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Abstract: In the design of an automatic controller to achieve water-level set-point regulation
and off-take load-disturbance rejection for an open water channel, a key concern is an inherent
trade-off between local performance and the way water-level errors propagate due to control
action. Here a structured optimal controller synthesis problem is formulated to systematically
manage this trade-off, using H∞ loop-shaping ideas. The loop-shaping weights can be scalably
designed and the imposed structure ensures the controller only involves local information
exchange. Importantly, the distributed control structure we consider confines water-level error
propagation to upstream pools, with corresponding benefits in terms of water distribution
efficiency. Moreover, it coincides with the interconnection structure of a channel, and so the
corresponding optimal synthesis problem has a convex characterisation; detailed state-space
formulae are provided. Field test data are presented to illustrate overall performance.

1. INTRODUCTION

In large-scale irrigation networks, water is often dis-
tributed via open water channels under the power of grav-
ity alone (i.e. there is no pumping). The flow of water
through the network is regulated by automated gates
positioned along the channels (Mareels et al., 2005). To
give some idea of scale, there are about 7000 kilometers
of irrigation channels in the Goulburn-Murray Irrigation
District, the largest in Australia. These annually supply
more than 2Gm3 of fresh water for agricultural purposes.

The stretch of a channel between two gates is commonly
called a pool. Water off-take points to farms and secondary
channels are distributed along the pools, typically with a
degree of concentration just upstream of the gates (i.e.
at the downstream end of pools). As such, an important
control objective is set-point regulation of the water-levels
immediately upstream of each gate, which enables flow
demand at the (often gravity-powered) off-take points
to be met without over-supplying. Water off-takes into
secondary channels and onto farms act as load distur-
bances that are to be rejected by the controller, with
the assistance of disturbance feedforward/preview when
possible. The control of open water channels to achieve
such objectives has been of interest for some time; see
(Clemmens et al., 1998; Mareels et al., 2005) and the
references therein.

When the number of pools to be controlled is large
and the gates widely dispersed, centralised feedback con-
trol (Weyer, 2003; Li et al., 2004; Weyer, 2007) can incur a
heavy communication overhead. This can make it difficult
to ensure timely exchange of water-level sensor measure-
ments and gate actuator commands between all gates and
potentially a central host. A natural way to overcome
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this is to employ a distributed control structure, requiring
only local exchange of information between neighbouring
gates (Li, 2006; Cantoni et al., 2007). In this paper, we
present the details of a systematic approach to feedback
compensator synthesis, subject to a particular distributed
control information structure. The distributed structure
accommodates the exchange of control information, akin
to a feed-forward action for de-coupling, between neigh-
bouring local compensators. This facilitates the manage-
ment of a key trade-off between the local performance
and the way water-level errors propagate due to control
action (Li et al., 2005). Importantly, the structure also con-
fines water-level error propagation to the pools upstream
of a load-disturbance, which is important in terms of
water distribution efficiency and quality of service (Litrico
et al., 2003; Mareels et al., 2005). This is not the case for
centralised feedback control in general.

The paper is structured as follows. An open water channel
model is briefly developed in Section 2 for the purpose
of feedback controller design. A structured optimal con-
troller synthesis problem is then formulated, based on
H∞ loop-shaping ideas, to deal with the design trade-
off described above. This includes a discussion of loop-
shaping weight design, which is ultimately achieved in a
decentralised/scalable fashion. Section 4 presents a convex
characterisation of the optimal synthesis problem, using
state-space realisations and a specialisation of Thm. 4
in (Langbort et al., 2004), which accommodates hetero-
geneity in the pool dynamics and finiteness of the channel
extent. This yields a distributed controller which is differ-
ent to the one suggested in (Li et al., 2005), where each
local compensator is obtained using a spatially-invariant,
infinite-extent relaxation of the problem. To illustrate the
performance of a distributed controller designed as de-
scribed herein, simulation and field test results are dis-
cussed in Section 5. The field test were made possible by
Rubicon Systems Australia Pty. Ltd., whose support is
gratefully acknowledged.
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2. CHANNEL MODELLING FOR CONTROL
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Fig. 1. Stretch of a channel with over-shot gates. Although
we consider over-shot gates, our approach to design
approach is applicable with other gate structures.

A side view of an open water channel is shown in Fig. 1:
yi denotes the downstream water level in pooli; pi the
position of the i-th gate; and hi the “head” over the i-

th gate, which yields a flow ui = γih
3/2
i (Bos, 1978).

