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Abstract: This paper considers the problem of robust guaranteed cost controller design for a class of 
nonlinear systems subject to time-varying and norm-bounded uncertainties in both state and input matrices. 
The Takagi-Sugeno (T-S) fuzzy model is employed to approximate the uncertain nonlinear system. Then, 
two different design procedures of optimal robust guaranteed cost controller are developed by using 
parallel distributed compensation (PDC) scheme and piecewise Lyapunov function (PLF) approach, 
respectively. And it is shown that all solvability conditions for the above problem can be converted into a 
standard linear matrix inequality (LMI) problem. The final numerical example is given to illustrate the 
effectiveness of the design procedures. In addition, the results obtained by PLF method are relatively less 
conservative. 

 

1. INTRODUCTION 

During the last two decades, fuzzy technique has been widely 
and successfully used in nonlinear system modelling and 
control. Among various fuzzy modelling methods, the well-
known Takagi-Sugeno (T-S) fuzzy model (Takagi and 
Sugeno, 1985) is recognized as a popular and powerful tool 
in approximating a complex nonlinear system. As a result, 
the study of T-S fuzzy system has attracted ever-increasing 
interest of numerous investigators and various techniques 
have been developed for stability analysis and controller 
design of T-S fuzzy system (e.g. Tanaka and Sugeno, 1992; 
Wang et al., 1996; Kim and Lee, 2000; Park et al., 2001; 
Ding et al., 2006, and references therein). In their researches, 
a nonlinear system is represented by a family of local linear 
models smoothly connected through nonlinear fuzzy 
membership functions. Then, a model-based fuzzy controller 
stabilized the T-S fuzzy model is presented in terms of linear 
matrix inequalities (LMIs) (Boyd et al., 1994), which can be 
easily solved by using existing tools such as the LMI 
Toolbox in Matlab (Gahinet et al., 1995). 

Recently, the T-S fuzzy model approach has been extended to 
deal with the uncertain nonlinear systems. Since parameter 
uncertainties are frequently one of the causes of system 
instability and system performance degradation, different 
robust stability and stabilization methodologies have been 
proposed (e.g. Chen et al., 1999; Teixeira and Zak, 1999; Lee 
et al., 2001; Tong and Li, 2002; Lee et al., 2005). However, 
in many practical applications, it is desirable to design a 
controller which not only stabilizes the system, but also 
achieves satisfactory performance. One solution to this 
problem is the so-called guaranteed cost control method 
(Chang and Peng, 1972). This method aims at stabilizing the 
system while providing an upper bound on a given quadratic 
performance index. Based on this idea, many significant 
results have been obtained (Shi et al., 2003; Wu and Cai, 
2004; Chen and Liu, 2005; Boukas, 2006; Chen et al., 2007). 

In above investigations, the stability condition of fuzzy 
systems is obtained from Lyapunov’s direct method and the 
controller design is based on the parallel distributed 
compensation (PDC) scheme (Wang et al., 1995). This 
method is required to find a common symmetric positive 
definite matrix P satisfied the Lyapunov equation for all local 
linear models. In many cases, it is difficult to find such a 
matrix, especially when the number of fuzzy rules is very 
large. Moreover, in a certain sense, this method may lead to a 
conservative result. Zhang et al. (2001) presented a method 
of stability analysis and systematic design for fuzzy control 
systems via the piecewise Lyapunov function (PLF) approach 
(Wicks et al., 1994). In this approach, the single positive 
definite matrix will be replaced by a set of positive definite 
matrices. The local controller is designed for each local 
model separately. Then the global fuzzy controller can be 
composed of a set of local controllers with corresponding 
energy functions, and the stability of the global fuzzy system 
is ensured via PLF. So far, to the best of our knowledge, the 
robust guaranteed cost controller designed via PLF approach 
for uncertain fuzzy systems has not been fully investigated 
yet. 

