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Abstract: In this paper, an interactive term identification approach is proposed for identifi-
cation of non-parametric nonlinear systems. The idea is to make a high-dimensional nonlinear
identification problem into a number of low-dimensional problems and thus to effectively combat
the problem of the curse of dimensionality. Convergence results are established in the paper and
numerical results support the theoretical analysis and demonstrate that the proposed approach
is an attractive alternative to existing nonlinear identification methods.

1. INTRODUCTION

Nonlinear system identification is usually the first step
in nonlinear system analysis and design. Despite progress
made in recent years in Haber et al. (1990); Juditsky
et al. (1995); Ljung et al. (2005); Sjoberg et al. (1995);
Soderstrom et al. (2005), development of nonlinear system
identification is still in its early stage. In particular, non-
parametric nonlinear system identification without a priori
structural information poses a very tough problem. This
is partially because the nonlinear structure is too rich and
no single representation could cover all possibilities.

Consider a general non-parametric nonlinear finite impulse
response (FIR) system

y[k] = f(u[k − 1], u[k − 2], ..., u[k − n]) + v[k]

= c̄+

n∑

j=1

f̄j(u[k−j])+
∑

1≤j1<j2≤n

f̄j1j2(u[k−j1], u[k−j2])+...

+
∑

1≤j1<j2<...<jn−1≤n

f̄j1...jn−1
(u[k − j1], ..., u[k − jn−1])

+f̄12...n(u[k − 1], u[k − 2], ..., u[k − n]) + v(k),

k = 1, 2, ..., N (1.1)

where y[k] and u[k] are output and input measurements
with the input u[k] being iid random sequence in a possibly
unknown interval I ∈ R with a (unknown) probability
density function ψ(·), and the noise v[k] is a sequence of
independent random variables (not necessarily identically
distributed) with zero mean and uniformly bounded vari-
ance. The functions f̄j1j2...jl

’s, referred to as l-factor terms,
are unknown and describe interactions of variables u(k −
j1), u(k− j2), ..., u(k− jl). No structural prior information
on f̄j1j2...jl

, l = 1, 2, ..., n is assumed.

A common aim of most methods in literature is to find
directly the nonlinearity f representing the input-output
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relationship of the system. This amounts to solving a
high dimensional nonlinear identification problem directly
and is usually difficult if the order or dimension n is
not small. One of the main challenges is the curse of di-
mensionality in non-parametric identification. To illustrate
the situation, let u(·) be uniformly distributed in I =
[−0.5, 0.5]. Suppose one wants to estimate f(x1, x2, ..., xn)
at a point (x1, x2, ..., xn) ∈ In. Since any identification
scheme is in some form of local smoother or weighted
average based on the measurement data in the neighbor-
hood of (x1, x2, ..., xn), there must be enough local data in
the neighborhood to average out the effects of noise and
the uncertainty due to lack of structural information. For
simplicity, suppose the neighborhood is a hyper-box with
the side length 0.1. Then, the volume of In is 1n = 1
and the volume of the neighborhood is 0.1n. This implies
the probability that a measurement data (u[k − j1], u[k −
j2], ..., u[k − jn]) is in the neighborhood of (x1, x2, ..., xn)
is 0.1n/1 = 0.1n that goes to zero exponentially as the
order or dimension n gets larger. Let N be the number of
total data measurements. For a large N , it is likely there
are N · 0.1n measurements in the neighborhood. Unless N
is huge, there is not enough data in a neighborhood for
identification purpose for moderately large n.

