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Abstract: To reduce shock during transmission gear shift, a Neural Network based torque
observer for vehicle transmission shifting processing modelling is proposed in this paper. The
problem with nonlinear model identification for an excessive number of candidate model terms or
basis functions has been treated, using an Extended Kalman Filtering algorithm. The modelling
of transmission input torque, which is needed by the observer for accurate clutch pressure
estimation, is addressed and implemented using a Radial Basis Function Neural Network
(RBFNN) based observer. A linear combination of model terms, or basis functions of the
RBFNN, which are nonlinear functions of the system variables is identified as a linear-in-the-
parameters model. The resulting observers are validated via off-line simulation tests, as well as
experiment tests at different sampling frequencies on a test vehicle bench, for demonstration
the observer performance and establishment the feasibility of the approach.

Keywords: Neural Networks; Torque Observer; Vehicle Transmission Shifting Modeling,
Vehicle dynamic systems.

1. INTRODUCTION

One of the main functions of a powertrain hydraulic
system is to control the automatic transmission shifting
operations. Achieving a seamless shift under all operat-
ing conditions is important to meet and exceed customer
expectations. A typical powertrain system consists of the
torque converter, planetary gear sets, friction components,
and the hydraulic control system. The operating position
of the control valve dynamically changes, based upon a
force balance of various hydraulic signals against a me-
chanical spring force or a hydraulic pressure externally
controlled by a solenoid. It is known that if clutch torque
and pressures are measured or otherwise estimated in
real time in automatic transmissions, closed-loop con-
trol algorithms can be designed to improve shift quality
(Lin, 1992) and (Masmoudi and Hedrick, 1992). However,
such torque and pressure sensors are usually not used in
production transmissions due to sensor cost and reliability,
as well as difficulty in sensor installation and maintenance
(Watechagit, 2003), (Parvateneni et al., 1999). That it one
of the reasons for why it is very difficult to measure friction
component behaviors such as slip speed and torque in the
powertrain system.

In an investigation of torque estimation for powertrain
shift control, paper (Lai, 1995) concluded that an Artificial
Neural Networks (ANN) approach could be feasible for off-
line modelling of friction component torque dynamics. Pa-
per (Parvateneni et al., 1999) proposed a simple two layer
recurrent neural network with a coupled linear-nonlinear
hidden layer for frictional component dynamics modelling.
While this black-box approach successfully captured the

overall trend of the friction component engagement torque
profiles, it failed to identify some of the important and
detailed dynamic behaviors. The main drawback of the
black-box model is that the known physics of the friction
component is not utilized during the modelling process,
which makes the network training inefficient and induces
poor accuracy.

Instead of directly measuring the pressure output of a
hydraulic actuator, paper of (Slotine et al., 1987) and (Yi
et al., 2000) proposes an indirect alternative to estimate
the pressure output: an observer-based approach. The
main thrust of these papers are that the pressure output of
a hydraulic actuator is ”observable” with the slip velocity
measurement of the mechanical subsystem in a vehicle
power transmission control system. But the complexity
of the hydraulic actuator dynamics does not allow a
physical model amenable to observer design (Montanari
et al., 2004).

The development of a Neural Network (NN) based non-
linear observer to estimate clutch pressure and torque
using speed measurements is presented, along with results
from experimental implementation. The implementation
results using the developed observers are presented for two
sampling frequencies: a high sampling frequency to demon-
strate the performance of the observer when there is less
of a computational limitation imposed on the implemen-
tation, and a low sampling frequency to demonstrate the
feasibility of using the observer on current production ve-
hicles. After the brief description of the dynamic model for
the transmission of interest which is presented in section 2,
the development of a clutch torque observer using the NN
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based approach is presented in section 3, followed by the
development of a turbine torque observer to enhance the
accuracy of the clutch pressure estimation in section 4. The
performance of the observer is evaluated by simulation and
experimental tests, with the experimental results being
shown in section 5. Conclusions and recommendations for
future work are given in section 6.

