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Abstract: The global environmental warming which is discussed these days is, at the opinion
of many experts, amongst other things ascribed to human induced carbon dioxide emissions
which intensify the greenhouse effect. To face and overcome the negative consequences like
environmental disasters, the rising mean sea level and others, new power plant concepts are
researched and developed. In this article a novel, zero emission, oxyfuel power plant concept
is discussed. Due to the novelty of the process it is examined in calculations, simulations and
laboratory tests by a research group at RWTH Aachen university and does not exist in reality
by now. Besides a conventional water cycle, an exhaust gas cycle has a major function in the
process. The operation of the exhaust gas cycle requires an automation concept. In this paper
an object-oriented model is used as a basis for examining the process behaviour and developing
a controller for the multivariable and strongly coupled system. For the sliced exhaust gas cycle
a model-based predictive controller is introduced. A parameter study presents the impact of
selected controller parameters.

Keywords: Model predictive and optimization-based control; Process modelling and
identification; Modelling, operation and control of power systems; Control system design;
Object oriented modelling;

1. INTRODUCTION

The currently observed global warming is inter alia im-
plicated to human induced carbon dioxide emissions (see
Houghton et al. (2001); BASC (2000)). The expected
negativ impacts such as environmental disasters and the
rising mean sea level yield amongst others to novel fossil
power plants with carbon dioxide separation. One concept
which is researched at RWTH Aachen university is based
on the oxyfuel combustion methodology which uses pure
oxygen or oxygenated exhaust gas for oxidizing the com-
bustibles.

The combustion gas is gained via the exhaust gas cycle
depicted in fig. 1. Parts of the exhaust gas from the
combustion chamber are recirculated and oxygenated in
the ceramic high temperature membrane. The exhaust gas
blower conveys the combustion gas into the combustion
chamber where it is used to burn the coal. Since the
exhaust gas after the combustion chamber principally only
consists of the species H2O and CO2 an economical carbon
dioxide separation becomes possible.

For the oxygen extraction ambient air is compressed and
preheated in the gas-gas heatexchanger. While passing
the ceramic high temperature membrane oxygen diffuses
from the air side to the exhaust gas side. The diffusion
is driven by the membrane temperature and the oxygen
partial pressure ratio between the air and the exhaust gas
side (see also eq. 1). As it will be discussed in more detail
in the next section, both variables are influenced by the
angular velocities of the compressor and of the exhaust gas

blower as well. The compressed and heated air is expanded
in the turbine to partly regain the energy conducted for
its compression.

Since the introduced process is part of a research project,
it is yet not existing in reality. Several partners develop
the fundamentals for building and operating the plant.
This paper addresses the automation of the process, an-
alyzing the relevant control aspects and implementing a
first model-predictive control strategy. As a starting point
a sliced exhaust gas cycle without recirculation is consid-
ered. Due to the lack of data a process model is examined.

2. PLANT MODEL AND SENSITIVITY MATRIX

The model of the sliced exhaust gas cycle (see fig. 1)
was realized using the object-oriented modelling language
MODELICA. The highly nonlinear overall model is based on
the ThermoPower library (see Casella, Leva (2003)) which
uses the standard MODELICA Media library (see Casella
et. al. (2006)).

The Media library provides structures, functions and data
to model mere and mixture fluids. By defining two inde-
pendent states of a mere fluid, its state is fully defined.
Possible state variables are temperature T , pressure p,
specific enthalpy h, specific inner energy u, specific entropy
s or density ρ. In the Media library intensive state variables
are used. For fluid mixtures additionally the composition
ξ must be given.

The ThermoPower library provides connectors (i. e. a
fundamental class to uniformly connect components to
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Fig. 1. Exhaust gas cycle of an Oxyfuel-Process with
controller

each other) and basic models in the field of power plant
modelling. Besides models for components on the water
and (exhaust) gas side, thermal and electrical components
are made available. An important basis of this library is
the breakup between the conservation and state equations
(see Casella, Leva (2003)). Thus, it is possible to formulate
the components independently of the used fluid. Thereby,
it is easy to exchange the fluid in an existing model.