What we are interested in this paper is not a general
nonlinear system as in (1.1) but nonlinear systems with
a low degree of interactions, i.e., the systems that contain
no more than 3-factor interaction terms:

y[k] = c̄+

n∑

j=1

f̄j(u[k − j])

+
∑

1≤j1<j2≤n

f̄j1j2(u[k − j1], u[k − j2])

+
∑

1≤j1<j2<j3≤n

f̄j1j2j3(u[k − j1], u[k − j2], u[k − j3])

+v(k). (1.2)
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The 3-factor terms, f̄j1j2j3 ’s, are zero if the system is
known to contain at most 2-factor terms. For the system
(1.2), we propose a radically different framework for non-
parametric nonlinear system identification by fully uti-
lizing the fact that the interaction among the variables
u[k − 1], u[k − 2], ..., u[k − n] is of low degree. Our aim
is not to estimate the high dimensional f directly but
to estimate the unknown interactive terms f̄j , f̄j1j2 and
f̄j1j2j3 as well as the unknown constant, c̄ based on the
input and output measurements. Moreover, identification
of each interactive term must be decoupled with each other
in some sense. This is very beneficial. For instance, suppose
the system is known to contain at most 2-factor terms,
for example, bilinear systems. Continue the example dis-
cussed above with u(·) uniformly in I = [−0.5, 0.5] and
n = 5. Then, the problem becomes identification of five 1-
dimensional 1-factor terms f̄j(u[k − j]), j = 1, 2..., 5, and
ten 2-dimensional 2-factor terms f̄j1j2(u[k− j1], u[k− j2]),
1 ≤ j1 < j2 ≤ 5. Though the number of identifications
is increased, the complexity of identification is reduced
drastically. In addition to decoupling the identification of
those fifteen 1-factor or 2-factor terms, identification of
each interactive term is much simpler. Because of decou-
pling, the probability of an u[k − j] in the neighborhood
of xj for one-dimensional identification is 0.1/1 = 0.1 and
the probability of (u[k − j1], u[k − j2]) in the neighbor-
hood of (xj1 , xj2) is 0.12/1 = 0.12 for two-dimensional
identification. Suppose the total number of data points
is N = 104. This implies that it is likely there are 103 or
102 measurements in the neighborhood for identification
of 1-factor or 2-factor terms, respectively. Recall that if
the 5-dimensional f(x1, x2, x3, x4, x5) is identified directly,
the probability that a data vector is in the neighborhood
of (x1, x2, x3, x4, x5) is 0.15. With N = 104, the proba-
bility that there is one measurement in a neighborhood
is 0.1. That makes that identification is nearly impossible
in the presence of noise, or the identification error will
be large. Clearly, the performance of identification of the
1-factor or 2-factor term can be substantially improved
for the same N , compared to the identification of a five-
dimensional problem f . This effectively combats the curse
of dimensionality. In a sense, the approach proposed here
is to replace a difficult high dimensional problem by a
number of less-difficult and manageable low dimensional
problems.

The contribution of this paper is four-fold:

• A model is proposed for a general FIR nonlinear
system with a low degree of interaction term that
emphasize the interactions between variables.

• A normalization procedure is established that makes
identification of each interactive term separable in
some sense.

• An identification algorithm is proposed which is con-
vergent and is effective in combating the curse of
dimensionality for nonlinear systems with low degree
of interaction terms.

• A relative contribution method for order determina-
tion and regressor selection is proposed and tested.

1.1 System and identification

The purpose of identification is to estimate c̄, f̄j , f̄j1j2

and f̄j1j2j3 based on the input and output measurements.
Immediately, we notice that the representation of (1.2) is
actually not unique and ill-defined for identification pur-
poses. For instance, f̄1(·)+c and f̄2(·)−c, for any constant
c, would produce identical input-output measurements.
Hence, the system has to be normalized for identification
purposes. To this end, we propose an normalization pro-
cess which guarantees identifiability and moreover makes
separation of each term possible. The idea can be illus-
trated on a system with only 1-factor terms

y[k] = f(u[k − 1], ..., u[k − n]) + v[k]

= c̄+
n∑

j=1

f̄j(u[k − j]) + v[k].

Let E denote the expectation operator

Ef(u[k − 1], ..., u[k − n]) =∫

I

...