To meet off-take flow demand, without over-supplying,
it is important to regulate the downstream water-levels
yi to calculated set-points ri. Towards this end, a simple
frequency-domain model of the water level in pooli can be
obtained by conservation of mass (Weyer, 2001):

Pi : yi(s) =
1

sαi

(

exp(−sτi)ui(s) − vi(s) − di(s)
)

, (1)

where di models off-take load-disturbances in pooli, ui is
the flow over the i-th gate, τi is a transport delay, αi is a
measure of the pool surface area and vi = ui+1, which
characterises the interconnection of neighbouring pools.
The model parameters αi and τi are readily obtained
via system identification (Weyer, 2001; Ooi et al., 2003).
While (1) does not capture wave dynamics, it is suitable
for feedback control design since it represents a pool from
the perspective of desired closed-loop behaviour (Cantoni
et al., 2007). Indeed, it is required that automatic control
not excite the wave dynamics; this can lead to unaccept-
able fluctuation in flows at off-take points, flooding and
damage of the channel. To summarise, an open water
channel can be thought of as a string of pools, each with
dynamics of the form (1), as shown in Fig. 2.

P1 P2 PN

u1 y1

d1

v1

u2 y2

d2

v2

uN yN

dN

vN

Fig. 2. A string of N pools, each with dynamics (1)

By adjusting the position of the i-th gate relative to the
water-level upstream of it (i.e. by adjusting the “head”),
the flow ui into pooli can be controlled. Exploiting this, the
objectives of water-level set-point regulation and (unmea-
sured) off-take load-disturbance rejection can be achieved
with a feedback controller which sets the flows ui on the
basis of water-level measurements yi and set-points ri. A
centralised controller (Li et al., 2004; Weyer, 2007) can
exploit all measured water-levels to set each gate flow. This
can yield good water-level regulation performance, but in

general, it leads to both upstream and downstream prop-
agation of water-level errors. Downstream propagation is
undesirable from a quality of service perspective and in
terms of distribution efficiency (Litrico et al., 2003; Ma-
reels et al., 2005). Moreover, the communication overhead
for centralised control can be prohibitive.
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Fig. 3. Distant-downstream distributed control

A distributed control structure (Li, 2006; Cantoni et al.,
2007), on the other hand, only requires local exchange
of information. Moreover, with the so-called distant-
downstream control structure shown in Fig. 3, whereby the
downstream water-level in pooli is effectively controlled
via the flow over the upstream (i.e. i-th) gate, the propa-
gation of water-level errors is confined to upstream pools.
In this way, it is possible to separately control the flow
over the last gate to be zero (or some other constant),
with benefits in terms of distribution efficiency.

While the distributed distant-downstream control infor-
mation structure exhibits the favourable properties just
described, there exists an inherent design trade-off between
local performance and the way errors propagate (Li, 2006;
Cantoni et al., 2007). Indeed, it is possible for a component
of the error to be amplified as it propagates upstream (Li
et al., 2005), particulary when there is worst-case coupling
between pools (i.e. homogeneity). This can lead to gate
saturation and unacceptable deviations from set-point; e.g.
failure to meet off-take flow demand or flooding.

Since water-level error propagation arises from control
action, which adjusts the flow into one pool and hence
out of another, the information exchanged between the
local compensators can facilitate the management of the
design trade-off described above. Indeed, one possibility
corresponds to the so-called decentralised feedback with
feed-forward structure described in (Cantoni et al., 2007;
Weyer, 2007); specifically,

Ki =

(

vK
i = ui+1

ei

)

7→

(

wK
i = ui

ui

)

=

(

Fi Ci

Fi Ci

)

,

where Fi provides a de-coupling feed-forward action, on
the basis of the flow ui+1 out of pooli, and Ci is a de-
centralised feedback compensator. Systematically exploit-
ing the compensators Fi to manage error propagation,
however, is difficult (Li, 2006). Below, we formulate a
structured optimal control problem, based on loop-shaping
ideas, to design a distributed distant-downstream con-
troller. The global performance index captures the trade-
off between local performance and error propagation,
among other things, and the design of the loop-shaping
weights is quite systematic in that it is achieved on pool-
by-pool basis, focusing on local performance objectives.
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3. H∞ LOOP-SHAPING BASED DISTRIBUTED
CONTROLLER DESIGN
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Fig. 4. Localised portion of a controlled channel

