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Abstract: The variable displacement hydraulic servo system performs specific characteristics on non-
linearity and time-varying. An exact model-based controller is difficult to be realized. In this study, the 

design method and experimental implementation of an adaptive fuzzy sliding-mode controller (AFSMC) 

are presented, which has on-line learning ability for dealing with the system time-varying and non-linear 

uncertainty behaviors for adjusting the control rule parameters. The tuning algorithms are derived in the 

sense of the Lyapunov stability theorem; thus, the stability of the system can be guaranteed. The 

experimental results show that the AFSMC can perform excellent velocity control for the variable 

displacement hydraulic servo system. 

 

1. INTRODUCTION 

Hydraulic servo systems are widely used in the industry due 
to their capability of providing large driving forces or 

torques, higher speed of response with fast motions and 

possible speed reversals, and continuous full-power 

operation. However, oil viscosity, friction forces between 

cylinder and piston, variable loading cause servo hydraulic 

control systems to suffer from highly nonlinear time variant 

dynamics, load sensitivity and parameter uncertainty (Merrit 

1976). Generally, it is difficult to establish or identify an 
accurate dynamic model of a complicated hydraulic servo 

system for designing optimal controller. Fuzzy control (FC) 

law can be designed based on some knowledge or without 

any knowledge about the control system. In addition, an 

appropriate fuzzy controller can overcome the 

environmental variation during operation processes. 

Therefore, it has been employed in the field of hydraulic 

servo system. In Zhao et al. (1993) and Zhao et al. (1994) 
developed a fuzzy state controller for a hydraulic position 

servo system with unknown load. A fuzzy controller has 

been used for a class of hydraulically actuated industrial 

robots (Corbet et al. 1996). An intelligent position control 

for electro-hydraulic drive has been proposed by the hybrid 

FC structure (Deticek 1999). In Rahbari et al. (2000), a PD 

type fuzzy controller has been used for hydraulic system. 

However, the design of a traditional fuzzy controller 
depends fully on an expert or the experience of an operator 

to establish the fuzzy rules bank. There is no guide rule for 

designing the fuzzy rules bank and parameters. The time-

consuming adjusting process is required to achieve the 

specified control performance. Thereafter, self-tuning 

algorithms were introduced into fuzzy controller to adjust 

fuzzy parameters and improve the control performance 

based upon a specified performance index (Maeds et al. 

1992). However, a complicated learning mechanism or a 

specific performance decision table designed by trial-and-

error is required. Thus, its application still presents certain 

difficulty, and the large amount of the fuzzy rules also 

makes the analysis complex. For reducing the fuzzy rules in 

the fuzzy controller, some researchers have proposed FC 

design methods based on the sliding mode control (SMC) 

scheme. The self-organizing fuzzy sliding mode control is 
developed in the parallel control of velocity control and 

energy-saving for a hydraulic valve-controlled cylinder 

system (Chiang et al. 2003). In Chiang et al. (2004), the 

concurrent implementation of high velocity control 

performance and high energy efficiency for hydraulic 

injection moulding machines has been proposed. These 

approaches are referred to as fuzzy sliding mode control 

(FSMC) design methods (Kim Corbet et al. 1995 and Choi 
et al. 1999). Since only one variable is defined as the fuzzy 

input variable, the main advantage of the FSMC lies in less 

fuzzy rules than FC. Moreover, the FSMC has more 

robustness against parameter variation (Choi et al. 1999). 

Although FC and FSMC are both effective methods, their 

major drawback is that the fuzzy rules should be previously 

tuned by time-consuming trial-and-error procedures. In 

order to tackle this problem, adaptive fuzzy control (AFC) 
based on the Lyapunov synthesis approach has been 

extensively studied (Wang 1994 and Lee et al. 2001). With 

this approach, the fuzzy rules can be automatically adjusted 

to achieve satisfactory system response by an adaptive law.  

The objective of this study is to propose an adaptive fuzzy 
sliding-mode controller (AFSMC) design method for the 

hydraulic servo control system altered by a variable 

displacement pump. This approach can automatically adjust 

the fuzzy rules, similar to the AFC, and can reduce the fuzzy 

rules, similar to the FSMC. All control parameters in 

AFSMC are tuned in the Lyapunov sense, thus the stability 
of the system can be guaranteed. Finally, the proposed 

control strategy is verified experimentally on the 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 13797 10.3182/20080706-5-KR-1001.1196



 

 

     

 

experimental setup of the variable displacement hydraulic 
servo control system.  