∫

I

f(x1, ..., xn)ψ(x1)...ψ(xn)dx1...dxn

where ψ(·) is the unknown probability density function of
u(·) and I is the interval in which the input lies, and Ej the
expectation operator with respect to the variable u[k − j]
that averages out u[k − j] from the argument list,

Ejf(u[k − 1], ..., u[k − n]) =∫

I

f(u[k−1], ..., u[k−j+1], x, u[k−j−1], ..., u[k−n])ψ(x)dx.

Now, apply the identity operator to the system

y[k] =
n∏

γ=1

(Id − Eγ + Eγ)(c̄+
n∑

j=1

f̄j(u[k − j])) + v[k]

= c̄+

n∑

j=1

Ej f̄j(u[k − j])

+

n∑

j=1

{f̄j(u[k − j]) − Ej f̄j(u[k − j])} + v[k]

= c̄+
n∑

j=1

Ef̄j(u[k − j])

︸ ︷︷ ︸
c

+
n∑

j=1

{f̄j(u[k − j]) − Ef̄j(u[k − j])}
︸ ︷︷ ︸

fj(u[k−j])

+v[k]

where Id is the identity operator. It is trivially verified that
the fj ’s are orthogonal

Efj(u[k − j]) = 0 and

E{fj1(u[k − j1])fj2(u[k − j2])} = 0, j1 6= j2.
The idea can be easily extended to a general system
with arbitrary higher factor terms by repeatedly applying
the identify operator

∏n
γ=1(Id − Eγ + Eγ) and grouping

proper terms together. Before presenting the main results
of the section, some notation has to be defined. Let
the conditional expectations or marginal integrations be
represented by

E{fj(u[k − j]) | u[k − i] = xi} =

{
fi(xi) i = j
Efj(u[k − j]) i 6= j

Other conditional expectations are similarly defined.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2739



Theorem 1.1. Consider the system (1.2) with up to 3-
factor interaction terms. Then we have:

(1) The system (1.2) can be represented by

y[k] = c+

n∑

j=1

fj(u[k − j])

+
∑

1≤j1<j2≤n

fj1j2(u[k − j1], u[k − j2])

+
∑

1≤j1<j2<j3≤n

fj1j2j3(u[k − j1], u[k − j2], u[k − j3])

+v[k] (1.3)

for some constant c and some functions fj , fj1j2 and
fj1j2j3 , where the expectation and the conditional
expectations satisfy

Ey[k] = c,
Efj(u[k − j]) = 0,

1 ≤ j ≤ n
E{fj1j2(u[k − j1], u[k − j2]) | u[k − j]} = 0,

1 ≤ j1 < j2 ≤ n, 1 ≤ j ≤ n

E

{
fj1j2j3(u[k − j1], u[k − j2], u[k − j3])

| u[k − j]

}
= 0,

1 ≤ j1 < j2 < j3 ≤ n, 1 ≤ j ≤ n

E

{
fj1j2j3(u[k − j1], u[k − j2], u[k − j3])

| u[k − i1], u[k − i2]

}
= 0,

1 ≤ j1 < j2 < j3 ≤ n, 1 ≤ i1 < i2 ≤ n

(1.4)

(2) The 1, 2 and 3-factor terms, fj , fj1j2 and fj1j2j3 , are
orthogonal. i.e.,
Efj(u[k − j]) = Efj1j2(u[k − j1], u[k − j2])

= Efj1j2j3(u[k − j1], u[k − j2], u[k − j3]) = 0,

E{fj1(u[k − j1])fj2(u[k − j2])} =

E

{
fi1i2(u[k − i1], u[k − i2])
·fj1j2(u[k − j1], u[k − j2])

}

= E

{
fi1i2i3(u[k − i1], u[k − i2], u[k − i3])
·fj1j2j3(u[k − j1], u[k − j2], u[k − j3])

}
= 0

for j1 6= j2, (i1, i2) 6= (j1, j2) and (i1, i2, i3) 6=
(j1, j2, j3), and
E{fj(u[k − j])fj1j2(u[k − j1], u[k − j2])} =