In this paper, attention is focused on the comparison of 
optimal robust guaranteed cost controller designed by PDC 
scheme and PLF approach, respectively. The system under 
consideration is approximately expressed by a set of T-S 
fuzzy models in the presence of norm-bounded and time-
varying uncertainties. The gains of robust guaranteed cost 
controller are derived by the numerical solutions of a set of 
coupled LMIs. The last simulation results show that the 
robust guaranteed cost controller designed by these two 
methods can both stabilize the closed-loop uncertain fuzzy 
system and make the upper bound on the value of the given 
quadratic performance as small as possible. Further, the PLF 
approach is proved to provide a relatively less conservative 
result. 
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Throughout this paper, the following notions will be used: 
 denotes -dimensional Euclidean space,  is the set 

of all  real matrices. 
nℜ n mn×ℜ

mn × I  represents identity matrix of 
appropriate dimension. ∗  stands for the transposed elements 
in the symmetric positions of a symmetric matrix, the 
superscript “ ” denotes the transpose for vectors or matrices. 
Functional  represents the trace of a square matrix, 
and  denotes the mathematical expectation operator. 

Τ
)(⋅Trace

}{⋅E

2. PROBLEM FORMULATION 

Consider a class of uncertain nonlinear systems described by 
the following T-S fuzzy model with parameter uncertainties: 

:  RulePlant  i  
ippi MtzMtz   is  )(  and    and    is  )(  IF 11 L  

. , ,2 ,1   , )0(            
, )())(()())(()(  THEN

0 rixx
tutBBtxtAAtx iiii

L

&

==
Δ++Δ+=

           (1) 

where  is the state vector,  is the initial vector, 
 is the control input vector.  are 

the premise variables, which are the functions of state 
variables.  are fuzzy sets, 

ntx ℜ∈)( 0x
mtu ℜ∈)( )( , ),( ),( 21 tztztz pL

) ,  ,2 ,1( pjMij L= r  is the number 
of IF-THEN rules.  and  are real constant matrices with 
appropriate dimensions,  and  are uncertain 
matrices representing time-varying parameter uncertainties in 
the system model and are assumed to be norm bounded of the 
following form: 

iA iB
)(tAiΔ )(tBiΔ

]   )[()](   )([ biaiiii EEtFDtBtA =ΔΔ , .       (2) ri ,  ,2 ,1 L=

where ,  and  are real constant matrices with 
appropriate dimensions, which represent the structure of 
uncertainties. And  is an unknown time-varying 
matrix function with Lebesgue measurable elements and 
satisfies 

iD aiE biE

βα×ℜ∈)(tF

. )()( ItFtF ≤Τ                                    (3) 
Using weighted average method for defuzzification, the final 
output of the fuzzy system is inferred as follows: 

∑
=

Δ++Δ+=
r

i
iiiii tutBBtxtAAtzhtx

1

)]())(()())())[((()(& .     (4) 

where  and )](z , ),(z ),([)( 21 tttztz pL=
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= r
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jiji tzMtz
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in which  is the grade of membership of  in the 
fuzzy set . 

))(( tzM jij )(tz j

ijM

In general, it is assumed that 0))(( ≥tziμ ,  and 

. 

ri ,  ,2 ,1 L=

0))((
1

>∑
=
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i
i tzμ Therefore, ,  and 
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∑
=

=
r

i
i tzh

1

1))((

For brevity, the functions  will be replaced by  in 
the subsequence. 

))(( tzhi ih

For the uncertain fuzzy system (4), the quadratic performance 
cost function is considered as follows: 

∫
∞

ΤΤ +=
0

)]()()()([ dttRututQxtxJ .                    (5) 

where  and  are given symmetric positive definite 
matrices. 

Q R

Associated with the cost function (5), the definition of robust 
guaranteed cost control law is given by 

Definition 1: Consider the uncertain fuzzy system (4) and the 
cost function (5), if there exist a control law  and a 
positive scalar  such that, for all admissible uncertainties, 
the closed-loop fuzzy system is robustly stable and the 
closed-loop value of the cost function (5) satisfies , 
then  is said to be a guaranteed cost and  is said to be 
a robust guaranteed cost control law. 