 

2. FORMULATION OF VARIABLE DISPLACEMENT 
HYDRAULIC SERVO SYSTEM 

The variable displacement hydraulic servo control system is 
designed and set up for investigating the dynamic 

performance and control effect. The test rig layout of the 

variable displacement hydraulic servo control system is 

shown in Fig.1. The servo system primary consists of a 

variable displacement axial piston pump and a controlled 

hydraulic cylinder, a position sensor… etc. The swash plate 

control unit of the variable displacement axial piston pump 

mainly contains an electro-hydraulic servo valve and an 
adjusting cylinder. The mathematics models of the main 

elements in this system are discussed as below: 

(a) Servo amplifier 

The servo amplifier proportionally transfers the input 

voltage into the input current driving the servo valve, and 
can be described as 

a
i K u=                                                                                 (1)  

where i  indicates the input current, 
a

K is the gain of servo 

amplifier and u  is the input voltage.   

(b) Servo valve 

The models of the servo valve contain the valve spool 
dynamics and the volume flow equation. The valve spool 

dynamics describes the relations between the input current i  

and the valve spool displacement y , and can be considered 

as a model of zero order, 1st or even 2nd order. It depends 

on the relative comparison between the natural frequency of 

the servo valve and that of the hydraulic cylinder. In this 
paper, the servo valve has more than triple natural frequency 

of the hydraulic cylinder. Thus, it can be regarded as a zero 

order model for swash plate control unit of the variable 

displacement pump 

v
y V i=                                                                               (2) 

were 
v

V  is the gain of servo valve. 

(c) Variable displacement mechanism 

The small adjusting hydraulic cylinder serves to control the 
swash plate angle of axial piston pump. Its natural frequency 

is about 200Hz, so that its dynamic characteristic can be 

regarded as a zero order model, and can be described as 

q
K yφ =                                                                            (3) 

where φ  is the plate angle, 
q

K is the gain of variable 

displacement mechanism. 

(d) Model of the swash plate axial piston pump                  

The relationship between the volumetric displacement of 
pump and load flow is described in the following  

l p p l l p p l l
Q D N C P k N C Pφ= − = −                      (4) 

where 
p

D  is the volumetric displacement of pump, 
p

N  is 

the pump speed (assumed constant), 
l

C  is the leakage 

coefficient of the pump, 
l

P  is the load pressure difference, 

p
k  is displacement gradient of pump. The continuity 

equation to the cylinder chamber is given by 

( )/ 4
l p p t l t e l

Q A x C P V Pβ= + + ɺɺ                                           (5) 

where
p

A  is the area of the piston, 
p

x  is the position of the 

piston rod,
t

C is the total load leakage coefficient of the 

cylinder,
t

V  is the total compressed volume and
e
β  is the 

effective bulk modulus of the system. 

According to the Newton’s 2
nd

 law, the motion equation of 
controlled hydraulic cylinder and loading can be derived as 

p l p p l
A P Mx Bx f= + +ɺɺ ɺ                                                       (6) 

where M is the total mass of piston and load referred to 

piston, B is the viscous damping coefficient of the piston 

and 
l

f  is the arbitrary load force on piston. Substituting (4) 

into (5) gives 

( ) ( )/ 4
p p p p l t l t e l

k N A x C C P V Pφ β= + + + ɺɺ                        (7) 

 

x

 

Fig. 1: Layout of the variable displacement hydraulic servo 
control system 

 

By combining (1) - (7), the state equations of the variable 
displacement hydraulic servo control system model can be 

achieved as follows 
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( )

( ) ( ) ( ) ( ) ( ) ( )i i

x x t

x a x t g x u d x f x g x u d x

=

=− + + = + +∑
ɺ

ɺ
                (8) 

where [ ]1 2( ) ( ) ( ) ( )( )
TT

p px t x t x t x tx t  =  = ɺ ɺɺ , 

( )2

1
( ) 4 / 4 /

e p t e l t t
a t A MV C C B MVβ β= + + , 

( )2
( ) / 4 /

e l t t
a t B M C C Vβ= + + , 

( ) 4 /
p e p p q v a t

g x A K N K V K MVβ=
, 

( )( ) (4 / / )
e l t l t l

d x C C f VM f Mβ=− + + ɺ  in which ( )g x  is a 

constant with positive value. 

 

3. ADAPTIVE FUZZY SLIDING MODE CONTROL 

Designing a SMC needs to know the system models and to 
find the inverse form of inertia term in system dynamics. 

However, the accurate mathematical models are always 

difficult to formulate or even not available. To solve these 

problems, an AFSMC shown in Fig.2 is proposed to control 

the variable displacement hydraulic servo control system. 

