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Abstract: Experimental results from a first-order ILC algorithm applied to a large-size six-
degrees-of-freedom commercial industrial robot are presented. The ILC algorithm is based on
measurements of the motor angles, but in addition to the conventional evaluation of the ILC
algorithm based on the motor-side error, the tool-path error on the arm side is evaluated using
a laser-measurement system. Experiments have been carried out in three operating points using
movements that represent typical paths in a laser-cutting application and different choices of
algorithm design parameters have been studied. The motor-angle error is reduced substantially
in all experiments and the tool-path error is reduced in most of the cases. In one operating point,
however, the error does not decrease as much and an oscillatory tool behaviour is observed.
Changed filter variables can give worse error reduction in all operating points. To achieve even
better performance, especially in difficult operating points, it is concluded that an arm-side
measurement, from for example an accelerometer, needs to be included in the learning.

Keywords: Iterative methods, Learning control, Control applications, Industrial robots,
Position control.

1. INTRODUCTION

In many industrial robot applications the same trajectory
is repeated over and over again. In such cases the Iterative
Learning Control (ILC) method is a way to compensate
for repetitive errors. The origin of ILC can be traced back
to a US patent on “Learning control of actuators in control
systems” (Garden, 1971). The first academic contribution
to what today is called ILC is Uchiyama (1978), published
in Japanese. From an academic perspective it was not until
1984 that ILC started to become an active research area,
when Arimoto et al. (1984), Casalino and Bartolini (1984)
and Craig (1984) independently described a method that
iteratively compensated for model errors and disturbances.
The development of ILC stems originally from the robotics
area, and examples of contributions where ILC is applied
in robotics are Arimoto et al. (1984), Bondi et al. (1988),
Guglielmo and Sadegh (1996), and more recent works
like Hätönen et al. (2004) and Butcher et al. (2008).
The ILC research field is covered in surveys, like Moore
(1999), Bristow et al. (2006) and Ahn et al. (2007).

This paper concern a relevant problem in laser cutting,
and the purpose is to present results from experiments
carried out on all six motors of a large-size commercial
industrial robot. The experiments are performed using an
ABB robot with an experimental controller, accomplishing
a small circular movement in three different operating
points. A commercial robot with similar load capacity
(175 kg) is shown in Fig. 1. The robot positions used in the
experiments are relevant for the application and they are
chosen to avoid singularities, where the accuracy degrades.

? This work was supported by the Swedish Research Council (VR).

The ILC algorithm applied to the robot is simple, see
Sec. 3.1, where the choice of ILC algorithm and its design
variables ωn, δ and γ are motivated. The same ILC design
variables are used for all six motors and the learning is
stopped after five iterations. In practice there is little
time for algorithm tuning and a small effort that gives
a substantial error reduction after only a few iterations is
often sufficient. Among the large number of publications
dealing with various aspects of ILC, there are to the best
knowledge of the authors very few publications presenting
results of this kind, i.e., studies where an ILC algorithm is
applied to a real industrial robotic platform. In Longman
(2000) and Elci et al. (2002) ILC is applied to a seven-

Fig. 1. Example of a large-size commercial industrial robot
from ABB Robotics (2007) with similar size as the
robot used in the experiments.
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degrees-of-freedom robot arm, however smaller than the
one used here, and the type of trajectories used in these
experiments are not motivated by any particular applica-
tion. Hakvoort et al. (2008) relies on accurate models of
the robot and controller, which is not necessary here.

2. PROBLEM DESCRIPTION

This paper investigates the possibilities of an ILC algo-
rithm applied onto a commercial robot system. Normally
the motor angles are the only variables that can be mea-
sured in a commercial robot and therefore the algorithm
has to be based on only them. The main purpose of the
paper is to illustrate the difficulties that arise when the
robot is subject to mechanical flexibilities and the ILC al-
gorithm is based on motor-angle measurements only. This
line of reasoning is motivated by a two-mass model of the
dynamics of a single robot joint. Experimental results show
that convergence of the ILC algorithm does not necessarily
mean good performance on the arm side, i.e., the position
and orientation of the robot tool.

