
Robust H
∞ control of hysteresis in a

piezoelectric stack actuator ⋆

Ning Chuang∗ Ian R. Petersen∗∗

∗,∗∗School of Information Technology and Electrical Engineering,
University of New South Wales at the Australian Defence Force

Academy, Canberra ACT 2600, Australia (e-mail:
ning.chuang@adfa.edu.au, i.r.petersen@gmail.com)

Abstract: This paper describes a method for controlling a piezoelectric stack actuator with
hysteresis nonlinearity. The actuator used is a high-performance monolithic multilayer piezo
actuator. The proposed control method involves a circuit, which was built with a capacitor in
series with the piezo actuator to provide a measured output voltage which is proportional to
the charge on the piezo actuator. The controller is designed based on a model of the hysteresis
nonlinearity constructed using experimental data. The paper considers a robust H∞ tracking
controller to control the piezoelectric actuator. The controller is designed using an uncertain
system model. Simulation results show that the controller can significantly reduce the effect of
the hysteresis nonlinearity.
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1. INTRODUCTION

This paper considers the control of a piezoelectric stack
actuator (PEA) and shows how the hysteresis nonlinearity
can be controlled using robust H∞ control. The piezoelec-
tric stack actuator used was a P-882.51 manufactured by
PI in Germany. Piezoelectric stack actuators have impor-
tant applications to Atomic Force Microscopes and Nano-
positioning systems; e.g., see Croft et al. (2000), Leang
and Devasia (2006), Goldfarb and Celanovic (1997), and
Sebastian and Salapaka (2005). A number of previous
papers have considered the modeling of piezoactuators to
account for properties such as creep and hysteresis; e.g., see
Ru and Sun (2005), Jung et al. (2001), and Banning et al.
(2001). In the paper (Croft et al. (2000)), the application
of piezoelectric actuators to scanning probe microscopy
was considered, and a model-based inversion control tech-
nique was developed. This paper showed that substantial
improvements in positioning precision and operating speed
could be obtained. However the method relied on having
an accurate model of the nonlinearity.

With the rapid development of nano-positioning and AFM
applications for piezoelectric actuators, the control of such
actuators has become an important topic. A significant
challenge in the use of piezoelectric actuators in such an
application is the existence of hysteresis which limits the
accuracy of position control. This motivates us to utilize
robust H∞ control theory, to control piezoelectric actuator
systems with hysteresis nonlinearity.

Our approach to the control of hysteresis in a piezoelectric
actuator is adapted from the charge control method, such
as can be found in Salah et al. (2007) and Moheimani and
Vautier (2005). In these papers, it was noted that the
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use of charge control could lead to reduced hysteresis in
a piezoelectric stack actuator. One difference between our
approach and the approach of Adriaens et al. (2000) is
that no mechanical measurement was used in our piezo-
electric actuator control system. Our control system was
configured by connecting an external capacitor in series
with the piezo actuator and measuring the voltage across
this capacitor which is proportional to the charge in the
piezoelectric stack actuator; see also Salah et al. (2007).

The method we used for modeling the piezoelectric actu-
ator is derived from the approach of the paper Adriaens
et al. (2000), in which a nonlinear model of the hysteresis
voltage versus the charge was proposed. There was very
good agreement between our model and experimental test
data which was obtained using a dSpace DSP system. We
also designed a robust H∞ controller to control the effect
of hysteresis in this stack actuator. The method used for
designing our controller was obtained from the approach
of Xie et al. (1992) and Xie and de Souza (1992). In order
to apply this approach we treat the hysteresis as a sector
bounded uncertainty. These results enabled the robust
H∞ control problem to be converted into a standard H∞

control problem which could be solved using Riccati equa-
tion methods; e.g., see Petersen et al. (1991). The closed
loop system corresponding to our robust H∞ controller
was analyzed via Simulink simulations. These simulations
verified that our robust H∞ controller can significantly
reduce the effect of hysteresis in the piezoelectric actuator.

2. MODELING THE PIEZOELECTRIC ACTUATOR

Our model for the piezoelectric stack actuator is based on
the approach of Adriaens et al. (2000), which uses a de-
scription consisting of electrical and mechanical elements.
In Adriaens et al. (2000), the PEA system is modeled using
the electromechanical model shown in Figure 1.
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Fig. 1. Electromechanical model of the PEA.

An expression for the interaction force FP in this model
is:

FP = TemUP = mÿ + cẏ + k y (1)

In equation (1), y represents the mechanical displacement
and the interaction force depends on the mechanical pa-
rameters of mass m, damping coefficient c and stiffness
k. Also, Tem is defined as the transformer ratio for the
electromechanical transducer. Using the electromechanical
model in Figure 1, we can obtain an equivalent circuit of
our complete piezo system as shown in Figure 2.