2. TRANSMISSION MODEL OF A VEHICLE POWER
TRANSMISSION CONTROL SYSTEM

A dynamic model of the transmission with a stiff drive
shaft is considered here since the proposed observer uses
filtered speed signals as inputs, and the effect of a high fre-
quency oscillation from the drive shaft is suppressed. The
transmission components modelled include the torque con-
verter, the transmission mechanical system, which includes
the planetary gear train, the transmission shift hydraulic
system, and the driveline. The engine dynamic model is
not included, experimental engine data being used instead
as input to the transmission model. Note that the torque
converter model used is the widely accepted static model
developed by (Watechagit, 2003), and the coefficients in
the model being chosen depending on measured torque
converter characteristics.

The Transmission model will consider the combined me-
chanical system and driveline. For the simplification only
the dynamic model for the transmission for operation in
the 1-2 power-on up shift is supposed. In the 1st gear,
two clutches, the underdrive clutch (UD) and the second
clutch (2ND), are fully engaged. In the 2nd gear, the two
clutches that are engaged are the UD clutch and the over-
drive clutch (OD). Therefore, the 1st-2nd up shift involves
releasing the 2ND clutch and simultaneously applying the
OD clutch. It is known that two phases are involved during
any gearshift, namely the torque phase and the inertia
phase. Due to space limitations, only the dynamics of the
torque phase are considered.

A vehicle power transmission control system typically con-
sists of two subsystems, a mechanical subsystem and a
hydraulic actuator. The input and output of the system
under consideration are the voltage signal to the hydraulic
actuator and the slip velocity between the friction elements
in the mechanical subsystem, respectively. The hydraulic
actuator drives the friction elements and generates the slip
velocity of the mechanical subsystem according to its pres-
sure output. Figure 1 shows a vehicle power transmission
control system considered in this paper, a torque converter
clutch slip control system. The mechanical subsystem
consists of an engine, a torque converter, an automatic
transmission with planetary gear sets, and wheels with a
final reduction gear. The torque converter clutch generates
friction torque acting upon the engine according to the
hydraulic actuator pressure, which in turn determines the
slip velocity between the engine and the turbine of the
torque converter at a desired target value.

In order to derive a physical model of the mechanical sub-
system, the power transmission at each stage is examined.
At the very first stage, the engine torque is transmitted to
the impeller and is balanced by the reaction torque of the
impeller and the friction torque from the torque converter
clutch. The torque converter amplifies and transmits the
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Fig. 1. A vehicle power transmission control system

impeller torque to the turbine. The turbine torque drives
the automatic transmission system together with the fric-
tion torque of the torque converter clutch, while the driv-
ing load torque of the vehicle provides additional resistive
force. Denoting the slip velocity between the engine and
the turbine as the output of interest (y) results in

dy
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(1)

where Ie is the equivalent rotational inertia of the engine,
Iv the equivalent rotational inertia of the vehicle, ωc the
angular velocity of the engine, ωt the angular velocity the
turbine, Te the engine torque, Tp the impeller torque, Tt

the turbine torque, Tc the friction torque of the torque
converter clutch, Tl the driving load torque, c the equiv-
alent damping constant of the torque converter clutch,
rt the gear ratio of the automatic transmission, rf the
gear ratio of the final reduction, m the friction coefficient
of the torque converter clutch, Ro the outer radius of
the torque converter clutch, Ri the inner radius of the
torque converter clutch and Pc the pressure output of the
hydraulic actuator.
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It is worth noting that the quantities in Equation (1) are
subject to errors; the damping constant is not exactly
known; absence of torque sensors in a commercial vehicle
entails torque estimation errors; the equivalent rotational
inertia of the vehicle varies as the number of passengers
changes, and only a rough bound on the friction coefficient
is available.