)(tu∗

∗J

∗≤ JJ
∗J )(tu∗

The objective of this paper is to develop a procedure to 
design a state feedback robust guaranteed cost controller via 
PDC scheme and PLF approach, respectively. Meanwhile, a 
guaranteed cost  is found as small as possible such that the 
closed-loop uncertain fuzzy system is robustly stable and the 
closed-loop value of the cost function (5) satisfies  for 
all admissible uncertainties. 

∗J

∗≤ JJ

Before moving on, a Lemma is first introduced which is 
useful in the proof of the following sections. 

Lemma 1: (Xie 1996) Given matrices Y , D ,  of 
appropriate dimensions and with Y  symmetric, then the 
inequality  holds for all F  satisfying 

E

0<++ ΤΤΤ DFEDFEY
IFF ≤Τ  if and only if there exists a scalar 0>ε  such that  

the equality  holds. 01 <++ Τ−Τ EEDDY εε

3. ROBUST GUARANTEED COST CONTROLLER 
DESIGN 

3.1  PDC Scheme 

In this section, the concept of PDC is introduced to construct 
robust guaranteed cost controller. Suppose that the system 
state is available for feedback, then the rule for controller is 
illustrated as follows: 

:  Rule  Controller i  
ippi MtzMtz   is  )(  and    and    is  )(  IF 11 L  

ritxKtu i  , ,2 ,1     ),()(  THEN L== .                     (6) 

where  are state feedback gain matrices to be 
determined. The overall fuzzy controller is represented by 

nm
iK ×ℜ∈

∑
=

=
r

i
ii txKhtu

1

)()( .                                (7) 

Thus, the closed-loop fuzzy system can be obtained by 
substituting (2) and (7) into (4). 

∑∑
= =

Λ=
r

i

r

j
ijji txhhtx

1 1

)()(& , .                  (8) 0)0( xx =
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where . ))(( jbiaiijiiij KEEtFDKBA +++=Λ

In the following, a sufficient condition for the existence of 
state feedback robust guaranteed cost controller of the 
uncertain fuzzy system (4) is presented. 

Theorem 1: Consider the uncertain fuzzy system (4) and the 
cost function (5), if there exist a symmetric positive definite 
matrix P  and matrices , , such that for all 
admissible uncertainties  satisfying equation (3), the 
following matrix inequalities hold. 

iK ri ,  ,2 ,1 L=

)(tF

0<Λ+Λ++ ΤΤ PPRKKQ iiiiii , ,                    (9) ri ,  ,2 ,1 L=

0)()(2 <Λ+Λ+Λ+Λ+++ ΤΤΤ PPRKKRKKQ jiijjiijjjii , 
rjiji  , ,2 ,1 ,  , L=< .                            (10) 

Then, the state feedback control law (7) is a robust 
guaranteed cost control law and the corresponding cost upper 
bound satisfies 

00 PxxJJ Τ∗ =≤ .                               (11) 

Proof: First, the Lyapunov function candidate is chosen as 

)()())(( tPxtxtxV Τ= .
where P  is a symmetric positive definite matrix. Obviously, 
it follows from P  that . 0))(( >txV

If the conditions (9) and (10) hold, then the time derivative of 
 along the trajectory of the closed-loop fuzzy system 

(8) is derived by 
))(( txV
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Therefore, the closed-loop fuzzy system (8) is robustly stable. 
Furthermore, according to the system stability, the cost upper 
bound (11) can be achieved by integrating both sides of the 
above inequality from 0 to ∞. 

00))(())0(( PxxxVxVJ Τ≤∞−< . 

Remark 1: Note that the cost upper bound (11) obtained in 
Theorem 1 depends on the initial condition  of the 
uncertain fuzzy system (4). While in practice, this initial 
condition is difficult to be accurately determined. To 
overcome this disadvantage, it is assumed that the initial state 

 is a zero mean random variable satisfying . 
Hence, the cost upper bound (11) can be rewritten as 

0x

0x IxxE =Τ }{ 00

)(}{}{ 00 PTracePxxEJEJ =≤= Τ .                (12) 

To obtain controller gains, the conditions (9) and (10) can be 
transformed into a feasibility problem of a set of LMIs. 