Fig. 2. Piezoelectric stack actuator model.

Here U represents the amplifier voltage applied to the
circuit, R1 represents the Thevenin equivalent resistance
of the power amplifier, C2 is the external capacitor in
series with the piezoelectric stack actuator, U2 is the
capacitor voltage measured using a differential probe, R2

is the resistance of the differential probe. Using a standard
analogy between electrical and mechanical systems applied
to (1) we can replace the mechanical elements by an
equivalent electric circuit as shown in Figure 3.

Here R, L and C can be calculated from the mechanical
parameters as R = c

Tem2 , L = m
Tem2 and C = k

Tem2 . In
Adriaens et al. (2000), the hysteresis nonlinearity between
the hysteresis voltage Uh and the charge q in the model is
described by the equation:

q̇ = α|U̇h|(a Uh − q) + b U̇h (2)

where α, a and b are constants which determine the shape
of the nonlinearity. From this, it can be seen that the size
of the hysteresis nonlinearity in the piezoelectric actuator

Fig. 3. Equivalent RLC circuit.

depends on the value of α. If α is small enough, we can
consider the system as a linear system. Using (2), a non-
linear relationship between the current i in the piezo and
the voltage generated by the hysteresis Uh can be derived
as follows:

q̇ = i =

{
(b + α(a Uh − q)) U̇h if U̇h ≥ 0;

(b − α(a Uh − q)) U̇h if U̇h < 0.
(3)

Hence, the model in Figure 2 can be replaced by an
equivalent electrical circuit, as shown in Figure 4.

Fig. 4. Piezoelectric actuator equivalent circuit.

The state variables for the equivalent electrical circuit
model in Figure 4 are defined as x1 = iP , x2 = UC ,
x3 = U2, x4 = Uh and x5 = q. This leads to a state
space model for the piezo actuator circuit as follows:

ẋ1 = i̇P = − R

L CP

x1 −
C + CP

L CP

x2 +
1

L CP

x5;

ẋ2 = U̇C =
1

C
iP =

1

C
x1;

ẋ3 = U̇2 =
C

R1 C2 CP

x2 −
(

1

R1 C2

+
1

R2 C2

)
x3

− 1

R1 C2

x4 −
1

R1 C2 CP

x5 +
1

R1 C2

U ;

ẋ4 = U̇h =





C
CP

x2 − x3 − x4 − 1

CP

x5 + U

R1(b + α(ax4 − x5))
if i ≥ 0;

C
CP

x2 − x3 − x4 − 1

CP

x5 + U

R1(b − α(ax4 − x5))
if i < 0;

ẋ5 = q̇ =
C

R1CP

x2 −
1

R1

x3 −
1

R1

x4 −
1

R1CP

x5 +
1

R1

u.

(4)

where i = q̇ as in (3).
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In our experimental set up, the actuator was unloaded and
the unloaded resonate frequency of the actuator is approx-
imately 70 kHz which is well beyond the frequency range
of interest. This means that we can obtain a simplified non-
linear model for the system by setting Tem to zero. This
implies that the electromechanical elements need no longer
be included in the model. Then, a simplified equivalent
circuit can be obtained as shown in Figure 5.

Fig. 5. Simplified equivalent circuit model.

In this case, only three state variables, x1 = U2, x2 =
Uh and x3 = q are needed. Then, we can write the
corresponding state space equations as follows:

ẋ1 = U̇2 = −(
1

R1C2

+
1

R2C2

)x1 −
1

R1C2

x2

− 1

R1C2CP

x3 +
1

R1C2

U ;

ẋ2 = U̇h =





−x1 − x2 − 1

CP

x3 + U

R1(b + α(ax2 − x3))
if i ≥ 0;

−x1 − x2 − 1

CP

x3 + U

R1(b − α(ax2 − x3))
if i < 0;

ẋ3 = q̇ = − 1

R1

x1 −
1

R1

x2 −
1

R1CP

x3 +
1

R1

u. (5)

and, q̇ = i as previously defined.

3. NONLINEAR MODEL PERFORMANCE

3.1 System identification and model realization

In the piezoelectric actuator equivalent circuit of Figure
5, the output of the system was specified as U2 which
was measured experimentally. The state equations for a
corresponding linear model are obtained by setting α = 0
in (5) which leads to the following linear state space model:

ẋ =




−(
1

R1C2

+
1

R2C2

) − 1

R1C2

− 1

R1C2CP

− 1

R1b
− 1

R1b
− 1

R1b CP

− 1

R1

− 1

R1

− 1

R1CP




x

+




1

R1C2
1

R1b
1

R1




u;

= Ax + Bu. (6)

The system output y = U2 in this linear model is deter-
mined by the equation y = Cx where C = [ 1 0 0 ].
The parameters in this model were measured directly as
follows:

b = 9 × 10−7F ;
R1 = 4.85Ω;
R2 = 8 × 106Ω;
CP = 6 × 10−7F ;
C2 = 9.91 × 10−8F.