For the purpose of design, consider the closed-loop system
shown in Fig. 4; this represents a localised portion of a
channel under distributed distant-downstream feedback
control. As before, Pi is the nominal model (1) for pooli.
The local component Ki of the distributed controller as it
is shown in Fig. 3, on the other hand, is now effectively
split into a loop-shaping weight Wi and a compensator K̂i;
this is consistent with the well-known H∞ loop-shaping
approach to feedback controller design (Skogestad et al.,
1996). The role of the weight Wi is to classically shape
the nominal plant model dynamics to obtain a local loop-
gain that is consistent with the local performance and
robustness objectives across frequency. To this end, the
flow coupling between pools that arises from control action
in downstream pools, can be treated as an additional
unknown load-disturbance to be rejected. That this com-
ponent of the load-disturbance is actually known can be
exploited by the additional compensators K̂i, which each
pass control information to the corresponding compen-
sator upstream. In particular, for a given collection of loop-
shaping weights, the extra design freedom can be used to
optimise a measure of global performance, accounting for
the trade-off between local performance objectives and the
way water-level errors propagate.

With reference to Fig. 4, the transfer function of the i-th
weighted generalised pool





vi

ni

uK
i



 7→





wi = ui

zi

yK
i = ei



 ,

takes the form

Gi(s)=







0 (0 0 Wi(s)) Wi(s)
(

1
sαi

0

) (

1 1
sαi

exp(−sτi)

−sαi
Wi(s)

0 0 0

) (

exp(−sτi)

−sαi
Wi(s)

1

)

1
sαi

(

1 1
sαi

exp(−sτi)

−sαi
Wi(s)

)

exp(−sτi)

−sαi
Wi(s)






,(2)

where the set-point and off-take load-disturbance have
been lumped into the signal ni := (ri, di, qi)

T, together
with a signal qi which is used to model additional uncer-
tainty in the flow over gatei. Moreover, the pool intercon-
nection is characterised by vi = wi+1 with boundary condi-
tion vN = 0; recall that under distant-downstream control
setting vN = 0 indeed possible. Within this context,
the aforementioned control design trade-off corresponds
to managing the collective effect of the exogenous signals
ni := (ri, di, qi)

T on the signals

zi :=

(

yK
i = ei

uK
i

)

.

This is achieved by judicious choice of the interconnection
of distributed compensators, denoted K̂ = (K̂1, . . . , K̂N ),
where

K̂i =

(

vK
i

yK
i

)

7→

(

wK
i

uK
i

)

and vK
i = wK

i+1 with boundary condition vK
N = 0. In par-

ticular, using G := (G1, . . . , GN ) to denote the intercon-

nection of the generalised pool models (2), and H(G, K̂)
to denote the overall closed-loop transfer function from
the vector of exogenous signals n := (nT

1 , . . . , nT
N )T to the

vector of signals z := (zT
1 , . . . , zT

N )T shown in Fig. 5, the

trade-off can be handled by selecting the K̂ to stabilise
H(G, K̂) and minimise

‖H(G, K̂)‖∞ = sup
ω∈R

σ̄(H(G, K̂)(jω)),

where σ̄(·) denotes the maximum singular value of a ma-
trix. This structured H∞ synthesis problem corresponds to
optimising a weighted worst-case measure of global perfor-
mance, accounting for local objectives and the mechanism
underpinning water-level error propagation.

G1 G2 GN
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u1 e1

n1

v1

vK
1

z1

u2 e2

n2

v2 = w3
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N
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Fig. 5. Generalised distributed structure for synthesis

In Section 4 we present a convex state-space characteri-
sation of distributed compensators K̂ that achieve closed-
loop stability and a specified bound on the global per-
formance index ‖H(G, K̂)‖∞. Given a stabilising K̂ that
achieves a minimal (or satisfactory) performance bound,
the i-th component of the distributed distant-downstream
controller, shown in Fig. 3, is recovered as

Ki =

(

vK
i
ei

)

7→

(

wK
i

ui

)

=

(

1 0
0 Wi

)

K̂i.

