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Abstract: Feedback loops play pivotal roles in the regulation and control of many important cellular 
processes such as gene transcription, signal transduction, and metabolism. Hence, identification of 
feedback loops embedded in biomolecular regulatory networks is crucial to understanding the regulatory 
mechanisms underlying various cellular processes. In this paper, we introduce an identification method 
called the intermittent step perturbation method (ISPM) that can efficiently identify and locate feedback 
connectivities among reacting biomolecules. In particular, a sort of stochastic function called an 
intermittent step perturbation is applied to excite a given network. Then, we employ a statistical 
algorithm to analyze the resulting time-series data, thereby discerning any causal connection with a 
circular causal property. This circular causal property implies the existence of a feedback loop in the 
regulatory network. Finally, the proposed ISPM is demonstrated through an insulin signal transduction 
pathway model. 

1. INTRODUCTION 

Feedback loops play a crucial role in various functioning 
of intracellular networks. A large number of experiments 
indicated that positive feedback loops dominate diverse 
cellular processes including development, cell proliferation, 
apoptosis, and the response to stress (Eisen et al., 1967; 
Wolpert and Lewis, 1975), whereas negative feedback loops 
contribute to maintaining homeostasis of a biological system 
under some internal and external changes (Wolf and 
Heinrich, 2000; Strogatz, 2000; Maeda et al., 2004; Laub 
and Loomis, 1998; Thomas and Kaufman, 2001). Therefore, 
the identification of feedback loops and the understanding of 
feedback regulation mechanism are central themes in 
systems biology research. 

Although some methods for identification of feedback 
loops were reported in the literature, they have fundamental 
limitations in application to biological networks. For 
instance, Vance (Vance et al., 2002) utilized impulse 
responses based on time-series data, but feedback loops 
could not be distinguished from feedforward regulations. 
The likelihood ratio test method (LRTM) proposed by 
Caines and Chan (1975) was suitable to identify the 
existence of feedback loops, but it was confined only to the 
stationary stochastic processes and required detailed a priori 
knowledge on the system order and structure. The 
acquisition of such a priori knowledge is very difficult in 
practice, particularly for lage regulatory networks. Hence, 

there is a pressing need to develop a more efficient 
identification method which can overcome such 
disadvantages of previous methods. 

In this paper, we propose a novel identification method 
called the intermittent step perturbation method (ISPM). The 
main idea is to identify underlying feedback loops by 
investigating their causal properties. Note that a 
biomolecular regulatory network can be represented by a 
directed graph where nodes indicate biomolecules and the 
directed edges connecting two nodes indicate the 
corresponding causal relationships. A prominent 
characteristic of a feedback loop is that it corresponds to a 
sequential causal regulatory chain in which every node can 
be affected by all the other nodes. Such a particular property 
of a feedback loop is referred as a ‘circular causality’ here. 
To investigate the circular causality in an intracellular 
regulatory network, we apply a particular perturbation - an 
intermittent step perturbation. Then, time-series data of each 
network node are obtained and a statistical correlation 
analysis is used to infer causal connections in the network. 
Once we unravel all the connectivities with the circular 
causality, we can identify the existence of feedback loops 
and can locate their structures within the regulatory network.  

 

2. METHODS 

2.1  The nonlinear dynamics of intracellular networks 
subject to perturbations 
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The dynamic behavior of an intracellular network can be 
described as a set of nonlinear differential equations: 
                              / ( , , )d dt t= +x f x λ u                             (1) 
where  

n      is the number of state variables; 
( )tx  is the n  dimensional state vector;  

f    is the n  dimensional vector field describing the 
nonlinear dynamics of the network; 

λ      is the p  dimensional parameter vector;  
u      is the n  dimensional input vector.  

In this intracellular network, the state ( )tx  represents the 
concentrations or activity levels of the network nodes (i.e., 
the reacting biomolecules); n  denotes the number of the 
network nodes; λ  denotes external or internal conditions 
such as rate constants, pH values, and temperatures (as the 
nominal interaction structure of a network is considered 
time-invariant, λ  is assumed to be constant); u  represents 
perturbations such as impulse, step, ramp, sinusoid, or 
stochastic perturbations. We postulate that such 
perturbations can be realized by an active substance release 
under control and they are applied to each node one by one 
in the form of an input rather than a parameter. Hence, the 
inherent interaction structure is not affected by such external 
perturbations and is solely determined by f and its 
parameters λ .    