The static capacitance of the piezoelectric stack actuator
was measured at 360nF which is the value of b in series
with CP .

3.2 Hysteresis model and experimental test results

The nonlinear state space model (5) was implemented in
Simulink. Also, the nonlinearity parameters were chosen as
a = 9× 10−9 and α = 0.048 so that the simulation results
matched the experimental test data. The piezoelectric
actuator was tested using a dSpace DSP system, as shown
in Figure 6.

Fig. 6. dSPACE experimental test setup.

We plotted the experimental test results obtained from the
piezo stack actuator together with a simulated hysteresis
curve. A comparison of the two hysteresis curves for the
model and the experimental data is illustrated in Figure
7. In this plot, the experimental value of the charge q was
calculated from the output voltage U2 as q = C2 U2.

4. DESIGN OF A ROBUST H∞ CONTROLLER

A robust H∞ control method was employed to design
a tracking controller, in which the charge tracked a ref-
erence input. As in Moheimani and Vautier (2005), it
was expected that this charge control method could re-
duce the effect of hysteresis. Once we had constructed
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Fig. 7. Q versus U obtained from experimental test data
and model simulations.

a hysteresis model for the piezo stack actuator circuit,
we then considered a design of a robust H∞ controller
with norm-bounded time-varying uncertainty via output
feedback using the approach of Xie et al. (1992) and
Xie and de Souza (1992). Using equation (3), we can
see that the hysteresis nonlinearity can be regarded as a
sector bounded nonlinearity, provided we have an upper
bound on the magnitude of the quantity α Uh − q. This is
illustrated in Figure 8.

Fig. 8. Sector bounded nonlinearity in the piezo stack
actuator model.

Here, we can write ρ = a Uh−q, and U̇h = f(i, ρ) = i
b±α |ρ| .

Then, we can define the sector bounded between the lines
f = α+ i and f = α− i, in which α+ > α− > 0,
and α+ = i

b−α ρ+ and α− = i
b+α ρ+ . Here ρ+ is the

maximum expected value of the quantity |ρ|. Using our
nonlinear model, the value of ρ+ = 4.65 × 10−6 was
obtained from a simulation of the PEA with a 120 Volt
peak-peak sinusoidal voltage applied. According to the
manufacturer’s specifications, this is the maximum voltage
which can be applied to the PEA.

Also, we let

αo =
α+ + α−

2
and ∆α =

α+ − α−

2
.

This gives

α+ = αo + ∆α;
α− = αo − ∆α.

where αo = b

b2−α2 ρ+2 and ∆α = α ρ

b2−α2 ρ+2 . Also note that

the equation for i in (5) can be expressed as i = E1x+E2u,
which can be adapted into the uncertainty description
considered in Xie and de Souza (1992) as follows:

[ ∆ A ∆ B ]

[
x
u

]
= H1 ∆[E1x + E2u]

= H1 ξ. (7)

where

ξ = ∆ ζ, ζ = E1x + E2u, ‖∆‖ ≤ 1 and H1 = [ 0 ∆α 0 ]
T

.

This leads to the uncertain system model:

ẋ = Ax + H1 ξ + B2 u;

ζ = E1x + E2u;

y = C x. (8)

Also for our uncertain system model, the state equations
for the linear part of the model are given as:

ẋ = Ax + [ H1 B2 ]

[
ξ
u

]
;

[
ζ
y

]
=

[
E1

C

]
x +

[
0 E2

0 0

] [
ξ
u

]
. (9)

It should be noted that for the piezo system under consid-
eration, the state space model (9) is not minimal. Hence,
we can replace these state equations with a corresponding
minimal realization as in equation (10):

ẋr = Arxr + [ H1r B2r ]

[
ξ
u

]
;

[
ζ
y

]
=

[
E1r

Cr

]
xr +

[
0 E2r

0 0

] [
ξ
u

]
. (10)

A robust H∞ tracking control problem is then set up as
shown in Figure 9. In this problem, w is the reference input
and z is the error output. The filter has been introduced
because the plant output cannot be expected to track
the reference input at very low frequencies or very high
frequencies.

Fig. 9. Structure of the robust H∞ tracking control prob-
lem under consideration.