E{fj(u[k − j])fj1j2j3(u[k − j1], u[k − j2], u[k − j3])}

= E

{
fi1i2(u[k − i1], u[k − i2])
·fj1j2j3(u[k − j1], u[k − j2], u[k − j3])

}
= 0.

for any j, j1, j2, j3, i1, i2.
(3) The unknown c, fj , fj1j2 and fj1j2j3 are the expec-

tation and conditional expectations of the output,
c = Ey[k],
fj(xj) = E{y(k) | u[k − j] = xj} − c,

1 ≤ j ≤ n
fj1j2(xj1 , xj2) =
E{y[k] | u[k − j1] = xj1 , u[k − j2] = xj2}
− fj1(xj1) − fj2(xj2) − c,

1 ≤ j1 < j2 ≤ n
fj1j2j3(xj1 , xj2 , xj3) =

E

{
y[k] | u[k − j1] = xj1 ,

u[k − j2] = xj2 , u[k − j3] = xj3

}

− fj1j2(xj1 , xj2) − fj1j3(xj1 , xj3) − fj2j3(xj2 , xj3)
− fj1(xj1) − fj2(xj2) − fj3(xj3) − c,

1 ≤ j1 < j2 < j3 ≤ n. (1.5)

From the above theorem, the unknown c, fj , fj1j2 and
fj1j2j3 can be calculated from expectation and condi-
tional expectation values or marginal integrations. Now
the question is how to calculate these expectation values
by empirical averages based on the available input-output
measurement data set {y[k], u[k−1], u[k−2], ..., u[k−n]}N

1 .
In this paper, we adopt a fairly simple yet efficient kernel
approach. To this end, let (x1, x2, .., xn) ∈ Rn and each
xj ∈ I that is the interval in which the input u(·) lies.
Because u[k]’s are iid and the law of large number applies
which implies

1

N

N∑

k=1

f2
j (u[k − j]) → Ef2

j (u[k − j])

1

N

N∑

k=1

f2
j1j2

(u[k − j1], u[k − j2])

→ Ef2
j1j2

(u[k − j1], u[k − j2])

1

N

N∑

k=1

f2
j1j2j3

(u[k − j1], u[k − j2], u[k − j3])

→ Ef2
j1j2j3

(u[k − j1], u[k − j2], u[k − j3]).

Now, for any given xj ∈ I, define

φj(k) = ‖u[k − j] − xj‖2.

Let δ > minφj(k) be any positive constant and define

Mj = {mj(1),mj(2), ...,mj(lj)}

be a set such that k ∈Mj ⇔ δ > φj(k). Now, let

wj(k) =






δ − φj(k)

ljδ −
∑lj

i=1 φj(mj(i))
k ∈Mj

0 k 6∈Mj

.

Obviously, wj(k) ≥ 0 for all k and
∑lj

k=1 wj(k) = 1.
Similarly, for a given pair 0 ≤ j1 < j2 ≤ n and (xj1 , xj2) ∈
I2, define

φj1j2(k) = ‖(u[k − j1], u[k − j2]) − (xj1 , xj2)‖2.

If δ > minφj1j2(k), let Mj1j2 = {mj1j2(1),mj1j2(2), ...
,mj1j2(lj1j2)} be a set such that k ∈Mj1j2 ⇔ δ > φj1j2(k).
Define

wj1j2(k) =






δ − φj1j2(k)

lj1j2δ −
∑lj1j2

i=1 φj(mj1j2(i))
k ∈Mj1j2

0 k 6∈Mj1j2

.

Notice that the same properties hold

wj1j2(k) ≥ 0,

lj1j2∑

k=1

wj1j2(k) = 1.

Again, for 1 ≤ j1 < j2 < j3 ≤ n and (xj1 , xj2 , xj3) ∈ I3,
define
φj1j2j3(k) =

‖(u[k − j1], u[k − j2], u[k − j3]) − (xj1 , xj2 , xj3)‖2.