2.1 ILC applied to the robot system

Assuming that the mechanical flexibilities are concen-
trated to the robot joints, the simplified linear model of
a single joint, shown in Fig. 2, can be used to explain
the problem. The variable qm(t) denotes the motor angle,
which is the only variable that is measured in commercial
industrial robots. This variable is also used in the ILC
algorithm when computing the update signal. However,
the robot performance on the arm side is determined by
the arm angle qa(t), which is not measured in the system.

τ, qm(t)

qa(t)

Mm

Ma

k, d
rg

fm

Fig. 2. A flexible two-mass model of a single robot joint,
characterised by spring k, damper d, viscous fric-
tion fm, gear ratio rg, moments of inertia Mm, Ma,
torque τ , motor angle qm(t) and arm angle qa(t).

In Sec. 4 it will be illustrated that convergence of the
ILC algorithm and good performance when considering
the motor-side error, calculated by the difference between
motor-angle reference and measured motor-angle, does
not necessarily imply high accuracy of the movement of
the tool. Assuming that correct kinematic and dynamic
models are available, the position and orientation of the
tool could theoretically be derived from the motor angles.
This is however not realistic, since it would require exact
descriptions of phenomena like friction, backlash, motor
torque ripple and nonlinear stiffness in the gearboxes,
together with a complete model of the mechanical flexi-
bilities. A remedy for handling this situation could be
to use additional sensors and estimate the position and
orientation of the tool. In the experiments presented in
this paper the performance of the tool is measured using

the laser-measurement system LTD500 from Leica Geosys-
tems (2007). Since this is an expensive equipment, it is
however only used in special applications, like Gunnarsson
et al. (2006), where measurements are used in the ILC
algorithm. For conventional operation it is preferable to
use additional sensors, like accelerometers, in combination
with signal processing algorithms to obtain accurate esti-
mates of the relevant signals (Norrlöf and Karlsson, 2005).
Future work is to use these estimates in the ILC algorithm.

2.2 General first-order ILC algorithm

The update equation for a general first-order ILC algo-
rithm with iteration-independent operators is given by

uk+1(t) = Q(q)
(
uk(t) + L(q)ek(t)

)
, (1)

where the subscript k denotes iteration number and q is
the time-shift operator. The error

ek(t) = r(t)− yk(t), (2)
is the difference between motor-angle reference signal and
measured motor angle at iteration k. The update equa-
tion (1) implies the standard frequency-domain conver-
gence criterion, see, e.g., Norrlöf and Gunnarsson (2002a),

|1− L(eiω)Tu(eiω)| < |Q−1(eiω)|, ∀ω, (3)
where Tu denotes the transfer function from the applied
ILC input uk(t) to the measured output yk(t). The cri-
terion shows that the filter Q can be used to improve
the robustness of the ILC algorithm. The inequality (3)
can be satisfied by choosing the magnitude of the Q filter
small enough, and it is well known that this will prevent
the final error to be zero, when the ILC algorithm has
converged (Elci et al., 2002).

3. EXPERIMENTS

The ILC algorithm used in the experiments and the robot
conditions are described more extensively. Thereafter the
performance measures on the motor side and the arm side
used in this paper are explained.

3.1 Experimental conditions

The robot is a multivariable system, but for simplicity
the joints will be treated individually with a separate
ILC algorithm for each joint. The algorithm is based
on a heuristic design procedure, described in Norrlöf
and Gunnarsson (2002b), which suggests a linear low-
pass discrete-time Q filter and a linear discrete-time filter
L(q) = γqδ. Note that both filters can be non-causal. The
general ILC algorithm (1) now implies the update equation

uk+1(t) = Q(q)
(
uk(t) + γek(t + δ)

)
. (4)

The design variables in the algorithm (4) are

• Type and order of the Q filter.
• Q filter cutoff frequency ωn.
• Learning gain γ, with 0 < γ ≤ 1.
• Time shift δ of the filter L.

