤ < ) and reorientation (300 400s t s≤ < ) simu-
lated.  

The intervals of time-delay of control actions switching are 
shaded. From graphs it is clear that realization of the optimal 
conditions switching with respect to the phase of dominant 
mode guaranties the vibrations damping before and after 
reorientation without additional consumption of energy. 
 

5. CONCLUSION 
 
Suggested approach in the designing of the FS control sys-
tem realizes the adaptive tuning of the base algorithm with a 
view to get optimal phase of the dominant mode in the in-
stants of the control action switching. This guarantees the 
damping of the construction vibrations in the case of poorly 
defined object mathematical model without additional con-
sumption of energy for control. 
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Fig. 4. Transient processes in regimes of the FS stabilization and reorientation at use  
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