3.1 Fuzzy Control 

Assume that there are n rules in a fuzzy base and each of 
them has the following form: 

:
i

R  IF S  is 
i

F  THEN u  is 
i
α                                        (9)             

where S  is the input variable of the fuzzy system; u  is the 

output variable of the fuzzy system; 
i

F  are the triangular-

type membership functions; and 
i
α  are the singleton control 

actions for 1, 2,...,i n= . The defuzzification of the FC 

output is accomplished by the method of center-of-gravity 

(Lee 1990) 

1 1

/
n n

T

i i i

i i

u w wα α ξ
= =

= × =∑ ∑                                              (10)    

where 
i

w  is the firing weight of the ith rule, 

1 2
[ , ,..., ]

T

n
α α α α= is the parameter vector and 

1 2
[ , ,..., ]

T

n
ξ ξ ξ ξ=  is the vector of fuzzy basis functions 

1

/
n

i i i

i

w wξ
=

= ∑                                                                   (11) 

For the conventional FC, the control actions 
i
α  should be 

previously assigned through a lot of trails to achieve 

satisfactory control performance. In the following, the 

adaptive algorithm will be proposed to tune these control 

actions on-line. 

3.2 Fuzzy Sliding Mode Control 

The methods to design the fuzzy sliding-mode controller for 
a non-linear system with 2nd order where the error and the 

error change rate were used to synthesize fuzzy reasoning 

rules was proposed (Palm 1994 and Hwang et al. 1992). 

However, the rule number was larger and did not give the 

mathematical expression. Thus, it is difficult to analyze the 
properties of the control system. To overcome this problem, 

we adopt the sliding surface 0S = of SMC as a variable to 

compress all the information into one type, extend the 

sliding surface 0S =  to the fuzzy sliding surface 0S =ɶ ɶ , and 

make S  be a linguistic description of Sɶ . In this paper the 

two triangular-typed functions are used to define the 
membership functions of IF-part and THEN-part, which are 

depicted in Figs.3 (a) and 3(b) respectively. The fuzzy rules 

are given in the following form 

:
l

R IF S  is 
l

s
Fɶ  THEN 

fs
u  is

8
,

l

u
F

−ɶ 1,...,7.l =               (12) 

According to the sup-min compositional rule of inference 

and the defuzzification of the control output accomplished 

by the method of center-of-area, the mathematical 
expression can be derived as 

2 2

2 2

2 2

2 2

2 2

2 2

1

(7.5 13.5 5) /(9 15 5)

(9 11 2) /(18 18 2)

(1.5 1.5 ) /(9 3 1)

( 1.5 1.5 ) /(9 3 1)

( 9 11 2) /(18 18 2)

( 7.5 13.5 5) /(9 15 5)

1

fs

z z z z

z z z z

z z z z
u

z z z z

z z z z

z z z z

 + + + + + + + + + + −=  − + − − − + − − + − + − − + −

, 1

, 1 2/3

, 2/3 1/3

, 1/3 0

, 0 1/3

, 1/3 2/3

, 2/3 1

, 1

if z

if z

if z

if z

if z

if z

if z

if z

<−
− ≤ <−
− ≤ <−
− ≤ <
≤ <
≤ <
≤ <

≥

 

(13) 

where /z S= Φ  and 0Φ >  is a constant which describes 

the width of a boundary layer. As S ≥ Φ , it is easy to check 

sgn( )fsu S= − . 

3.3 Adaptive Fuzzy Sliding Mode Control System 

The control objective is to find a control law so that the 

hydraulic actuator can track the desired velocity ( )
d

x tɺ . 

Define the tracking error ( )e t  as 

( ) ( ) ( )
d p

e t x t x t= −ɺ ɺ                                                          (14) 

where ( )
p

x tɺ  is the control output and ( )
d

x tɺ  is the desired 

velocity. Then define a sliding surface as 

1
( ) ( ) ( )S t e t k e t= +ɺ                                                          (15) 

where
1k is non-zero positive constants. Assume that 

parameters of the system in (8) are well known and the 

external load disturbance is measurable, then we can take 
the control law as 

( )* 1

1( )[ ( ) ( ) ( ) ]
d

u g x S t f x d x x k e tη−
∆= − − + +ɺɺɺ ɺ                   (16) 

where ( ) ( ) ( ( ) / )S t S t sat S t∆ = −Φ Φ . The function S∆ has 

several properties as below that are useful in the design of 

adaptive law (Sanner et al. 1992). 