In this paper the design variables ωn and δ and their
influence of the ILC algorithm performance are investi-
gated, while the other design variables remain constant
during the experiments. Q is chosen as a second-order
Butterworth filter, which is applied using the Matlab
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function filtfilt to get a zero-phase behaviour. The L
filter gain γ is 0.9, motivated by the trade-off between
convergence rate and robustness.

During the experiments the robot controller works in par-
allel with the ILC algorithm, i.e., ILC works as a comple-
ment to the conventional system and can be implemented
without modifying the controller. The update uk(t) from
the ILC algorithm (4) is added to the reference signal of
the control system (serial ILC architecture). The same ILC
design variables are applied to all motors and the learning
is stopped after five iterations, because an approach as
simple as possible is desirable, see Wallén (2008).

The experiments are performed in the robot positions
p1 = (1.3166 0.0014 1.5992) ,

p2 = (1.8000 0.1000 1.5992) ,

p3 = (2.2000 0.2000 1.5992) ,

(5)

which correspond to the tool centre point (TCP) positions
in meters, expressed in the robot base frame. The quater-
nion describing the orientation of the tool is identical in
all three positions and all experiments. It is given by

q = (0.6322 0.0353 0.7732 0.0353) . (6)
The robot configurations for the positions (5) can be seen
in Fig. 3. The positions are relevant for the laser-cutting
application because they are chosen to avoid singularities
in the workspace of the robot and chosen not too far away
from the zero pose in order to achieve good accuracy.

Fig. 3. The robot TCP positions (5) used in the experi-
ments; p1 (left), p2 (centre), and p3 (right).

In each position the robot makes circles of radius 5 mm
with velocity v = 40mm/s, using different filters Q and L
to examine the performance and robustness of the ILC
algorithm. In each set of experiments, one of the ILC
design variables δ and ωn varies, while the other remains
constant. In Wallén et al. (2007) similar experiments were
performed and evaluated on the motor side of the robot.
Even though a fairly simple ILC algorithm was used in
that work, it was shown that the reduction of the motor-
angle error was substantial after only five iterations and
the algorithm showed good robustness properties on the
motor side, which is also the case here.

3.2 Performance measures

Motor side The results on the motor side are evaluated
by the norm of the control errors for each iteration, nor-
malised with respect to the largest control error without
ILC for all motors and the experiments compared, as in

Jk,i,j =
‖ek,i,j‖

maxl,m ‖e0,l,m‖
. (7)

The motor angle error (2) is denoted e and the subscripts
i = 1, . . . , 6 is motor number, j is experiment number and
k denotes the iteration. The largest error for motor l in
experiment m when no ILC algorithm is applied (k = 0)
is used as a normalisation constant. One experiment means
that one combination of operating conditions (position) of
the robot and ILC design variables (δ, ωn) is studied. The
error measure (7) is studied using 2-norm and ∞-norm.

Arm side The root mean square (RMS) error on the arm
side for experiment number j at iteration k is

RMSk,j =

√
1
N

∑
n

(
rref − rmeas,k(n)

)2
, (8)

where rmeas,k(n) denotes the radius of the measured circle
for each sample n, and N is the total number of samples
along the circle. The maximum deviation (maxdev) from
the reference circle rref for experiment j at iteration k is
defined as

maxdevk,j = max
n

(
|rref − rmeas,k(n)|

)
. (9)

The error measures (8)–(9) when several experiments j are
compared, are normalised with the experiment m with the
largest error without ILC, according to

RMSk =
RMSk,j

maxm

(
RMS0,m

) , (10)

maxdevk =
maxdevk,j

maxm

(
maxdev0,m

) . (11)

4. EXPERIMENTAL RESULTS

First the results for the “nominal” case, i.e., δ = 3 and
ωn = 10 Hz, are shown for the operating positions (5).
They are compared to the resulting robot performance
in experiments with δ = 6, ωn = 10Hz and δ = 3,
ωn = 15Hz, respectively.