For the turbo machines a characteristic number approach
(see Gas̆parović (1973)) has been implemented and ad-
vanced 1 using the facilities of the modelling language.
This approach is capable of estimating the static behaviour
of axial turbo machines with only one set of equations
using known or estimated design data. The dynamic be-
haviour is modelled using the principle of conservation of
angular momentum.

For the ceramic membrane and the gas-gas heatexchanger
a finite volume approach is used. The gas-gas heatex-
changer is fully set up using the components of the Ther-
moPower library. Besides the heat conduction through the
pipe walls, convection is considered as well as radiation.
Simplified, the ceramic membrane can be illustrated as
a heat exchanger augmented by the ability to transport
oxygen. The basic equation for describing the diffusion

j̇′′O2
=

C1

d
T exp

(
−

C2

T

)
ln

(
pO2,Air

pO2,Exhaust

)
(1)

can be derived from an equation which was proposed by
Wager (1975).

According to this the mass flow density j̇′′O2
(i. e. mass flow

per area) depends on the two material constants C1 and
C2, the layer thickness d the temperature T and the oxygen
partial pressures pO2,Air/Exhaust.

Special attention was drawn to the initialization of the
process model. As the model consists of a complex set
of nonlinear, differential algebraic equations (DAE), a
consistent initialization is necessary (see Nötges et. al.

1 Simplifications of the original article as constant gas or geometric

properties were overridden.
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Fig. 2. Sensitivity study

(2007)). For this purpose adequate starting values have
been assigned to the dynamic states as well as the iteration
variables. Furthermore, the model was prepared to start in
steady state.

The developed model is highly nonlinear and strongly
coupled (see Nötges, Abel (2007)). Fig. 2 shows an
excerpt of the accomplished sensitivity study clarifying the
dynamics and the couplings between the in- and outputs.
In the lowest row, the impressed inputs ωEBL (angular
velocity of the exhaust gas blower), ωCMP (angular velocity
of the compressor) and ṁC (coal mass flow into the
combustion chamber) are given, the upper three rows show
the corresponding system responses ṁCCH (exhaust gas
mass flow into the combustion chamber), ξO2,CHM (oxygen
concentration behind the ceramic membrane) and ξO2,CCH

(oxygen concentration behind the combustion chamber).

When the angular velocity ωEBL is raised the exhaust
gas mass flow increases as expected. In consequence of
the higher mass flow the oxygen concentration ξO2,CHM

decreases. However, the absolut oxygen mass flow ascends
because of the lower ceramic membrane bulk oxygen
partial pressure on the exhaust side which heightens the
diffusion as a result of the higher driving partial pressure
ratio (see eq. 1). This is why the oxygen concentration
ξO2,CCH rises.

The increase of ωCMP leads to heightening both oxy-
gen concentrations in consequence of the higher pressure,
temperature and oxygen offer in the ceramic membrane
and the higher oxygen diffusion. The exhaust mass flow
first increases because of the higher diffusion. The higher
temperature and intensified heat transfer on the air side
cause a temperature rise on the exhaust side and hence
a decrease in the density. At a constant rotational speed
of the exhaust gas blower a smaller density - and hence a
greater specific volume - causes the mass flow to decrease
in the long term.

With a higher coal mass flow ṁC the oxygen concentration
behind the combustion chamber decreases. In the sliced
case introduced in this paper ṁCCH and ξO2,CHM - in
contrast to the closed exhaust gas cycle - are not effected.
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For a conventional PID-based automation, the discussed
sensitivity matrix provides a reasonable basis to design
a multivariable controller configuration. Furthermore, the
matrix provides an informative basis to appreciate the
behaviour of the model-based predictive controller. This
is discussed in the next section.