2.2  The definition of feedback loops 

The concept of feedback loop stems from the Jacobian 
matrices of the above system descriptions in (1). Suppose 
that the function vector f  is continuously differentiable in 
its biologically feasible domain, then the Jacobian matrix A  

at the state * * *
1 2( ) ( , ,...... )nt x x x=*x  is defined as ∂

=
∂

*
*

x
x

fA
x

. 

If the element i

j

f
x
∂
∂

of the Jacobian matrix A  is nonzero (or 

significantly larger than zero in its absolute value), then this 
implies that jx  has an interaction with ix . In particular, we 
can conjecture the existence of a feedback loop if some 
components of the system interact with one another in a 
circular manner. Thus, in the Jacobian matrix, each set of 
nonzero elements corresponding to a feedback loop has the 
same row and column index set (Thomas and Kaufman, 
2001). The sign of the feedback loop can be further 
determined by ( )1 q−  where q  is the number of negative 
interactions in the feedback loop (Thomas and Kaufman, 
2001). 

2.3  The causality attribute table for identifying the existence 
of a feedback loop 

Based on the concepts of nonlinear cellular dynamics and 
feedback loops, we develop a circular causality criterion to 
judge the existence of a feedback loop. Fig. 1 illustrates how 
the criterion helps identify a circular causal connectivity in a 
simple synthetic biomolecular regulatory network. First, we 

perturb each node one by one. For the thi  perturbation 
( 1, 2,3...i n= ), the concentration changes of all nodes are 
recorded in the thi  row of Table 1, where the nonzero 
concentration change implies a causal interaction from the 
perturbed node. Then, the sign ‘V’ is assigned to denote this 
causal interaction in Table 1, and the sign ‘O’ is assigned to 
denote no causal interaction when the concentration change 
of one node is zero. Since the information in Table 1 
exhibits the causal interactions among the network nodes, 
we call this table causality attribute table (CAT) to highlight 
such characteristics. In particular, the main diagonal sub-
block full of ‘V’s in the CAT correspond to the existence of 
a feedback loop. As observed in Table 1, node 2, 3, and 4 
form such a main diagonal sub-block, and a feedback loop 
composed of these three nodes is denoted by the shadow 
region. Consequently, based on the distribution of causal 
interactions, we can identify and locate the feedback loops in 
the CAT systematically. 

 

Fig. 1. A 7-node synthetic pathway network. The ‘arrows’ denote 
‘activating regulations’ and the ‘line-bars’ denote ‘inhibiting 
regulations’. 

Table 1. The CAT corresponding to Figure 1. The shadow region 
indicates a feedback loop including node 2, 3, and 4. 
 

1 2 3 4 5 6 7
1 V V V V V V V
2 O V V V V V V
3 O V V V V V V
4 O V V V V V V
5 O O O O V V V
6 O O O O O V O
7 O O O O O O V

2.4  The design of perturbations and the identification 
algorithm 

In addition to utilizing the circular causal property, 
another key idea of our identification algorithm is to apply 
an intermittent step perturbation which can fully excite a 
given intracellular network. This perturbation scheme is 
based on recent technological advancements. For instance, 
we can think of the flash photolysis technology that has been 
rapidly developed in cell biology and biochemistry over the 
last decade (Corrie et al., 1992; Nerbonne, 1986). According 
to the flash photolysis technology, the incorporation and 
photolysis of caged proteins or peptides into living cells can 
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be realized through controlled flash impulse sequences. Thus, 
aided by the flash impulse sequences, we can perturb 
intracellular networks and delineate their kinetics in a very 
delicate way (Adams and Tsien, 1993). Besides this flash 
photolysis technology, we can think of other perturbation 
schemes. We note that control inputs are often approximated 
by modulated high frequency impulse sequences in control 
engineering. So, we can photolyze some amount of caged 
proteins with a high frequency flash impulse sequence to 
approximate any desired perturbation profile. For example, 
in Fig. 2 we illustrate how a sinusoid function can be 
approximated by a high frequency flash impulse sequence. 
Thus, an intermittent step input (see Fig. 3) which is 
controlled according to a random triggering (Hull and 
Dobell, 1962) can also be approximately obtained by the 
same method. Such an intermittent step input can be 
commonly considered as a stochastic signal uncorrelated 
with any intrinsic noise and other unknown external inputs. 
Therefore, the perturbation is particularly suitable to 
attenuating the influence of external unknown inputs 
through correlation computations. This is to be taken as the 
main perturbation method in this paper. 
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Fig. 2. A sinusoid function approximated by a high frequency flash 
impulse sequence. 
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Fig. 3. The intermittent step input. The magnitude =1. 