Property1: When ,S > Φ S S∆ = −Φ  and .S S∆ =
ɺ ɺ  

Property2: When ,S ≤ Φ 0.S S∆ ∆= =ɺ  
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The above properties of the boundary layer concept are to be 

exploited, in the design of AFSMC, our goal being to cease 

adaptation as soon as the boundary layer is reached. This 
approach aims to avoid the possibility of unbounded growth. 

Differentiating (15) along the system trajectories (8), we 

have 

1( ) ( ) ( ) ( ) ( )
d

S t f x g x u d x x k e t= − − − + +ɺ ɺɺɺ ɺ                      (17) 

Substituting (16) into (17) gives 

( ) ( ) 0, 0.S t S tη η∆+ = >ɺ                                          (18) 

Equation (18) shows that ( )e t  will converge to the 

neighbour of zero as t →∞ and the value of the 

neighbourhood are relative to the value of Φ  (Slotine et al. 

1896). However, the system parameters may be unknown or 

perturbed; the controller *
u  cannot be precisely 

implemented. Therefore, by the universal approximation 

theorem (Lee et al. 2001), an optimal fuzzy control 
*ˆ ( , )fzu S α  in the form of (10) exists such that the 

approximation error of fuzzy controller can be defined as 

* * *ˆ ( , )fzu u S α ρ− =                                                       (19) 

where *ρ  is the inherent approximation error and is assumed 

to be bounded by *
Mρ ≤ . Employing a fuzzy controller  

ˆˆ ( , )fzu S α to approximate *u  as 

ˆˆ ( , )fzu S α ˆTα ξ=                                                              (20) 

where α̂  is the estimated values of 
*α . The control law for 

the developed AFSMC is assumed to take the following form: 

ˆˆ ( , ) ( )fz rbu u S u Sα= +
                                                    (21) 

where the fuzzy controller ˆ
fzu  is designed to approximate the 

control *u and the robust controller ˆ
rbu is designed to 

compensate the difference between the controller *u and fuzzy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

controller ˆˆ ( , )fzu S α . Through (16), (17) and (21) the 

dynamical equation as follow can be derived: 
* ˆˆ( ) ( ) [ (S, ) ( )]

fz rb
S t S t g u u u Sη α∆+ = − −ɺ                        (22) 

In order to derive the adaptive laws that ensure convergence 
to the boundary layer, a candidate Lyapunov function is 

defined as: 

2
2

1 2

1 1 1
( , , )

2 2 2

TS
V S

g
α ρ α α ρ

η η
∆

∆ = + +ɶ ɶ ɶ ɶ ɶ                       (23) 

Where 
T *T T

ˆ-α α α=ɶ  and ρρρ ˆ-~ *
=  are the approximation 

error of the parameter vectors 
*T
α  and *ρ  respectively. In 

addition, 
1η  and 

2η  are positive constants. Differentiate (23) 

with respect to time as 

1 2( , , ) / / / .
T

V S S S gα ρ α α η ρρ η∆ ∆ ∆= + +ɺ ɺɺɺ ɶ ɶ ɶ ɶ ɶ ɶ                    (24) 

Thus, if Φ≤S , then 0S∆ = , it follows 0)~,~,( =∆ ραSVɺ . If 

Φ>S , then SS ɺɺ =∆ . By substituting (22) into (24), (25) can 

be obtained 

2 *

1 2

* *2 *

1 2

* *2 *

ˆˆ( , , ) / [ ( , )] ( ) / /

ˆˆ ˆ/ [ ( , ) ( , ) ( , )] ( ) / /

ˆˆ ˆ ˆ/ ( , ) [ ( , ) ( , )] ( )

T

fz rb

T

fz fz fz rb

fz fz fz rb

V S S g S u u S S u S

S g S u u S u S u S S u S

S g S u u S S u S u S S u S

α ρ η α α α η ρρ η
η α α α α α η ρρ η
η α α α

∆ ∆ ∆ ∆

∆ ∆ ∆

∆ ∆ ∆ ∆

=− + − − + +

=− + − + − − + +

≤− + − + − −

ɺ ɺɺ ɶ ɶ ɶ ɶ ɶ ɶ

ɺ ɺɶ ɶ ɶ ɶ

1 2

2 *

2 1

/ /

ˆ ˆ/ [ ( ) / ] ( ( ) / )

T

T

rbS g S S u S S S

α α η ρρ η
η ρ ρρ η α ξ α η∆ ∆ ∆ ∆

+ +

=− + − − + −

ɺ ɺɶ ɶ ɶ ɶ

ɺ ɺɶ ɶ

 

(25) 