3.1 Loop-shaping weight design

The design of the loop-shaping weights can be achieved on
a pool-by-pool basis. The weight Wi should be designed to
classically shape the local loop-gain Li(s) = Wi(s)/sαi

across frequency, so that the local closed-loop transfer
functions

Tri→ei
(s) :=

1

1 + Li(s) exp(−sτi)
,

Tdi,vi→ei
(s) :=

1

1 + Li(s) exp(−sτi)

(

1

sαi

)

and

Tdi→ui
(s) :=

Li(s)

1 + Li(s) exp(−sτi)
,
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i τi αi ϕi

1 4 mins 6492m2 0.48 rad/min
2 2 mins 2478m2 1.05 rad/min
3 4 mins 6084m2 0.48 rad/min
4 4 mins 5658m2 0.48 rad/min
5 6 mins 7650m2 0.42 rad/min

Table 1. Pool model parameters: delay (τi),
surface area (αi) and wave frequency (ϕi)

are consistent with the local performance and robust-
ness objectives; i.e. water-level set-point regulation, load-
disturbance rejection and the requirement that control
action should not excite the dominant wave dynamics. In
particular, to achieve zero steady-state water-level error
for step load disturbances, it follows by the final value
theorem that Wi(s) should have at least one pole at s = 0.
Furthermore, in line with classical design ideas (Skogestad
et al., 1996), good set-point regulation and load distur-
bance rejection is achieved by ensuring that the local loop-
gain |Li(jω)| is large at frequencies where the set-point
reference ri and the load disturbance di are significant
(i.e. low frequency). Moreover, the bandwidth of the loop-
gain |Li(jω)| must be set to lie below the frequency of the
dominant local wave dynamics, which are not captured by
the first-order model (1). Indeed, these local objectives can
be achieved with an essentially PI compensator

Wi(s) =
κi(1 + sφi)

s (1 + sρi)
. (3)

Specifically: κi is used to set the loop-gain bandwidth –
this should also sit below (1/τi) rad/min, because of the
delay which is not reflected in Li; φi is used to introduce
phase lead in the cross-over region to reduce the roll-off
rate for stability and robustness; ρi is used to provide
additional roll-off beyond the loop-gain bandwidth to
ensure sufficiently low gain at the (un-modelled) dominant
wave frequency. In fact, the Wi in (3) has the form
of the completely decentralised compensators described
in (Cantoni et al., 2007; Weyer, 2007), and it corresponds
to the basic form of the weight used for optimal centralised
controller synthesis in (Li et al., 2004).

Figure 6 shows the shaped and un-shaped local loop-
gains used for the five pools of Coleambally Channel,
Number 6, NSW, where the field tests reported in Section 5
were conducted. The identified model parameters for these
pools are summarised in Table 1, where the wave frequency
provided is representative of the dominant wave dynamics
not modelled in (1). These loop-shapes correspond to the
weight parameters κi, φi, ρi summarised in Table 2. The
un-shaped loop-gains are also scaled by a constant ηi, to
facilitate use of the same plot; these are ultimately part
of the parameter κi. It can be seen that compared to the
un-shaped loop-gains, the shaped gains are significantly
higher at low frequencies, and somewhat lower at the wave
frequencies, with a smooth transition in between. Also note
that the bandwidth of each shaped loop-gain is much less
than the corresponding value of 1/τi.

4. A STATE-SPACE CHARACTERISATION OF THE
H∞ SYNTHESIS PROBLEM

The existence of an interconnection K̂ = (K̂1, . . . , K̂N )
of distributed compensators that stabilises the intercon-
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Fig. 6. Shaped and un-shaped local loop-gains

i κi φi ρi ηi

1 1.69 113.64 9.97 130
2 6.47 37.17 3.26 223
3 2.37 86.96 7.60 183
4 2.21 96.15 8.47 170
5 1.68 113.64 9.97 153

Table 2. Parameters for loop-shaping weights

nection G = (G1, . . . , GN ) of weighted generalised pool
models and achieves a specified bound on the performance
index ‖H(G, K̂)‖∞, is characterised below in terms of con-
vex conditions involving a finite-dimensional state-space
model for G. This state-space model is constructed by
employing a Padé approximation of the delay associated
with each pool. In particular, each weighted generalised
pool model Gi, originally defined in (2), is approximately
realised with the finite-dimensional state-space model







ẋi

wi

zi

yK
i






=









Att
i Ats

i Btn
i Btu

i

Ast
i Ass

i Bsn
i Bsu

i

Ctz
i Csz

i Dzn
i Dzu

i

Cty
i Csy

i Dyn
i Dyu

i















xi

vi

ni

uK
i







:=



















0 1
αi

−1
αi

0 −1
αi

0 −1
αi

0 0

0 −2
τi

4
τi

0 0 0 0 0 0

0 0 0 1 0 0 0
κiφi

ρi

κiφi
ρi

0 0 0 −1
ρi

0 0 0
κi(ρi−φi)

ρ2
i

κi(ρi−φi)