3. SIMULATION ENVIRONMENT

The development of a model-based predictive controller
(MPC) for the power plant and the simulations which pro-
duced the results of this article has been done with the tool
MATLAB/SIMULINK

. Originally a coupling of the nonlinear
MODELICA model with SIMULINK

 was intended to verify
the controller but failed so far due to technical problems.
For primary analysis the nonlinear system formulated in
MODELICA is therfore transformed to a linear system of
order 63 using the linearization ability of DYMOLA. In
the following, this linearized system description is used
as the plant model in SIMULINK

. Further efforts will aim
at controlling the nonlinear system.

In fig. 3 the structure of the developed SIMULINK
 model

is shown. The linear plant of order 63 is observed using
a discrete Kálmán filter of order 12 (see also section 5).
The conversion from continuous to discrete time domain
is achieved with a sample and hold element. With the
estimated state x̃ and the future setpoints ŵ the MPC 2

calculates optimal values for the actuating variables ∆ûk
(see appendix A). In the next sections the controller
requirements and the theoretical background are given.
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Fig. 3. Structure of the control circuit

4. CONTROLLER REQUIREMENTS

For the safe and efficient operating of the exhaust gas
cycle it is necessary to control different variables. In this
article three inputs and three outputs of the plant are
considered (see fig. 1). As depicted in fig. 2 certain inputs
are especially capable for controlling a certain output. In

2 The same model of order 12 that is used for observation is used

for the MPC, too.

the following, the control variables are described and the
preferred actuating variable is given.

First of all, the mass flow ṁCCH of the exhaust gas into the
combustion chamber has to be controlled to handle power
demands to the plant. A higher power demand generally
requires more oxygen (contained in the exhaust gas) and
coal carried into the combustion chamber. Currently, it is
expected that the dynamic of the oxygen supply into the
combustion chamber is slower than the dynamic of the coal
supply. Hence, the setpoint for ṁCCH is raised to satisfy
the power demand and ṁC is tracked to ensure the desired
oxygen concentration after the combustion chamber. For
regulating the mass flow ωEBL is mainly used.

Second, the oxygen concentration ξO2,CHM after the ce-
ramic membrane has to be kept unchanged to assure
constant and efficient combustion conditions even if other
process parameters change. The burners, the combustion
chamber and the steam generator will be optimized for
the operating point and therefore depend on a constant
ξO2,CHM. The regulation is mostly realized using ωCMP.

Third, the oxygen concentration ξO2,CCH has to be kept
constant to assure complete combustion on the one hand
and high efficiency on the other hand. The concentra-
tion behind the combustion chamber is a measure for
the air/fuel ratio and therefore qualifies the combustion.
ξO2,CCH will be mainly regulated using ṁC.

As mentioned earlier, the described system is a strongly
coupled multivariable system. Furthermore, constraints
exist for example for the rotational speed of the turbo com-
ponents. To take the mentioned couplings and boundary
conditions into account a model based predictive controller
(MPC) will be applied. In this article a first concept is
discussed based on a common discrete constrained linear
MPC.

5. MODEL-BASED PREDICTIVE CONTROLLER

Below, a short summary on the predictive controller theory
is given. A more detailed introduction can be found in
Maciejowski (2002) or Rossiter (2003).

The functionality of the model-based predictive control
concept is drafted in fig. 4.

k
Future

k+1 k N+ u k N+ 2k-1

u

w

y

∆uk

y

k N+ 1

ˆˆ

ˆ

ˆ

Fig. 4. Functionality of model-based predictive controllers

Model-based predictive controllers use an internal, in most
cases simplified, dynamic model of the underlying control
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process to estimate the prospective outputs ŷ of the plant
against values of the input signals û (see appendix A for
the composition of the vectors). Applying process infor-
mation in terms of a process model, MPCs are especially
suitable for strongly coupled multivariable control systems
like it is given with the exhaust gas cycle of the oxyfuel
power plant. Furthermore an MPC provides the feasibility
of feeding knowledge about future set points ŵ (for ex-
ample load requests) or disturbances to the controller. By
minimizing the quadratic cost function

J =
(
ŷ − ŵ

)T
Γ

(
ŷ − ŵ

)
+ ∆ûT

Λ∆û (2)

with

ŷ =




y
k+N1

...
y

k+N2


 , ŵ =




wk+N1

...
wk+N2


 ,∆û =




∆uk
...