If δ > minφj1j2j3(k), let Mj1j2j3 = {mj1j2j3(1),mj1j2j3(2),
...,mj1j2j3(lj1j2j3)} be a set such that k ∈ Mj1j2j3 ⇔ δ >
φj1j2j3(k). Now, define
wj1j2j3(k) =






δ − φj1j2j3(k)

lj1j2j3δ −
∑lj1j2j3

i=1 φj(mj1j2j3(i))
k ∈Mj1j2j3

0 k 6∈Mj1j2j3

.
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Similarly,

wj1j2j3(k) ≥ 0,

lj1j2j3∑

k=1

wj1j2j3(k) = 1.

Now, we are in a position to define the estimates ĉ, f̂j ,

f̂j1j2 and f̂j1j2j3 of c, fj , fj1j2 and fj1j2j3 respectively.

ĉ =
1

N

N∑

k=1

y[k],

f̂j(xj) =

lj∑

k=1

wj(k)y[k] − ĉ,

f̂j1j2(xj1 , xj2) =

lj1j2∑

k=1

wj1j2(k)y[k] − f̂j1(xj1) − f̂j2(xj2) − ĉ

f̂j1j2j3(xj1 , xj2 , xj3) =

lj1j2j3∑

k=1

wj1j2j3(k)y[k]

−f̂j1(xj1) − f̂j2(xj2) − f̂j3(xj3)

−f̂j1j2(xj1 , xj2) − f̂j1j3(xj1 , xj3) − f̂j2j3(xj2 , xj3) − ĉ. (1.6)

Theorem 1.2. Consider the system (1.3) and the estimates
above. For given xj1 , xj2 , xj3 ∈ I, assume

• The unknown functions fj , fj1j2 and fj1j2j3 are
differentiable with the Lipschitz constant L for
xj1 , xj2 , xj3 ∈ I.

• Let ψ(·) be the (unknown) probability density func-
tion of the input u(·). Then, the density function is
positive at xj1 , xj2 , xj3 , i.e.,

ψ(xj1) 6= 0, ψ(xj2) 6= 0, ψ(xj3) 6= 0.

• δ → 0 and δ3N → ∞ as N → ∞.

Then, as N → ∞, we have in probability

ĉ→ c

f̂j(xj) → fj(xj)

f̂j1j2(xj1 , xj2) → fj1j2(xj1 , xj2)

f̂j1j2j3(xj1 , xj2 , xj3) → fj1j2j3(xj1 , xj2 , xj3).

The choice of the bandwidth δ in the estimates (1.6)
and generally in kernel identification is important. The
idea of the kernel method is to represent the unknown
nonlinearities locally. In fact, all measurements so that
φ[k] > δ, are not used to construct the estimates. A small
δ does not necessarily imply that the achieved estimation
error is small. The choice of δ balances the trade off
between the bias and the variance. A large δ implies a
large bandwidth interval and accordingly more data is
used that results in a small variance. On the other hand,
because more data points area used even those not in a
close vicinity, the approximation error gets large, which
gives rise to a large bias term. A small δ produces just
the opposite, a large variance and a small bias. Hence,
increasing δ tends to reduce the variance but at the same
time increases the bias. The best choice is to balance the
bias and the variance. Some guidelines are provided in
Nadaraya (1989) for the choice of the bandwidth δ.

2. ORDER AND REGRESSOR SELECTION

In this paper, only the upper bound n on the order
of the system is assumed. It is natural in identification
to ask how to determine the actual order. A closely
related issue is the regressor selection. Once the order n
is determined and fj , fj1j2 and fj1j2j3 are estimated, the
question is which fj , fj1j2 or fj1j2j3 should be included
in the model and which ones should not. An easy way
is to visually inspect each fj , fj1j2 and fj1j2j3 . A more
reliable way is to carry out a statistical hypothesis test
to check if the interested term is zero or not. Notice
that in identification, what we are interested in is not
if a particular term fj , fj1j2 or fj1j2j3 contributes or
not, but whether the contribution is significant or not.
Identification or modelling is always a balance between
model accuracy and model parsimony. In other words, a
relative contribution is more important for the order and
regressor selection. Also, notice that the output contains
contributions from noises and the constant term c. To
truly determine the relative contribution, the noise and the
constant term effects should be removed in the analysis.
To this end, we propose a relative contribution approach.
Consider the system (1.3). Again, it is easily verified from
Theorem (1.1) that in the absence of the noise, we have