ρ2
i

0 0 1 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
−1 0 0 0 0 1 0 0 0

























xi

vi

ni

uK
i






,(4)

where the local state xi = (yi,∆i, ui,Ωi)
T , the sub-state

Ωi corresponds to the loop-shaping pole at s = −1/ρi

and the sub-state ∆i corresponds to the pole in the Padé
approximation of the delay. For i = N , the input vN = 0,
and so, the model can be simplified, in this case, by
removing the second block column (i.e. replacing it with
an empty matrix with zero column dimension). Similarly,
for i = 1, there is no need to retain the output w1,
from the perspective of the synthesis problem, and so,
the corresponding model can be simplified by removing
the second block row. Exploiting this yields the following
specialisation of Thm. 4 in (Langbort et al., 2004), which
leads to a state-space characterisation of the structured
H∞ synthesis problem introduced above; see Remark 2.

Theorem 1. There exists an interconnection K̂ of dis-
tributed compensators K̂i each with a state-space model
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



ẋK
i

wK
i

uK
i



 = Si





xK
i

vK
i

yK
i



 , (5)

where the dimension of xK
i is equal to that of xi in (4)

and the interconnection corresponds to vK
i = wK

i+1 with

the boundary condition vK
N = 0, that

(1) stabilises the interconnection G = (G1, . . . , GN ) of
weighted generalised pool models (4), subject to vi =
wi+1 with the boundary condition vN = 0, and

(2) achieves ‖H(G, K̂)‖∞ < γ, where H(G, K̂) denotes
the closed-loop transfer function from the vector
of signals (nT

1 , . . . , nT
N )T to the vector of signals

(zT
1 , . . . , zT

N )T shown in Fig. 5,

if, and only if, there exist symmetric matrices Xtt
i > 0

and Y tt
i > 0, for i = 1, . . . , N , and symmetric matrices

Xi,i−1 < 0 and Yi,i−1 < 0, for i = 2, . . . , N , such that for
i = 1, . . . , N ,

(

Xtt
i I

I Y tt
i

)

≥ 0,

(

Xi,i−1 −I
−I Yi,i−1

)

≤ 0,

(ΠX
i )T















0 Xtt
i 0 0 0 0

Xtt
i 0 0 0 0 0

0 0 −Xi,i−1 0 0 0
0 0 0 Xi+1,i 0 0
0 0 0 0 I 0
0 0 0 0 0 −γ2I















ΠX
i < 0

(ΠY
i )T















0 Y tt
i 0 0 0 0

Y tt
i 0 0 0 0 0
0 0 −Yi,i−1 0 0 0
0 0 0 Yi+1,i 0 0
0 0 0 0 I 0
0 0 0 0 0 −γ−2I















ΠY
i > 0,

where

ΠX
i =















I 0 0
Att

i Ats
i Btn

i

Ast
i Ass

i Bsn
i

0 I 0
Ctz

i Csz
i Dzn

i
0 0 I















NX
i ,

ΠY
i =















(Att
i )T (Ast

i )T (Ctz
i )T

−I 0 0
0 −I 0

(Ats
i )T (Ass

i )T (Csz
i )T

0 0 −I
(Btn

i )T (Bsn
i )T (Dzn

i )T















N Y
i ,

NX
i is a matrix with columns that span the null-space

of
(

Cty
i Csy

i Dyn
i

)

, N Y
i with columns that span the null-

space of
(

(Btu
i )T (Bsu

i )T (Dzu
i )T

)

, Ast
1 = [ ], Ass

1 = [ ],

Bsn
1 = [ ], Ats

N = [ ], Ass
N [ ], Csz

N = [ ], X1,0 = [ ], Y1,0 = [ ],
XN+1,N = [ ], YN+1,N = [ ], and [ ] denotes an empty
matrix with the row or column dimension appropriately
set to zero; this is on the understanding that, when an
empty matrix appears as a block in a larger matrix, the
remaining blocks in the same row/column take on empty
status and zero dimension as required.

Remark 1. The convex conditions in Theorem 1 are cou-
pled through Xi,i−1 and Yi,i−1 in a fashion paralleling the

directed interconnection structure of the weighted gener-
alised pool models Gi and distributed compensators K̂i.
Nevertheless, minimising γ, subject to such convex con-
straints is numerically tractable via standard and efficient
software tools (Gahinet et al., 1995), even for fairly large
problems.