3. MODELLING OF A HYDRAULIC ACTUATOR
USING STATE SPACE FORM

A nonlinear mathematical model of the hydraulic actuator
has been obtained in paper of (Watechagit, 2003) using the
Newton’s second law of motion. Although the nonlinear
model in the paper matches the experimental results to a
certain extent, it has some drawbacks when applied to the
observer design problem:

1. The model order is too high (up to 10th order).
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2. The governing differential equations are too stiff to
numerically solve in real-time.

3. There exist numerous unknown parameters that need to
be estimated or tuned in order to obtain reasonable match
between experimental results and model predictions. A
possible alternative is to capture the dynamics essential to
the design of a nonlinear observer and to obtain a lower-
order control-oriented empirical model.

Now suppose the pressure Pc is a second order process,
and could be presented by (Cicci, 1999)

d

dt

[

x2

x3

]

=

[

−a1 1
−a0 0

] [

x2

x3

]

+

[

b1

b0

]

u

Pc (t) = [ 1 0 ]

[

x2

x3

]

+ du

(4)

Combing Equation (1) into this Equation (4) by letting
y1 = x1 and y2 = x2, that is

d

dt
y1 =

d

dt
x1 = −cx1 + fy (x1) − gy (x1) Pc

= −cx1 + fy (x1) − gy (x1) (x2 + du)
(5)

then we have the state space form as:
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(6)

y = [
1 0 0
0 1 0

]x = Cx (7)

where fy(x1) and gy(x1) are defined in Equation (2) and
(3). Generally the nonlinear properties in this state space
Equation (6) are difficult to dear with. Although we can
use the nonlinear observer design algorithm to obtain the
model as studied in the paper of (Yi et al., 2000)and (Li
and Du, 2006), for the nonlinear functions fy(x1) and
gy(x1) in the state matrix A and B in Equation (2), the
calculation approach should be improved and simplified.
Below we introduce a Neural Network method to obtain
the nonlinear observed states.

4. NEURAL NETWORK BASED OBSERVER
MODELLING

Along with the approach proposed in paper (EI-Gindy
and Palkovics, 1993) the Radial Based Function Neu-
ral Network (RBFNN) is introduced here to obtain the
model of the transmission system, as well as the observer
states. The RBFNN-based dynamic system model, such
as pressure-torque or speed-torque model, directly real-
izes a polynomial correlation between the system input
and output, and therefore could significantly improve the
input-output scalability. This feature makes it a great
candidate for deriving controller-design-oriented system
models. This model formulates the pressure-torque cor-
relation as a quadratic form. Therefore, by solving the
2nd-order function realized by the neural network model,
the applied pressure can be easily written as a function of
the torque. In other words, the RBFNN can serve as the

forward and inverse system model at the same time. The
RBFNN-based model could integrate the friction compo-
nents with a pressure-torque model for dynamic system
simulation and transmission shift controller design. These
new features contribute to the improved performance and
trainability over the black-box network (Parvateneni et
al., 1999).

The mathematical equations for the adopted RBFNN
network are realized in Figure 2. It consists of the m-
dimensional input x being passed directly to a hidden
layer. Suppose there are c neurons in the hidden layer.
Each of the c neurons in the hidden layer applies an activa-
tion function which is a function of the Euclidean distance
between the input and an m-dimensional prototype vector.
Each hidden neuron contains its own prototype vector as
a parameter. The output of each hidden neuron is then
weighted and passed to the output layer. The outputs of
the network consist of sums of the weighted hidden layer
neurons. The response of an RBF of the form of Figure 2
can be written as follows:
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(8)

If we are given a training set of M desired input-output
responses {xi; yi} (i = 1; · · · ;M), then we can augment M
equations of the form of Equation (8) as follows:

[ ŷ1 · · · ŷM ] = WH (9)

where W and H are
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In local support networks the approximation is generated
by the neuron forming overlapping bumps which combine
to give the overall mapping. The more neurons used, the
greater the overlap and the smoother the approximation
obtained.

Radial basis networks can be designed with the function
newrbe in Matlab. Figure 3 is its function diagram. This
function can produce a network with zero error on training
samples. The usage of the function is:

net = newrbe(P, T, Spread)

where P - matrix of input vectors; T - target vectors;
Spread - a spread constant.