Accordingly, a state space model corresponding to this
problem including the filter can be written as follows:
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˙̃x =

[
ẋr

η̇

]
=

[
Ar 0

−BfCr Af

]

︸ ︷︷ ︸
Ã

[
xr

η

]

+

[
0 0

Bf 0

]

︸ ︷︷ ︸
B̃1

[
w
w̃

]
+

[
B2r

0

]

︸ ︷︷ ︸
B̃2

u +

[
H1r

0

]

︸ ︷︷ ︸
H̃1

ξ;

= Ã x̃ + B̃1w + B̃2u + H̃1ξ. (11)

Here η is the state of the filter system:

η̇ = Af η + Bf z̃;

z = Cf η. (12)

The filter was chosen to have a transfer function:

G(s) =
1000(s + ǫ1)

(s + 1) (s + 1000)

where ǫ1 is treated as a design parameter.

The outputs z and ỹ of the overall system in Figure 9 can
be obtained from the following equations:

z = [ 0 Cf ]︸ ︷︷ ︸
C̃1

[
xr

η

]
+

[
0
0

]

︸︷︷︸
D̃12

u;

ỹ =

[
y
w

]
=

[
Cr 0
0 0

]

︸ ︷︷ ︸
C̃2

[
xr

η

]
+

[
0 ǫ2
1 0

]

︸ ︷︷ ︸
D̃21

[
w
w̃

]
. (13)

Note that, in order to satisfy the standard H∞ conditions,
we have introduced a new disturbance input w̃ which
acts as a measurement disturbance added to the measured
reference signal w. This disturbance is scaled by ǫ2 which
is treated as a design parameter.

In our case, Equation (7) needs to be modified to corre-
spond to the uncertainty in the overall system as follows:

[
∆ Ã ∆ B̃

]
= H̃1 ∆

[
Ẽ1 Ẽ2

]
. (14)

Hence, the uncertainty output signal ζ (i.e., the current
i) can be rewritten in terms of the complete state space
model as:

ζ = [ E1 0 ]︸ ︷︷ ︸
Ẽ1

[
x
η

]
+ [ E2 ]︸ ︷︷ ︸

Ẽ2

u.
(15)

We now construct the robust H∞ controller by applying
the results of Xie et al. (1992) to the uncertain system
defined by the equations (11), (13), (15). This leads us to
consider a standard H∞ problem defined by the following
state equations:

ẋ = Ã x +
[√

ǫ ̺ H̃1 γ−1 B̃1

]
w̃ + B̃2u;

z̃ =




1√
ǫ
Ẽ1

C̃1


 x +




1√
ǫ
Ẽ2

D̃12


 u;

y = C̃2x +
[√

ǫ ̺ H̃2 γ−1 D̃21

]
w̃.

(16)

Here ǫ is an additional design parameter and γ is the
desired level of disturbance attenuation. This standard

H∞ problem is then solved via an algebraic Riccati equa-
tion approach; e.g., see Petersen et al. (1991). The design
parameters used in our case were chosen as follows:

ǫ = 0.1000556;
ǫ1 = 1 × 10−10;
ǫ2 = 9 × 10−7;
γ = 0.1.

The controller obtained from this method is applied to the
piezoelectric stack actuator as in the block diagram shown
in Figure 10.

Fig. 10. Block diagram of piezoelectric stack actuator with
the H∞ tracking controller.

Bode plots of the closed loop system are shown in Figure
11, in which the uncertainty ∆ was set at the values of 0
and ±1 respectively. These Bode plots show that over the
frequency range of interest, the transfer function from the
reference input to the output is very close to unity.
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Fig. 11. Closed-loop Bode plots.

An investigation of the performance of the H∞ controller
was carried out in using Simulink and the nonlinear model
of the piezoelectric stack actuator (5). We examined the
simulation model outputs both using the controller and
without using the controller. The results are shown in
Figure 12. In this figure, it can be clearly seen that the
use of the robust H∞ controller has significantly reduced
the effect of hysteresis.

In addition, we also examined the performance of the
controller, in which the reference signal was a sawtooth
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controller.

waveform. It should be noted that the manufacturer’s
specifications for the actuator requires that the applied
voltage be in the range of −20 to +120 volts. Hence,
a simulation was carried out using a 0 − 120 volt, 5Hz
sawtooth reference input. The results of this simulation
are shown in Figure 13. These simulations show that
the output of the system tracks the reference input very
closely.
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Fig. 13. Controlled piezoelectric actuator with a sawtooth
reference input.

5. CONCLUSION

The control of hysteresis in a piezoelectric actuator was
achieved by using a robust H∞ control method. Simulation
results have demonstrated that hysteresis in a piezoelectric
actuator can be significantly reduced using this controller.
Simulations were carried out using a model which has
shown a good agreement with the experimentally mea-
sured hysteresis on the piezoelectric actuator. Future re-
search will be directed towards experimental verification
of the simulation results presented in this paper.
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