Theorem 2: Consider the uncertain fuzzy system (4) and the 
cost function (5), if there exist a scalar 0>ε , a symmetric 
positive definite matrix X  and matrices , iY ri ,  ,2 ,1 L= , 
such that the following LMIs are satisfied. 

0

00
0

1

1 <

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
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−

−
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I

i
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ii

ε
, ri ,  ,2 ,1 L= ,              (13) 
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⎣
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I
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i

ji
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jiij

ε
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, 

rjiji  , ,2 ,1 ,  , L=< .                           (14) 
where , ΤΤΤΤ ++++=Ω iiijjiiiij DDBYYBXAXA ε jbiaiij YEXE +=Ψ . 
Then, the closed-loop uncertain fuzzy system (8) with 
controller gains , 1−XYi ri ,  ,2 ,1 L= , is robustly stable. And 
the related cost function satisfies 

)( 1−∗ =≤ XTraceJJ .                       (15) 
Proof: According to Lemma 1 and Schur complement, the 
conditions (9) and (10) can be reduced to the LMIs (13) and 
(14), respectively, by denoting 1−= PX  and XKY ii = , 

ri ,  ,2 ,1 L= . 

Remark 2: From the deduction of Theorem 2, it provides a 
parameterized representation of a set of robust guaranteed 
cost controllers. This important advantage can be exploited to 
design optimal robust guaranteed cost controller, which 
minimizes the upper bound of the cost function for the 
closed-loop uncertain fuzzy system (8). In this case, the 
optimization problem of robust guaranteed cost controller can 
be formulated as follows: 

)(     
,,

STracemin
iYXε

                                       (16) 

. 0   (ii)             

, (14)  and  (13)   (i)         ..

>⎥
⎦

⎤
⎢
⎣

⎡
XI
IS

ts
 

Proof: On one hand, the condition (i) ensures the robust 
stability of the closed-loop uncertain fuzzy system (8). On the 
other hand, it follows from Schur complement that the 
constraint (ii) is equivalent to . Therefore, the 
minimization of  implies the minimization of the 
cost upper bound in (15). 

01 >> −XS
)(STrace

3.2  PLF Approach 

Different from the above section, the local controller is 
designed for each local model separately. Then the global 
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fuzzy controller is consisted of a set of local controllers with 
associated Lyapunov energy functions, and the stability of 
the global fuzzy system is guaranteed via the PLF approach. 

Based on the fuzzy model (1), the  state subspace is 
defined by 

thi

} , , ,2 ,1 )),(())((  )({ ikrktxhtxhtxS kii ≠=≥= L .      (17) 

where  is a partition of the state space. } , , ,{ 21 rSSS L

And the characteristic function of  is given as follows: iS

⎩
⎨
⎧

∉
∈

=
i

i
i Stx

Stx
)(     ,0
)(      ,1

η , and .                  (18) ∑
=

=
r

i
i

1

1η

If the fuzzy system (1) is local controllable, i.e., , 
, are controllable pairs, then for the  local 

model, the local control law is 

),( ii BA
ri ,  ,2 ,1 L= thi

)()( txKtu i= , .                         (19) iStx ∈)(

Thus, the closed-loop subsystem defined on the subspace  
is inferred as follows: 

iS

)()( txtx iΛ=& , .                         (20) iStx ∈)(

where . ))(( ibiaiiiiii KEEtFDKBA +++=Λ

Similar to the procedure of robust guaranteed cost controller 
design in the previous section, if the following matrix 
inequalities hold by selecting Lyapunov function as 

,  in each subspace, then the local 
model (20) is robustly stable and the local control law (19) is 
robust guaranteed cost control law. 

)()())(( txPtxtxV ii
Τ= iStx ∈)(

0<Λ+Λ++ ΤΤ
iiiiii PPRKKQ , .             (21) iStx ∈)(

In order to analyze the stability of the global fuzzy system 
constructed by 

∑
=

Λ=
r

i
ii txtx

1

)()( η& .                               (22) 

the idea of PLF approach will be introduced in the following. 