η = E(y[k] − c)2 =

n∑

j=1

Ef2
j (u[k − j])+

∑

1≤j1<j2≤n

Ef2
j1j2

(u[k − j1], u[k − j2])

+
∑

1≤j1<j2<j3≤n

Ef2
j1j2j3

(u[k − j1], u[k − j2], u[k − j3]).

Apparently, an appropriate measure of the relative contri-
bution can be defined as

R(fj) =
Ef2

j (u[k − j])

η

for fj

R(fj1j2) =
Ef2

j1j2
(u[k − j1], u[k − j2])

η

for fj1j2 and

R(fj1j2j3) =
Ef2

j1j2j3
(u[k − j1], u[k − j2], u[k − j3])

η

for fj1j2j3 . Since the square term is proportional to energy,
the meaning of the regressor contribution is the relative
contribution of a particular term to the overall output in
terms of energy.

Of course, in reality, fj , fj1j2 and fj1j2j3 are unavailable.

However, their estimates f̂j , f̂j1j2 and f̂j1j2j3 are available
and converge to fj , fj1j2 and fj1j2j3 respectively. Also we
have that, as N → ∞,

1

N

∑
f2

j (u[k − j]) → Ef2
j (u[k − j])

1

N

∑
f2

j1j2
(u[k − j1], u[k − j2])

→ Ef2
j1j2

(u[k − j1], u[k − j2])
1

N

∑
f2

j1j2j3
(u[k − j1], u[k − j2], u[k − j3])

→ Ef2
j1j2j3

(u[k − j1], u[k − j2], u[k − j3])
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Therefore, we define the estimates of η, R(fj), R(fj1j2)
and R(fj1j2j3) as, respectively,

η̂ =
1

N

n∑

k=1

(y[k] − ĉ)2 = η̂ =

n∑

j=1

1

N

∑
f̂2

j (u[k − j])

+
∑

1≤j1<j2≤n

1

N

∑
f̂2

j1j2
(u[k − j1], u[k − j2])

+
∑

1≤j1<j2<j3≤n

1

N

∑
f̂2

j1j2j3
(u[k− j1], u[k− j2], u[k− j3]),

R̂(fj) =
1
N

∑
f̂2

j (u[k − j])

η̂

R̂(fj1j2) =
1
N

∑
f̂2

j1j2
(u[k − j1], u[k − j2])

η̂
,

and

R̂(fj1j2j3) =
1
N

∑
f̂2

j1j2j3
(u[k − j1], u[k − j2], u[k − j3])

η̂
.

To determine if f̂j , f̂j1j2 or f̂j1j2j3 should be included in

the model, we compute R̂(fj), R̂(fj1j2) and R̂(fj1j2j3). Let
the threshold d, for example d=0.05 or 5% be chosen. If

R̂(fj), R̂(fj1j2) or R̂(fj1j2j3) ≥ d, f̂j , f̂j1j2 or f̂j1j2j3 is
included. Otherwise the term is discarded. Because of the
convergence, this test is very reliable for large N .

3. NUMERICAL SIMULATION

Consider a nonlinear system

y[k] = f

(
u[k − 1], u[k − 2], u[k − 3]
, u[k − 4], u[k − 5]

)
+ v(k) (3.7)

= 1.25/3︸ ︷︷ ︸
c

+u[k − 1]︸ ︷︷ ︸
f1

+10 · u[k − 2]3︸ ︷︷ ︸
f2

+5 · u[k − 3]2 − 1.25/3︸ ︷︷ ︸
f3

+ 0︸︷︷︸
f4

+ 0︸︷︷︸
f5

+ + 5 · u[k − 1] ∗ u[k − 2]︸ ︷︷ ︸
f12

+ 0︸︷︷︸
f13

+ 0︸︷︷︸
f14

+ 0︸︷︷︸
f15

− 0.5 · cos(2πu[k − 2] + u[k − 3])︸ ︷︷ ︸
f23

+ 0︸︷︷︸
f24

+ 0︸︷︷︸
f25

+ 0︸︷︷︸
f34

+ 0︸︷︷︸
f35

+ 0︸︷︷︸
f45

+v[k], k = 1, 2, ..., N.