2.5 Correlation coefficient method 

Although the CATs can help detect feedback loops 
efficiently, many factors such as measurement noises and 
unexpected interactions from the outer environment may 
hinder deducing the CATs correctly. So, a quantitative 
method called correlation analysis is employed to facilitate 

evaluating strengths of the causal connections and further to 
obtain the appropriate CATs. The correlation coefficient xyρ  

between two normalized time-series ( )x t  and ( )y t  can be 
defined by the following equations. 

( ) ( )
1

1 m
i i

xy
i x y

x t x y t y
m

ρ
σ σ=

⎛ ⎞⎛ ⎞− −
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑                     (3) 

( )( ) ( )( )2 2

1 1

1 1;
m m

x i y i
i i

x t x y t y
m m

σ σ
= =

= − = −∑ ∑             (4) 

1 1

1 1( ); ( )
m m

i i
i i

x x t y y t
m m= =

= =∑ ∑                            (5) 

where  
m   is the number of sample points.  
x   is the mean value of time-series ( )ix t , and y  for 

( )iy t .  

xσ  is the sample standard deviation of time-series ( )ix t , 

and yσ  for ( )iy t .  
As correlations in time-series data reveal dependencies 

between variables, these correlations can be used to infer the 
connectivity between biomolecular species (Eisen et al., 
1998; Rice et al., 2005). However, although correlation-
based approaches provide quantitative estimates on the 
connectivity between biomolecular species, the correlation 
does not necessarily deduce causality. To discern the pseudo 
causal connections among correlation connections, Arkin 
and Ross (Arkin and Ross, 1995) decomposed correlation 
connections into four scopes: (i) direct antecedent 
connections (node 1 and node 2 in Fig. 1), (ii) indirect 
antecedent connections (node 1 and node 3 in Fig. 1), (iii) 
direct or indirect common antecedent connections (node 6 
and node 7 in Fig. 1), (iv) unanalyzed connections from the 
externally controlled variables. These cases explained all 
possible correlation connections between biomolecular 
species, but only the first two cases can be regarded as 
causal connections. The other two cases may induce false 
positives, considering the possibilities that high correlations 
might happen in these cases. Hence, we developed the two 
techniques to identify the false positive cases. The first 
technique is to perturb all network nodes in turn and to 
extract only the thi row with i  being the index of 
perturbation) in the thi  correlation coefficient matrix. This 
helps discern the common antecedent connections from the 
real causal connections. The second technique which is the 
intermittent step perturbations can contribute to excluding 
the unanalyzed outer connections from inner causal 
connections. Based on the two proposed techniques, the 
CATs of intracellular network can be obtained by comparing 
the derived correlation coefficients with a specified 
threshold value. If the correlation coefficient is above the 
threshold value Tρ , it is concluded that a causal connection 
exists between two nodes. Such a threshold value is set as 
0.3 during our studies. Finally, we summarize the complete 
algorithm for feedback identification in Fig. 4. 
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Fig. 4. Feedback loop identification algorithm 

3. RESULTS 

A biological example of the insulin signal transduction 
pathway model is used to illustrate the ISPM. The signaling 
through the insulin pathway is critical for regulation of 
blood glucose levels and for avoidance of diabetes. Many 
modeling processes of the signal transduction pathway were 
widely discussed in the literature (De Fea and Roth, 1997; 
Paz, 1999; Ravichandra et al., 2001a,b). More recently, a 
relatively complete mathematical model was constructed to 
further elucidate the feedback regulatory mechanisms of the 
insulin signal transduction pathway (Sedaghat et al., 2002). 
The dotted lines in Fig. 5 indicate the four feedback loops in 
this model as follows: 

(i) Positive feedback loop from Akt ( 17x ) to IRS-1 
( 10x )  

(ii) Positive feedback loop from Akt ( 17x ) to the 
phosphorylated one bound surface receptors ( 5x ) . 

(iii) Positive feedback loop from Akt ( 17x ) to the 
phosphorylated two bound intracellular receptors 
( 7x ) and the phosphorylated one bound 
intracellular receptors ( 8x ) . 

(iv) Negative feedback loop from PKC-ξ  ( 19x ) to the 
serine-phosphorylated IRS-1 ( 22x ). 