As all known, even if the Lyapunov functions are designed 
for each subspace individually, it is still needed to impose 
some restrictions on the control law to guarantee the stability 
of the systems. Accordingly, the objective of this section is to 
design a control law such that there exists a Lyapunov 
function that is non-increasing in sequential actions and also 
is non-increasing over each subspace. 

Theorem 3: Consider the global fuzzy system (22) and the 
cost function (5), under the assumption that , 

, 
),( ii BA

ri ,  ,2 ,1 L= are local controllable pairs, if there exist a set of 
symmetric positive definite matrices  iP and matrices  
defined in (19), , 

iK
ri ,  ,2 ,1 L= satisfy the matrix inequalities 

(21) for all admissible uncertainties  )(tF satisfying equation 
(3), then the global fuzzy system (22) is robustly stable with 
guaranteed cost performance. Furthermore, the corresponding 
cost upper bound is 

00 xPxJJ Τ∗ =≤ , }max{ iPP = , .        (23) ri ,  ,2 ,1 L=

Proof: The Lyapunov function candidate is constructed as 
follows: 

∑∑
==

ΤΤ =⎟⎟
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⎞
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⎝

⎛
==

r

i
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r

i
ii txVtxPtxtPxtxtxV

11

))(()()()()())(( ηη . 

where  is the solution of inequality (21) and iP

)()())(( txPtxtxV ii
Τ= , , .            (24) iStx ∈)( ri ,  ,2 ,1 L=

It is easy to acquire that  from the above 
construction of  . Due to the discontinuous property of 
PLF, the right and left-hand derivatives of , which 
define at the right and left of the discontinuous point of 

 respectively, are required to be ensured at the same 
time. Thus, 

0))(( >txV
))(( txV

))(( txV

))(( txV
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Then, the relations below are true from (24) and (21). 

0)())(()())(())(( <−−<Λ+Λ= ΤΤΤΤ txRKKQtxtxPPtxtxV iiiiiii
& . 

Thereby,  is satisfied, i.e., the global fuzzy system 
(22) is robustly stable. 

0))(( <txV&

In addition, the cost upper bound (23) is fulfilled by 
integrating both sides of the above inequality from 0 to ∞. 

Remark 3: For the Lyapunov function , )()())(( txPtxtxV ii
Τ=

iStx ∈)( , the selection of state feedback gain K  in the 
control process will be reduced to the following cases: 

⎪
⎩

⎪
⎨

⎧

∈>

∈<
∈

=

. )(    ))(())((     ,
, )(    ))(())((      ,

, )(      ,

jijij

jijii

ii

SStxandtxVtxVK
SStxandtxVtxVK

StxK
K

I

I       (25) 

Next, the LMI-based feasible solutions to the robust 
guaranteed cost controller and its convex optimization 
problem are presented, respectively. 

Theorem 4: Consider the global fuzzy system (22) and the 
cost function (5), if there exist a scalar 0>ε , a symmetric 
positive definite matrix X  and matrices , iY ri ,  ,2 ,1 L= , 
satisfying the following LMIs for all admissible uncertainties 

 )(tF satisfying equation (3). 

0

00
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1

1 <

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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−
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−
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QX

IYEXE
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i

ibiiai

i

ε
.           (26) 

where . Then, the global 
fuzzy system (22) with controller gains , 

ΤΤΤΤ ++++=Ω iiiiiiiii DDBYYBXAXA ε
1−XYi ri ,  ,2 ,1 L= , is 

robustly stable. And the related cost function satisfies 

)( 1−∗ =≤ XTraceJJ , }max{ 11 −− = iXX , .    (27) ri ,  ,2 ,1 L=
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Remark 4: The optimal solution of robust guaranteed cost 
controller can be solved by the following optimization 
problem. 

)(     
,,

STracemin
iYiXε

                                      (28) 

. 0   (ii)          

, (26)    (i)      ..