For achieving ( , , ) 0V S α ρ∆ <ɺ ɶ ɶ , the adaptive laws of AFSMC 

are chosen as 

1
ˆ ( )S Sα η ξ∆=
ɺ                                                                  (26) 

ˆ( )rb fsu S uρ= −                                                                (27) 

2
ˆ Sρ η ∆=
ɺ                                                                       (28) 

Then (25) can be rewritten as 

S∆

( )
S

satΦ⋅
Φ

d
xɺ +

−

x

S∆

ˆ
fz

u +

+
rb

u

+
−

+
−

p
xɺ

α̂

ρ̂

S

( )
S

satΦ ⋅
Φ

 
Fig.2. AFSMC for Velocity Control of a Variable Displacement Hydraulic Servo System 
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2
( , , ) /V S S gα ρ η∆ ∆≤ −ɺ ɶ ɶ                                                    (29) 

Equations (26)-(29) only guarantee that S L∆ ∞∈ , but do not 

guarantee convergence. Integrating both sides of (29) and 

some derivations yields 

2

0

( ( ), , ) ( (0), , )V S V S
S dt

g

α ρ α ρ
η

∞ ∆ ∆
∆

∞ −
≤∫ ɺɶ ɶ ɶ ɶ

                    (30) 

Since the right side of (30) is bounded,
2

S L∆ ∈ . Using 

Barbalat’s lemma (Slotine et al. 1991) it can be shown that 

lim 0
t

S∆→∞
= . This means that inequality S ≤ Φ  is obtained 

asymptotically. Thus, the tracking error ( )e t  converges to a 

neighbourhood of zero. In summary, the AFSMC system is 

shown in (21), where ˆ
fz

u  is given in (20) with the 

parameters α̂  adjusted by (26) ;  
rb

u  is given in (27) with 

the parameter ρ̂  adjusted by (28). By applying this 

estimation law, the AFSMC system can be guaranteed to be 
stable in the Lyapunov sense. 

 

S

PBPMPSZRNSNMNB

PBPMPSZRNSNMNB

fs
u

2

3

1

3

2

3
− ΦΦΦ− Φ Φ 0

1
2

3

1

3
0

1

3
−

2

3
−1−

1

3
−Φ

 

Figs.3 Fuzzy partitions and membership functions of S and 

fs
u in the respective universe of discourse 

 

4. EXPERIMENT  

Figure 4 indicates the test results of the velocity control with 
Vset=20, 50 and 90 mm/s under the disturbance force of 

10 kN, generated by the disturbance cylinder, in the variable 

displacement hydraulic servo system. Figures 4(a) and 4(b) 
show the velocity control response and control input of 

AFSMC. From about 0.2 sec to 0.3 sec the velocity control 

response has larger velocity change rate that results from the 

non-linearity of the swash plate axial piston pump. The 

velocity control error shown in Fig4(c) clarifies the excellent 

control performance of the AFSMC for the variable 
displacement hydraulic servo system.  

For verifying the robustness of the AFSMC controller, the 

disturbance force set by the disturbance cylinder is changed 
from 10 kN to 50 kN. Figure 5 indicates the experimental 

results of the velocity control with Vset=20, 50 and 90 mm/s 

under the disturbance force of 50 kN in the variable 

displacement hydraulic servo system. In comparison with 

Fig.4 and Fig.5, the robustness of the proposed controller 

can be confirmed in this experiment clearly. 
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Fig.4 Experimental results of velocity control Vset=20, 50 

and 90 mm/s in the variable displacement hydraulic system 
with loading force 10kN: (a) velocity control response, (b) 

control input, (c) velocity control error 

5. CONCLUSIONS 

This study has experimentally demonstrated the 
effectiveness of the proposed AFSMC for the velocity 

control of the variable displacement hydraulic servo system. 

Good robustness and excellent self-adaptability as well as 

superior dynamic performance with regard to various 

external disturbance forces are verified. The AFSMC is 

comprised of the SISO adaptive fuzzy controller for 
approximating the equivalent controller and the adaptive 

fuzzy sliding mode controller for compensating the 

approximate error of the equivalent controller and the 

external disturbance. All parameters of the fuzzy basis 

function can be tuned based on the Lyapunov stability 

theorem. Thus, the stability of the control system can be 

guaranteed. The effectiveness of the proposed AFSMC has 

been verified successfully through the various experimental 
results. 
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Fig.5 Experimental results of velocity control Vset=20, 50 
and 90 mm/s in the variable displacement hydraulic system 

with loading force 50kN: (a) velocity control response, (b) 

control input, (c) velocity control error  
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