4.1 Performance with respect to operating points

Experiments are performed in the three positions (5) with
the ILC design variables δ = 3 and ωn = 10Hz. First, the
result from experiments in p1 is shown. This position gives
a good learning, as can be seen in Fig. 4, where the circle
measured on the arm side at each iteration is compared to
an ideal reference circle with radius 5 mm. The motor-side
errors are compensated for by the ILC algorithm and the
circle on the arm side, measured by the Leica laser tracker
LTD500, is close to the reference circle after five iterations.

In Fig. 5 the behaviour in the positions (5) on the motor
side is evaluated, using the error measure (7) expressed
in ∞-norm. The error measure (7) expressed in 2-norm
shows a similar appearance, see Wallén et al. (2007). It
is interesting to note that the motor-side errors, i.e., the
difference between reference and measured motor angles,
are reduced in all three positions compared to when no
ILC algorithm is applied. The only exception is motor 2
in position p2, where a slightly increasing behaviour can
be noticed after a few iterations. The low reduction of
the errors for motors 1 and 5 in position p3 is due to a
high-frequency error component, which is above the cutoff
frequency ωn of the Q filter. Adjusting ωn in this position
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Fig. 4. Measured circles on the arm side at every iteration,
compared to an ideal circle. The experiment is per-
formed in position p1 and with ILC design variables
ωn = 10 Hz and δ = 3. The experiment shows a
good behaviour and the measured circle is close to
the reference circle after five iterations.

can give a possibly reduced effect of this disturbance on the
error. However, the conclusion in Fig. 5 is, viewed on the
whole, a decreasing error for all positions at all iterations.

As a comparison, Fig. 6 shows the RMS error (10) and
maximum deviation (11) of the error on the arm side for
the three positions (5). The error measure (7) in 2-norm
on the motor side corresponds to the RMS error on the
arm side. The error measure (7) in ∞-norm on the motor
side, seen in Fig. 5, corresponds to the maximum deviation
of the error on the arm side. Position p1 gives the best
behaviour in Fig. 6, with a decreasing trend in both
RMS error and maximum deviation of the error. This
corresponds well to the result on the motor side, seen in
Fig. 5. Position p2 shows an increasing trend of the errors,
and for position p3, the errors are as large as or even larger
as the errors at the 0th iteration, when no ILC algorithm
is applied. Changing the filter parameters can give a worse
error reduction also in the other positions. These results
show that even though the result on the motor side is good,
it is no guarantee that the performance on the arm side is
improved. There are a number of possible explanations for
the observed behaviour. First, the operating point plays
an important role. A more extended robot makes the
problem harder, because mechanical flexibilities become
more pronounced in a more extended position. The fact
that the arm-side error in point p3 grows during the initial
iteration can be a result of the externally injected ILC
signal, which can excite the flexibilities.
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Fig. 5. The error measure Jk,i,j , see (7), on the motor side
expressed in ∞-norm for all motors i = 1, . . . , 6, three
positions j = p1, p2, p3 and iterations k = 0, . . . , 5.
The experiments are performed with the ILC design
variables ωn = 10Hz and δ = 3 and shows a
decreasing error for all positions.
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Fig. 6. The error measures on the arm side, see (10)–(11);
RMS error and maximum deviation of the error for
positions p1, p2 and p3. In the experiment the ILC
design variables ωn = 10Hz and δ = 3 are used.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13453



4.2 Performance with respect to δ

The robot performance with respect to the time shift δ of
the filter L = γqδ is investigated in experiments performed
in positions p1 and p2. The ILC design variables δ = 3
and 6 and cutoff frequency ωn = 10Hz are used. In Fig. 7
it is seen that δ = 6 gives lower RMS error (10) and
maximum deviation (11) of the error on the arm side.The
corresponding behaviour can also be seen on the motor
side, see Wallén et al. (2007), explained by the fact that
δ = 6 theoretically gives a higher suppression of the error
and thereby a faster convergence.