The prior information on the system is that it is a nonlin-
ear system with up to 3-factor terms. No prior structural
information on f , fj ,fj1j2 and fj1j2j3 are available. The or-
der of the system is also unknown and only an upper bound
of n = 5 is assumed. For identification, one can either
identify the unknown 5-dimensional system (3.7) directly,
or use the interactive term method (1.6) proposed in the
paper. For simulation, N = 20, 000 and δ = 0.1. The input
u[·] is independent and uniformly distributed in [−0.5, 0.5],
and the noise v[·] is iid Gaussian with SNR = 20dB.

We use the interactive term method to identify each fj ,
fj1j2 and fj1j2j3 and calculate their relative contributions
as shown in the third column of Table 1 (N = 20, 000).

To determine the order of the system as well as which term
should be included in the model, let the threshold d=5%.
If R̂j , R̂j1j2 , R̂j1j2j3 ≥ d, we include the corresponding
term in the model. Otherwise the contribution of the

N 30,000 20,000 15,000 10,000 5,000 ≥ d?

R̂1 0.1130 0.1117 0.1040 0.1088 0.0827
√

R̂2 0.2770 0.2743 0.2641 0.2472 0.2100
√

R̂3 0.1676 0.1631 0.1539 0.1471 0.1259
√

R̂4 0.0001 0.0003 0.0005 0.0004 0.0012

R̂5 0.0002 0.0003 0.0004 0.0006 0.0010

R̂12 0.2295 0.2228 0.2179 0.2055 0.1724
√

R̂13 0.0010 0.0015 0.0018 0.0026 0.0037

R̂14 0.0010 0.0016 0.0020 0.0027 0.0053

R̂15 0.0010 0.0014 0.0021 0.0024 0.0047

R̂23 0.1525 0.1433 0.1452 0.1322 0.1131
√

R̂24 0.0009 0.0011 0.0017 0.0022 0.0040

R̂25 0.0009 0.0012 0.0015 0.0020 0.0046

R̂34 0.0010 0.0013 0.0017 0.0023 0.0056

R̂35 0.0010 0.0016 0.0023 0.0031 0.0053

R̂45 0.0011 0.0016 0.0023 0.0031 0.0054

R̂123 0.0019 0.0029 0.0038 0.0053 0.0084

R̂124 0.0038 0.0056 0.0074 0.0101 0.0207

R̂125 0.0038 0.0056 0.0074 0.0104 0.0208

R̂134 0.0064 0.0093 0.0125 0.0178 0.0302

R̂135 0.0065 0.0087 0.0129 0.0174 0.0303

R̂145 0.0081 0.0103 0.0141 0.0197 0.0386

R̂234 0.0042 0.0059 0.0078 0.0115 0.0208

R̂235 0.0041 0.0062 0.0079 0.0114 0.0207

R̂245 0.0064 0.0085 0.0112 0.0158 0.0316

R̂345 0.0068 0.0100 0.0138 0.0191 0.0336

Table 1. Relative contribution of each term for
different N .