∆uk+Nu−1




(3)

an optimal trajectory of the actuating variables û is
determined:

The cost function penalizes the squared sum of the devia-
tions between the estimated future plant outputs ŷ and
the estimated future set points ŵ and additionally the
squared sum of the future control moves ∆û. Λ and Γ
are weighting matrices (see eq. 4 to eq. 6). Thus, the
operational behaviour is optimized under the expected
future conditions. Moreover, MPCs are capable to handle
constraints, for example given by limits of the controlled
and actuating variables, by integrating them into the opti-
mization problem. The optimization results in a trajectory
of the actuating variables over the next Nu time steps.
The inputs are assumed to remain constant for k > Nu.
The optimization is repeated at every time step (receding
horizon principle) and only ûk is applied to the plant.

The weighting matrix Γ which penalizes the deviation of
each controlled variable for every time step in the predicted
time period is composed by

Γ =




γ1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 γN2−N1+1


 (4)

using the sub matrices γi. The weighting matrix Λ∗ for
penalizing the use of the actuated variables is set up
analogical using λi. The matrices Γ and Λ∗ are normalized
such that

N2−N1+1∑

i=1

γi,i = 100 % and

Nu∑

i=1

Λ∗
i,i = 100%. (5)

The factor SΛ

Γ

weights the penalization between control

deviation and use of the actuated variables:

Λ = SΛ

Γ

Λ∗. (6)

In the context of this article the process is abstracted to
a linear system with three inputs uk and three outputs
y

k
. Using a discrete linear state-space description of the

plant, the future outputs ŷ can be computed within the

lower k = N1 and upper prediction horizon N2 by eq. 7 3 .

ŷ = Fxk + Euk−1 + H∆û (7)

The matrices E, F and H depend on the prediction
horizon (N1, N2) and the control horizon (Nu) and are
given in appendix A.

In general the optimal solution for ∆û is found by solving
the quadratic programming problem

∆ûopt. = arg min {J (∆û)}
M∆û≤n

(8)

where M and n define linear constraints in the form of an
inequality condition on the optimization variable ∆û. In
the case that no constraints become relevant the solution of
eq. 8 can be obtained analytically by zeroing the derivation
∂J/∂∆û

!
= 0 and simplifies to a degenerated state-space

control law

∆ûopt.,k = − ( I 0 )
(
H

T ΓH + Λ
)−1

H
T Γ · ê

= − ( I 0 )K
∗
MPC · ê = KMPC · ê

(9)

with

ê = ŵ −
(
Fxk + Euk−1

)
= ŵ − ŷ

free
(10)

where ŷ
free

is the predicted free systems response when
no change of the input signal is applied to the plant. The
matrix (I 0) is used to computed ûopt.,k from ûopt..

As according to eq. 10 the model-predictive controller
requires the actual state xk a Kálmán filter (see Kálmán
(1960)) is designed to estimate the unmeasurable states
x̃k using the kalman and estim functions of MATLAB/-
SIMULINK

. The first function calculates the feedback
matrix L̃ of the Kálmán filter, the latter is used to set up a
state-space model with uObs. = (uk, y

k
)T as its input and

the estimated systems state x̃ as its output. The matrices
Q and R which are needed for the kalman function and
qualify the process and measurement noise respectively
are - due to the lack of measured data - set to identity
matrices. By this means, an even emphasis is taken on the
reliability of model and measurement accuracy.

The observer matrices Ã, B̃, C̃ and D̃ are obtained
by identifying the plant model with the ident tool of
MATLAB/SIMULINK

. The processed data results from the
step responses outlined in fig. 2. A system of order 12 was
found adequate for observing and controlling the system.

6. RESULTS

In this section parameter studies for the introduced MPC
are shown. In the following figures changes in the set-
point for ṁCCH are examined using different controller
3 Here, no disturbance model is being applied.
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parameters. The setpoints for ξO2,CHM and ξO2,CHM are
constant at 15% and 1.7 % respectively. On the left side
the controlled variables ṁCCH, ξO2,CHM and ξO2,CCH are
shown. The right column contains the actuating variables
ωEBL, ωCMP and ṁC.