The function returns a network with weights and biases
such that the outputs are exactly T when the inputs are
P .

In this paper the output of the RBFNN model was the fric-
tion component torque. The inputs for this model included
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Fig. 2. RBF network with Gaussian basis functions

 
Fig. 3. Matlab expression for a neuron in RBF network

slip speed, applied pressure, as well as one-time-step and
two-time-step delayed output torques. This RBFNN net-
work configuration with feedback loop made the resultant
model a dynamic system. The nonlinear neuron in the hid-
den layer was added to help capturing the strongly nonlin-
ear correlation between the output torque and the applied
pressure. The output neuron adopted a linear activation
function. The sigmoid function could also be chosen as the
activation function for the nonlinear hidden layer neurons.
Because Kalman filter training provides about the same
performance as gradient descent training, but with only
a fraction of the computational effort (Simon, 2002), We
can use Kalman filtering to minimize the training error
for Equation(9). Derivations of the extended Kalman filter
to train the network are widely available in the litera-
ture (Isabelle and Leon, 1998)(Yang et al., 2007). The
Extended Kalman Filtering algorithm used for training
the Network now is adopted and listed below.

In general, we can view the optimization of the weight
matrix W in (10)and the prototypes vj in (11) as a
weighted least-squares minimization problem, where the
error vector is the difference between the RBF outputs and
the target values for those outputs, as in Equation (9).
For using the RBF network of Figure 2 with m inputs,
c prototypes, and n outputs to model the system as in
Equation (6), we use y to denote the target vector for the

RBF outputs, and h(θ̂k) to denote the actual outputs at
the kth iteration of the optimization algorithm.

y = [ y11 · · · y1M · · · yn1 · · · ynM ]
T

(12)

Note that the y and ŷ vectors each consist of nM ele-
ments, where n is the dimension of the RBF output and

M is the number of training samples. In order to cast
the optimization problem in a form suitable for Kalman
filtering, we let the elements of the weight matrix W and
the elements of the prototypes vj constitute the state of
a nonlinear system, and we let the output of the RBF
network constitute the output of the nonlinear system
to which the Kalman filter is applied. The state of the
nonlinear system can then be represented as

θ =
[

wT
1 wT

2 · · ·wT
n vT

1 · · · vT
c

]T
(13)

The vector θ thus consists of all (n(c + 1) + mc) of the
RBF parameters arranged in a linear array. The nonlinear
system model to which the Kalman filter can be applied
thus could be derived as a standard NARX model as
follows (Li and Li, 2008).

For a general nonlinear discrete-time dynamic system

y(t) = F (y(t − 1), ..., y(t − ny), u(t − 1), ..., u(t − nu))
= F (x(t))

(14)

where u(t) and y(t) are the system input and output vari-
ables at sample instant t , nu and ny are the corresponding
maximal lags, x(t) = [y(t−1), ..., y(t−ny), u(t−1), ..., u(t−
nu)]T represents the model ’input’ vector, and F (•) is some
unknown nonlinear function.

Suppose a linear-in-the-parameter model is used to repre-
sent system (14) such that

y(t) =
n

∑

i=1

θiϕi(x(t)) + ε(t), t = 1, . . . ,N (15)

where ϕi(•), i = 1, ..., n are all candidate model terms
which are nonlinear or basis functions, and ε(t) is the
model residual sequence.

Suppose N data samples {x(t), y(t)}N
t=1 are used for model

identification. Equation (15) can then be formulated as (Li
and Li, 2008):

y = ΦΘ + Ξ (16)

where Φ = [ϕ1, ϕ2, .., ϕn] ∈ ℜN×n,

ϕi = [ϕi(x(1)), ϕi(x(2)), ..., ϕi(x(N))]T ∈ ℜN , i = 1,...,n,

yT = [y(1), · · · , y(N)] ∈ ℜN ,

ΞT = [ε(x1), ε(x2), ..., ε(xN )] ∈ ℜN ,

Θ = [θ1, θ2, .., θn]T ∈ ℜn.