>⎥
⎦

⎤
⎢
⎣

⎡

iXI
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ts
 

4. NUMERICAL EXAMPLE 

In this section, the above-mentioned methods will be applied 
to a nonlinear mass-spring-damper system (Tanaka et al., 
1996). The state-space model of this system can be 
represented as 

. )()(
, )()(67.0)(02.0)()()(

12

3
2211

txtx
tutxtxtxtctx

=
+−−=

&

&
            (29) 

where  is the uncertain term and satisfies)(tc ]0  ,225.0[)( −∈tc . 

It is assumed that  and ]5.1  ,5.1[)(1 −∈tx ]5.1  ,5.1[)(2 −∈tx . 
Then two fuzzy rules in the form of (1) will be used to 
illustrate the system (29). 

:1  RulePlant   , 11   is  )(  IF Mtx
, )())(()())(()(  THEN 1111 tutBBtxtAAtx Δ++Δ+=&  

:2  RulePlant   , 21   is  )(  IF Mtx
, )())(()())(()(  THEN 2222 tutBBtxtAAtx Δ++Δ+=&  

where the system parameters are given by 

⎥
⎦

⎤
⎢
⎣

⎡ −−
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02.01125.0

1A , , , 

, , . 

⎥
⎦
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⎢
⎣
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⎦

⎤
⎢
⎣

⎡
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0
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⎥
⎦

⎤
⎢
⎣

⎡−
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0
1125.0

21 DD [ ]0121 == aa EE 021 == bb EE

The membership functions as well as the weighted matrices 
of the cost function are chosen as follows: 

25.2
)(1))((

2
2

21
txtxh −= , 

25.2
)(

))((
2
2

22

tx
txh = . 

⎥
⎦

⎤
⎢
⎣

⎡
=

I
I

Q
0

0
, . 1=R

In order to be convenient for analysis and comparison 
between the results obtained by PDC scheme and PLF 
approach, respectively, the gains of robust guaranteed cost 
controller (RGCC) and the corresponding upper bound  of 
the cost function are listed in Table 1, which are achieved by 
solving the relevant LMIs. 

J

From Table 1, it can be seen that the cost upper bound 
obtained by PLF approach are relatively less conservative 
than those by PDC scheme. 

In the following, the simulation results of optimal robust 
guaranteed cost control will be given in Fig. 1 (a) and (b) 
with the initial condition . To show difference 
between two methods discussed in this paper, the response of 
the identical state variable will be described in one figure. 
From these figures, it can be seen that the controller designed 

respectively by PDC scheme and PLF approach can both 
robustly stabilize the uncertain fuzzy system. In addition, the 
system controlled by PLF approach takes shorter time to 
converge to zero than it controlled by PDC scheme. 

Τ−= ]10[0x

Table 1.  The results comparison between PDC 
scheme and PLF approach 

 RGCC Gains J  
Theorem 

2 
]2439.66124.6[1 −−=K , 
]4350.61243.7[2 −−=K . 3626.19=∗J .

Theorem 
4 

]7970.16536.2[1 −−=K , 
]6414.09905.1[2 −−=K . 7469.9=∗J .

 Optimal RGCC Gains J  
Remark 

2 
]1088.13502.2[1 −−=K , 
]0999.13555.2[2 −−=K . 6726.5=∗J .

Remark 
4 

]0178.17436.1[1 −−=K , 
]3039.02726.1[2 −−=K . 6002.3=∗J .

 

 

(a)  The response of state variable  1x

 

(b)  The response of state variable  2x

Fig. 1. The state response curves of optimal robust 
guaranteed cost control 
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5. CONCLUSIONS 

In this paper, the problem of robust guaranteed cost controller 
design is studied for a class of uncertain nonlinear systems. 
Based on the T-S fuzzy model, the gains of robust guaranteed 
cost controller are obtained by using PDC scheme and PLF 
approach, respectively. In addition, a LMI-based convex 
optimization problem is introduced to design optimal robust 
guaranteed cost controller which minimizes the upper bound 
of the quadratic performance cost. Finally, a numerical 
example is given to demonstrate the effectiveness of the 
proposed method and it is proved that the results achieved by 
PLF approach are less conservative than the ones by PDC 
scheme. 
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