Fig. 5 shows the effect when altering the ratio SΛ

Γ

between

the weighting matrices Λ and Γ (see equation eq. 6).
Increasing the ratio SΛ

Γ

(in fig. 5 denoted with arrows)

leads to heightening the penalization of moves in the
actuating variables. Therefore, the controller behaviour
becomes more smooth. On the other hand, the control
deviation increases. With very small ratios the controller
tends to overshoot and oscillate.
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In fig. 6 the effect of changing the weighting matrix γ

is depicted. This matrix describes the penalization of the
deviation of the controlled variables to their setpoints.
Here, the penalization of deviations in ṁCCH (i. e. y1) is in-
creased whereas the remaining weights are reduced. With
the increase the controller realizes a smaller deviation of
ṁCCH from its setpoint at the expense of the accuracy of
the left controlled variables. The more accuracy for ṁCCH

is required the stronger the actuating variables are used.

The application of a constraint on the change of the
angular velocity of the compressor is shown in fig. 7. In
the constrained case the angular velocity does not change
faster than allowed by the constraint. Thus, limitations
necessary to operate the compressor can be considered.
On the other hand, the controller is restricted and higher
deviations of the controlled variables occur.

The results clarify the wide range for the controller pa-
rameters which have to be chosen carefully. Furthermore,
in this article just an excerpt of the possible parameters
is given. Other parameters are the choice of the control

γ
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and prediction horizon N1, N2 and Nu respectively, the
weighting matrix λ, the sample time TS , constraints and
others.

7. CONCLUSION

This article introduces a novel fossil power plant concept
with internal carbon dioxide separation based on an oxy-
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fuel combustion. A simplified model of the exhaust gas
cycle is analyzed concerning control aspects. The operation
of the complex and strongly coupled system makes high
demands in terms of its automation, but model-predictive
controllers are in particular appropriate of serving these
demands.

The displayed results show a good performance of the
MPC concerning changes in the setpoint. Especially the
controller is capable to consider the internal coupling of the
plant. The accomplished parameter studies demonstrate
the effects of the controller parameters and can be used as
a starting point for further research. For this reason this
article makes an important contribution to the automation
of the new power plant concept.

Future works will have to adapt the introduced control
concept to the closed-loop exhaust gas cycle. First a
disturbance model has to be applied to eq. 7 in order
to realize offset free tracking. Moreover the controller
will be deployed to control the nonlinear plant model.
For that purpose, either the coupling between SIMULINK



and DYMOLA has to be realized or the MPC has to
be implemented in DYMOLA which is straightforward in
the unconstrained but elaborate for the constrained case
because a solver for the latter case has to be implemented.

Furthermore, the control concept has to be integrated
in the superposed control structure. Feasible sensors and
actors will be explored in order to choose controlled and
actuating variables.

The fundamentals depicted in this article build an excel-
lent starting point to deal with the given aspects.
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Appendix A. USED MATRICES AND VECTORS

The input and output vectors are built:

uk =

(
ωEBL

ωCMP

ṁC

)
, y

k
=

(
ṁCCH

ξO2,CHM

ξO2,CCH

)
. (A.1)

The structure of the matrices used for the MPC is:

F =




CA
N1

...
CA

N2


 , (A.2)

E =




N1−1∑

i=0

(
CA

i
B

)
+ D

...
N2−1∑

i=0

(
CA

i
B

)
+ D




(A.3)

and

H =




hN1−1 0 . . . . . . . . . 0

hN1
hN1−1

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0

hNu−1

. . . hN1−1

hNu

. . . hN1

...
. . .

. . .
...

hN2−1 . . . hNu
hNu−1 . . . hN2−Nu−1




(A.4)

with

hn−m =





n−m∑

i=0

(
CA

i
B

)
+ D n − m ≥ 0

0 n − m < 0.

(A.5)
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