 
Fig. 5. The diagram of the insulin signal transduction pathway with 
4 feedback loops. The solid lines denote the substance fluxes in the 
pathway, and the dashed lines indicate the indirect control to the 
downstream nodes. The dotted lines from activated Akt ( 17x ) to 
PTPB1 represent the feedback loops 1, 2, and 3. The dotted lines 
from PKC-ξ ( 19x ) to IRS-1 ( 9x ) represent the feedback loop 4.  
where 1x  is the insulin input; 2x  is the concentration of 
unbound surface insulin receptors; 3x  is the concentration of 
unphosphorylated one bound surface receptors; 4x  is the 
concentration of phosphorylated two bound surface 
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Define a character matrix ×n nB  
(The causality correlation attribute table) 

 1=i   
( i  is an integer from the set { }1, 2...n ) 

Generate the intermittent step function 
( )iu t (with the random length of gates) 

Perturb the thi node by using the  
intermittent step perturbation 

Measure the time-series data 
of all n nodes 

Compute the correlation coefficient ijρ  
between the thi node and thj node 

=ij ija ρ  

ija  is an element of matrix ×n nA  

ijb  is an element of matrix ×n nB  

 
' '=ijb V  
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1= +i i  
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Construct a possible subset H of the index 
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other subsets of the index set { }1, 2...I n=  
and find other feedback loops. 
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receptors; 5x  is the concentration of phosphorylated one 
bound surface receptors; 6x  is the concentration of unbound 
unphosphorylated intracellular receptors; 7x  is the 
concentration of phosphorylated two bound intracellular 
receptors; 8x  is the concentration of phosphorylated one 
bound intracellular receptors; 9x  is the concentration of 
unphosphorylated IRS-1; 10x  is the concentration of 
tyrosine-phosphorylated IRS-1; 11x  is the concentration of 
unactivated PI 3-kinase; 12x  is the concentration of tyrosine-
phosphorylated IRS-1/activated PI3-kinase complex; 13x  is 
the percentage of PI(3,4,5)P3 out of the total lipid 
population; 14x  is the percentage of PI(4,5)P2 out of the total 
lipid population; 15x  is the percentage of PI(3,4)P2 out of the 
total lipid population; 16x  is the percentage of unactivated 
Akt; 17x  is the percentage of activated Akt; 18x  is the 
percentage of unactivated PKCξ; 19x  is the percentage of 
activated PKCξ; 20x  is the percentage of intracellular 
GLUT4; 21x  is the percentage of cell surface GLUT4; 22x  is 
the concentration of serine-phosphorylated IRS-1. 

First, we apply the intermittent step perturbations with a 
minimum time interval of 30 minutes to excite the pathway, 
so that the downstream biomolecular species can fully 
response to the perturbation happening in the upstream 
nodes. The magnitude of each step input is determined by its 
effect to the cell surface GLUT4. To guarantee that the 
intracellular network always stay in its linear operation 
region, we limit the perturbation magnitudes to the extent 
that the perturbations can make the percent of cell surface 
GLUT4 increase to the half of its maximum concentration 
(40%). The time-series data of all nodes are sampled at 
every 10 minutes, and 10% Guassian measurement noises 
are mixed with those data to mimic the real biological 
experiments. Then, the causal correlation coefficient tables 
and their corresponding CATs can be obtained by using the 
algorithm in Fig. 4.  

 
Table 2. The CAT of four feedback loops (threshold level for 
correlation coefficient is 0.3). 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1 X1
6

X1 X1
8

X1
9

X2
0

X2
1

X2
2X1 V V V V V O V V V V O V V O V O V V V V V V

X2 O V V V V V V V V V O V V O V O V O V V V V
X3 O V V V V O V V V V O V V O V O V O V V V V
X4 O O O V V O V O V V O V V O V O V O V O V V
X5 O V V V V O V V V V O V V O V O V O V V V V
X6 O V V V V V V V V V O V V V V V V V V V V V
X7 O V V V V V V V V V O V V O V O V O V V V V
X8 O V V V V V V V V V O V V O V O V O V V V V
X9 O O O V V O V V V V O V V O V V V V V V V V
X1
0