−0.5 0 0.5
−0.5

0

0.5

f
1

−0.5 0 0.5
−1

−0.5

0

0.5

1

f
2

−0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

f
3

−0.4 −0.2 0 0.2
−1

−0.5

0

0.5

1

f
4

−0.4 −0.2 0 0.2
−1

−0.5

0

0.5

1

f
5

Fig. 1. fj(u[k−j])’s (solid) and their estimates f̂j(u[k−j])
(dashdot), j = 1, 2, 3, 4, 5.
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Fig. 2. f12, f23 and f̂12, f̂23.

corresponding term is deemed to be insignificant and
omitted in the model. Clearly, from the third column
(N = 20, 000), only the terms f1, f2, f3, f12 and f23
contribute significant and should be included in the model.
Simply put, the system order is determined to be n = 3,
though the upper bound is assumed to be 5. Further, it is
determined that the system contains only 5 terms, f1, f2,
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f = 1.9564 direct 5-dim interactive improvement
term ratio

average |f̂ − f | |f̂ − f |
estimation = 0.7623 = 0.0263 29
error

variance 0.9121 0.0016 573

Table 2. Average estimation error and variance
of two identification methods.

f3, f12 and f23 and all other terms including all 3-factor
terms are zero. The conclusion is consistent with the true
but unknown system.

Figure 1 shows the actual but unknown fj(u[k−j])(solid),

j = 1, ..., 5 and their estimates. f̂j(u[k − j]) (dashdot),
j = 1, ..., 5, respectively. The top diagrams in Figure 2
show f12(u[k − 1], u[k − 2]) and f23(u[k − 2], u[k − 3])

superimposed on their estimates f̂12(u[k − 1], u[k − 2])

and f̂23(u[k − 2], u[k − 3]) respectively. The estimation

errors f̂12(u[k − 1], u[k − 2]) − f12(u[k − 1], u[k − 2]) and

f̂23(u[k − 2], u[k − 3]) − f12(u[k − 2], u[k − 3]) are in the
bottom diagrams. All other terms fj1j2 ’s are zero. It can
be seen that the estimates fit the actual functions well.

Notice that in theory the estimates of the relative con-
tributions R̂j , R̂j1j2 and R̂j1j2j3 converge to the actual
relative contributions Rj , Rj1j2 and Rj1j2j3 as N → ∞.
This implies that the estimates are reliable if N is large. In
practice, the question is always how large is large enough
or how large does N need to be before these estimates
become reliable. To this end, Table 1 shows the estimates
of the relative contribution for different N . From Table 1,
it is seen that as long as N is large, e.g., N ≥ 10, 000, the
results are fairly robust.

To compare the results with the method that directly
identifies the 5-dimensional nonlinear function (3.7), we
consider identification of the nonlinearity at an arbitrary
point in [−0.5, 0.5]5, say at
(u[k − 1], u[k − 2], u[k − 3], u[k − 4], u[k − 5]) =

(0.3801, 0.2940,−0.4541,−0.1866,−0.3090)

based on the available measurement data set {y(k), u(k −
1), ..., u(k − n)}N

1 . The true but unknown

f(0.3801, 0.2940,−0.4541,−0.1866,−0.3090) = 1.9564.
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Fig. 3. Error histogram of 100 Monte Carlo runs. The

horizontal axis is the identification error |f̂ − f | and
the vertical axis is the number of occurrence.

The direct method is an kernel method as used in (1.6)
but with a 5-dimensional kernel. The average estimation
error and variance of 100 Monte Carlo runs for both the

direct method and the interactive method are listed in
Table 2, having been produced under the exact simulation
conditions as described above. Clearly, the interactive term
method outperforms the direct identification method in
terms of both bias and variance drastically. In fact, the
variance is improved by a factor of 0.9121/0.0016 = 573.
The reason for this improvement is that for the direct 5-
dimensional identification, only a very small number of
measurements are in the neighborhood and that makes
identification unreliable. In fact, in almost half of the

Monte Carlo runs, the estimated value of f̂ for the direct
method is zero which implies that no measurement is in
the neighborhood, see Figure 3 for error histogram of
the 100 Monte Carlo runs. This curse of dimensionality
is unavoidable for a dimension that is not small. In the
proposed interactive method, identification is projected
into lower dimensional fj ’s and fj1j2 ’s, that are much less
problematic. Obviously one expects even higher improve-
ment ratios between two methods if the dimension n gets
larger.
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