Note that Φ is also called the regression or observation
matrix.

Comparing with standard Kalman Filter equation (Ljung,
1999), we have

xk+1 = F (k)xk + w(k)
yk = H(k)xk + v(k)

(17)

by considering Equation (2) and (3), that is (Ljung, 1999):

Θk+1 = Θk (= Θtrue)
yk = ϕT

k (xk)Θk + v(k), k = 1, . . . ,N
(18)

then we have F (k) ≡ I and H(k) = ϕT
k , with

Ew(k)wT (k) = 0 = R1(k)
Ev(k)vT (k) = R2(k)

(19)
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The more detail about the calculation of the Kalman filter
algorithm to train the Neural Network could be found as
in paper (Yang et al., 2007) and (Isabelle and Leon, 1998).

5. SIMULATION EXPERIMENTS AND FIELD TEST
RESULTS

The simulation for the transmission system is based on the
parameters from paper (Lai, 1995). The implementation
results using the developed observers are presented for
two sampling frequencies: a high sampling frequency 1kHz
to demonstrate the performance of the observer when
there is less of a computational limitation imposed on
the implementation, and a low sampling frequency to
demonstrate the feasibility of using the observer on current
production vehicles.

The network begins with no hidden units, and as ob-
servations are received, new hidden units are added by
taking some of the input data. The network is trained
using the EKF approach. Figure 4 is the modelling result
for long time shifting performance with a sample time 1
millisecond, the data coming from the simulation on Timp

for impeller Torque and Ttub for turbine Torque. Figure
5 is its slip torque process curves,where Teng for Engine
torque. Figure 6 is the detailed dynamic process for the
demonstration. Note that for the sake of the space, only
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Fig. 6. Matlab Modelling for a fast sample Shifting Process

Timp, the impeller torque, and Tturb, the turbine torque are
outlined as the outputs under the inputs ωeng and ωturb

from the simulation. The results showed that the proposed
approach using a RBFNN consisting of a single hidden
layer of radial basis functions and a linear output neuron
can approximate arbitrarily well any bounded continuous
function.

Figure 7 is the field test data curves for shifting process,
where different sampling frequencies are tested on a vehicle
test bench. By the same way from the simulation, the
transmission system models are obtained. Figure 8 is
the pressure curve from the real shifting process at high
sample frequency. This process is of a second order system
property. Figure 9 is the initial modelling for partially data
results with slow sample frequency. The inputs there are
vimp and Timp, and the outputs are Pc and Ttub. For the
sake of the clarifying, only first 1000 points are selected
from Figure 7. The identified observer model curves are
little different from the original data curves because of
the complex of the system. These implementation results
show that the NN based observer is able to predict clutch
pressures as well as the turbine torque with a reasonable
degree of accuracy. One of the observer model for the linear
part system is given as follows.

Â =

[

.9981 .0094 .3394

.0005 .0015 .0310

.0014 .0096 .9407

]

; B̂ =

[

0.3 131.9
0 216.1
0 222

]

;

Ĉ =

[

−.1092 0.2953 −.2204
−.2983 −.1023 −.4905

]

; D̂ =

[

6 5573
3 5509

]

6. CONCLUSIONS AND FUTURE WORK

A NN-based observer for the simultaneous estimation of
clutch pressure and transmission input torque with tur-
bine torque for an automatic transmission processing is
presented. The implementation results using the developed
observers are presented for two sampling frequencies: a
high sampling frequency to demonstrate the performance
of the observer when there is less of a computational
limitation imposed on the implementation, and a low sam-
pling frequency to demonstrate the feasibility of using the
observer on current production vehicles. The implemen-
tation results show that the observer is able to predict
clutch pressures as well as the turbine torque with a
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reasonable degree of accuracy. Evaluation and refinement
of the observer design for a greater variety of gear shifts
and for a wider range of transmission operating conditions
is warranted.
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