Remark 2. Given matrices Xtt
i , Y tt

i , Xi,i−1 and Yi,i−1,
which satisfy the collection of LMIs in Thm. 1 for a specific
value of γ > 0, the matrices

Si = −ǫ−1
i UiΦiV

T
i (ViΦiV

T
i )−1, i = 1, . . . , N, (6)

are such that the interconnection K̂ = (K̂1, . . . , K̂N ) of
the distributed compensators with state-space models (5),
satisfies

‖H(G, K̂)‖∞ < γ,

where Φi = (ǫ−1
i UT

i Ui−Gi)
−1, Ui =

(

(T u
i,1)

TX tt
i 0 (T u

i,2)
T
)

,

Vi =
(

T y
i 0

)

,

Gi =









(T 11
i )TX tt

i + (X tt
i )TT 11

i (X tt
i )TT 12

i (T 21
i )T

∗
(

Xi+1,i 0

0 −γ2I

)

(T 22
i )T

∗ ∗
(

X
−1
i,i−1

0

0 −I

)









,

X tt
i =

(

Xtt
i Ztt

i
∗ I

)

, Ztt
i (Ztt

i )T = Xtt
i − (Y tt

i )−1,

Xi,i−1 =

(

Xi,i−1 I
I Zi,i−1

)

, Z−1
i,i−1 = Xi,i−1 − (Yi,i−1)

−1,

(

T 11
i T 12

i

T 21
i T 22

i

)

=













(

Att
i 0

0 0

) (

Ats
i 0 Btn

i
0 0 0

)





Ast
i 0
0 0

Ctz
i 0





(

Ass
i 0 Bsn

i
0 0 0

Csz
i 0 Dzn

i

)













,

(

T u
i,1

T u
i,2

)

=











(

0 0 Btu
i

I 0 0

)

(

0 0 Bsu
i

0 I 0
0 0 Dzu

i

)











, T y
i =





0 I 0 0 0
0 0 0 I 0

Cty
i 0 Csy

i 0 Dyn
i



,

ǫi is a positive scalar such that ǫi ≪ 1/µi, and

µi = λmax((U
+
i )T (Gi − GiU

⊥
i ((U⊥

i )TGiU
⊥
i )−1(U⊥

i )Gi)U
+
i ),

with + denoting the Moore-Penrose inverse, ⊥ the ortho-
completion and λmax the largest eigenvalue of a matrix.

Remark 3. The construction of Si in (6) is a direct appli-
cation of Theorem 1 in (Iwasaki et al., 1994), exploiting
the full-rank properties of T u

i and T y
i for the particular

problem considered here. The construction from (Langbort
et al., 2004) proves more complex, and unfortunately, leads
to numerical difficulties.

5. SIMULATION AND FIELD TEST RESULTS

Figure 7 shows the simulated water-level errors for the
five pools of Coleambally Channel, Number 6, NSW, in
response to a large step change in the flow out of pool5,
when

• operating under a distributed distant downstream
controller that was designed using the models, loop-
shaping weights and optimal synthesis technique de-
scribed in the preceding two sections (achieved γmin =
2.88), and when
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Fig. 7. Simulated water-level errors

• operating under a decentralised controller (Cantoni
et al., 2007), where the isolated local compensator
for pooli is taken to be the loop-shaping weight Wi.

The optimal controller clearly achieves significantly im-
proved performance in terms water-level error propaga-
tion, while yielding very similar local load-disturbance
rejection performance (see pool5). This comes at the very
modest expense of four extra scalar states in each local
compensator and the local information exchange overhead.

The distributed controller has also been tested in the field;
specifically on gates Coly6-1 through Coly6-5. The test
data are shown in Fig. 8, which provides both water levels
and gate flows over a period of many hours. The water-
level set-points were set to r1 = 1.450m, r2 = 1.510m,
r3 = 1.554m, r4 = 1.500m and r5 = 1.520m. Before 398
min (thick solid lines), gates Coly6-1 to Coly6-5 are con-
trolled by the distributed controller, designed as described
above. At 398 min, control is transferred, with the as-
sistance of anti-windup/bumpless-transfer compensation,
to a decentralised controller with additional decentralised
feed-forward action – see the end of Section 2 and (Weyer,
2007). To perturb the system, the flow over Coly6-6 is
manually increased from 20ML/day to 45ML/day at 159
min. This off-take load-disturbance is ceased at 462 min,
which perturbs the system again. The performance of the
optimal distributed controller is clearly superior. Indeed,
when the off-take is removed the decentralised controller
causes gate saturation.
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