O O O V V O V V V V O V V O V O V O V V V V
X1 O O O V V O V V V V V V V O V O V O V V V V
X1
2

O O O O V O V V V V V V V O V O V O V V V V
X1 O O O V V O V V V V O V V V V O V O V V V V
X1
4

O O O V V O V V V V O V V V V O V O V V V V
X1 O O O V V O V V V V O V V V V O V O V V V V
X1
6

O O O V V O V V V V O V V O V V V O V V V V
X1 O O O V V O V V V V O V V O V V V O V V V V
X1
8

O O O V V O V V V V O V V O V O V V V V V V
X1 O O O O O O V V V V O V V O V O V V V V V V
X2
0

O O O O O O O O O O O O O O O O O O O V V O
X2 O O O O O O O O O O O O O O O O O O O V V O
X2
2

O O O V V O V V V V O V V O V V V V V V V V

Aided by the intermittent step perturbations, the statistical 
correlation analysis of time-series data correctly captures the 
causal correlations of the pathway. The CAT of the feedback 
loop model is shown in Table 2 where the sign ‘V’s indicate 
the causal connections in the network. The result shows that 
most of interaction hierarchies in Table 2 are consistent with 
those of the pathway model. Some direct bidirectional 
reactions ( 13x , 14x , and 15x ), ( 20x  and 21x ), ( 18x  and 19x ), 
and ( 16x  and 17x ) can be founded in Table 2. More 
importantly, the feedback loops also emerge after extracting 
some relevant rows and columns from Table 2.  

The feedback loop ( 10x , 12x , 13x , 17x , and 19x ) is 
identified after extracting corresponding (10,  12,  13,  17, 
and 19th) rows and columns from Table 2. Thus, the 
feedback loops 1 and 4 are both correctly identified. 
Similarly, the ( 4x , 5x , 9x , 10x , 12x , 13x , and 17x ), i.e. , the 
feedback loop 2 can be identified from Table 3. However, 
the feedback loop 3 ( 7x , 8x , 4x , 5x , 10x , 12x , 13x , and 17x ) 
fails to be identified. To investigate this failure, we study the 
ODE of the mathematical model. Some relatively faint 
regulations take place due to the small value of the 
parameter 6k . Therefore, the measurement noises dwarf this 
faint deterministic causal connection and as a result affect 
the identification result.  

 
Table 3. The identification of the feedback loop 2 
 

X1 X4 X5 X9 X10 X12 X13 X17 X19 X21

X1 V V V V V V V V V V

X4 O V V V V V V V V V

X5 O V V V V V V V V V

X9 O V V V V V V V V V

X10 O V V V V V V V V V

X11 O V V V V V V V V V

X12 O V V V V V V V V V

X13 O V V V V V V V V V

X17 O V V V V V V V V V

X19 O O O V V V V V V V

X21 O O O O O O O O O V

4. DISCUSSION 

With the help of the correlation analysis, the ISPM 
provides an efficient approach for rapidly identifying and 
locating intracellular feedback loops without a priori 
knowledge on the biomolecular network architectures. The 
simulation shows that the method is robust to the high levels 
of measurement noises, scalable for larger biochemical 
networks, and is efficient for nonlinear cellular dynamics. 
With the advances in experimental perturbation technologies 
and high throughput measurement methods, it may soon be 
applicable to transcriptional, protein, and metabolic 
interaction networks.  

Besides identifying the feedback loops, the ISPM also 
retrieves plenty of causal information which is contained in 
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the CATs. We note that a positive coefficient ijρ  in causal 
correlation coefficient tables indeed indicates a direct or 
indirect activation from the thi  node to the thj  node and 
likewise a negative coefficient for an inhibitory regulation. 
Therefore, such implicit information provides a possibility to 
deduce more detailed intracellular interaction architectures 
by collecting the information of the distribution of causality 
in the CATs.  

The ISPM postulates all biomolecular species accessible 
for direct perturbations. This requirement cannot however 
always be fulfilled in vivo. To overcome this disadvantage, 
the experiments can be designed among those perturbable 
network nodes. Nevertheless, ISPM is still helpful in 
detecting and validating the existence of feedback loops. In 
addition, we further need to account of the time-delays 
present in biomolecular causal connections to simplify 
analysis. The time-delays are often caused by transcription, 
translation, or post-translational modification in the 
intracellular environment. They may affect the correlation 
analysis, and even can cause a false positive. To resolve this 
problem, we can employ previous works (Adams and Tsien, 
1993; Cho et al., 2006) suggesting some efficient measures. 
The key idea of these studies is shifting one time-series data 
in time axis while keeping the other time-series data fixed. 
When the maximum value of correlation coefficient is 
reached, the pure time-delay can be estimated by the shifting 
time. Therefore, despite all these limitations, the proposed 
method still suggests an efficient way to detect feedback 
loops in intracellular biomolecular network.  
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