4.3 Performance with respect to ωn

The robot performance with respect to the cutoff fre-
quencies ωn = 10 and 15Hz has also been investigated.
The experiments have been carried out with δ = 3 in
positions p1 and p2. A similar behaviour can be noticed for
positions p1 and p2, therefore only results for p1 are shown.
When studying the error measure (7) on the motor side
expressed in ∞-norm, see Fig. 8, the errors are reduced for
ωn = 15Hz compared to ωn = 10Hz. It can be explained
by the fact that with a higher cutoff frequency of the
Q filter, a larger part of the error signal is taken into
account in the ILC update equation (4). However, the
corresponding error measures (10)–(11) on the arm side,
shown in Fig. 9, concludes that the actual tool-path error
is increased for ωn = 15Hz compared to ωn = 10Hz.
This is an opposite result compared to Fig. 8, and will
be discussed next.

An oscillatory behaviour on the arm side is noticed, as can
be seen in Fig. 10, where the results from the 0th and 5th
iteration are compared. The only difference between the
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Fig. 7. The error measures on the arm side, see (10)–(11);
RMS error and maximum deviation of the error for
positions p1 and p2. The experiments are performed
with the ILC design variables ωn = 10Hz and δ = 3
and 6. δ = 6 gives lower errors, which is explained by
decreasing energy content in the ILC update signal.
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Fig. 8. The error measure Jk,i,j , see (7), on the motor
side expressed in ∞-norm for all motors i = 1, . . . , 6,
cutoff frequencies ωn = 10 and 15 Hz and iterations
k = 0, . . . , 5. The experiments are performed in posi-
tion p1 with δ = 3. A higher cutoff frequency gives
a better reduction of the control error, but the error
is no longer monotonically decreasing as a function of
iteration.
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Fig. 9. The error measures on the arm side, see (10)–(11);
RMS error and maximum deviation of the error for
position p1. The experiments are performed with the
ILC design variables ωn = 10 and 15 Hz and δ = 3.
Higher ωn gives larger errors on the arm side.
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Fig. 10. Measured circle on the arm side when the experi-
ment is performed in position p1, with the ILC design
variables δ = 3 and ωn = 15Hz. Iteration 0 and 5 are
compared and an oscillatory behaviour is noticed.

cases, is the ILC control signal added. When oscillations
occur on the arm side after a few iterations, they originate
from the ILC update signal uk, applied at iteration k.

The message in this example with varying cutoff frequen-
cies ωn of the Q filter, is that one has to be very careful
when dealing with resonant systems. The ILC algorithm
can increase the oscillations in the system, in particular
when the controlled variable, here the tool position, is not
directly measured and included in the algorithm. It mo-
tivates the need of additional sensors, like accelerometers,
to obtain accurate estimates of the arm-side movements
and use this information in the algorithm.

5. CONCLUSIONS AND FUTURE WORK

A first-order ILC algorithm has been applied on a large-
size commercial industrial robot with six degrees of free-
dom. The operating points represent typical robot con-
figurations in a laser-cutting application. A heuristic ILC
algorithm is used, based on the motor angles, and the same
design variables are used for all six motors for simplicity
reasons. The performance on the arm side is evaluated by
a laser-measurement system and compared to the motor-
side errors. It can be concluded that the tool-path error
is reduced in most cases. However, the ILC algorithm can
increase the oscillations in the resonant system because
the motor angles are used in the algorithm, and not the
actual tool position. To achieve even better performance,
especially in difficult operation points, it is concluded that
arm-side measurements from for example an accelerometer
need to be included in the learning. Future work includes
arm-side measurements combined with signal processing
algorithms to obtain accurate estimates of the actual tool
path. Some works in this direction are presented in Gun-
narsson et al. (2007) and Norrlöf and Karlsson (2005).
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M. Norrlöf and S. Gunnarsson. Experimental comparison of some
classical iterative learning control algorithms. IEEE Trans. Robot.
Autom., 18:636–641, 2002b.

M. Uchiyama. Formulation of high-speed motion pattern of a
mechanical arm by trial. Trans. Soc. Instr. Control Eng., 14(6):
706–712, 1978. Published in Japanese.

J Wallén. On Kinematic Modelling and Iterative Learning Con-
trol of Industrial Robots. Licenciate’s Thesis no 1343, Dept.
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