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Abstract: We introduce a new identification method for nonlinear Volterra models of the
form Hx = f(u, x) with H a causal convolution operator. It is mainly based on a suitable
parameterization of H deduced from the so-called diffusive representation, devoted to state
representations of integral operators. Following this approach, the complex dynamic nature of
H can be summarized by a few numerical parameters on which the identification of the dynamic
part of the model will focus. For illustration, we implement this method on a concrete numerical
example.
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1. INTRODUCTION

We introduce an identification method for nonlinear
Volterra models of the form:

H(∂t)x = f(u, x), (1)

where u(t), x(t) ∈ R, t > 0, f is a sufficiently regular
function defined on R2 and H(∂t) is a causal convolution
operator defined on a suitable space of continuous func-
tions with support in R

+
t .

We suppose that problem (1) is well-posed in the sense
of existence, uniqueness and continuous dependency on
the input u of the solution x. The operator H(∂t) is also
supposed to be invertible, so (1) can be rewritten under the

standard form: x(t) =
∫ t

0 k(t − s) f(u(s), x(s)) ds ∀t > 0,

where k is the impulse response of operator H(∂t)
−1.

Such models are frequently encountered in various do-
mains:

• thermic phenomena (we will consider in section 4 the
combustion model elaborated in Joulin [1985]),

• electrical engineering (Rumeau [2006]),
• linear SISO differential systems with nonlinear feed-

back: {
Ẋ = AX + Bf(u, x)
x = CX,

with H(p)−1 = C(pI − A)−1B,
• SISO partial differential systems on R

+∗
t ×Ωz ⊂ Rn+1

of the form:{
∂tϕ = A(z,∇)ϕ + f(u,

∫
Tϕdz), ϕ0 = 0,

x =
∫

Tϕdz,

which can be rewritten under the synthetic equation∫ t

0 k(t − s) f(u(s), x(s)) ds = x(t) where the function
k is the impulse response associated with the operator
f �→ x, that is the solution of:{

φ̇ = A(z,∇)φ + δ, φ0 = 0
k =

∫
Tφdz.

• etc.

The identification problem under consideration in the
sequel is to build estimations (if possible optimal) of H(∂t)
and/or f from (noised) data x∗ = x+v where v designates
some additive measurement noise and x is generated by
an experimental process driven by a known input u. The
main difficulty when identifying such models results from
the coupling between the dynamic operator H(∂t) and
the (static) function f via equation (1). This difficulty is
strengthened when operator H(∂t) is non rational (which
is in general the case), when f is singular and when there
exists some dynamic bifurcations (see section 4).

The proposed identification method is based on a suitable
parameterization of H(∂t) deduced from the so-called dif-
fusive representation (Montseny [2005]), devoted to state
realizations of integral causal operators. Following this
approach, the complex dynamic nature of H(∂t) is in some
sense summarized by a few numerical parameters on which
the identification problem will focus.

The paper is organized as follows. In section 2, we briefly
present a simplified version of the diffusive representation.
In section 3, we describe the identification method in a
general framework and we give some indications for nu-
merical implementation. In section 4, we finally implement
this method on a concrete example, which allows us to
comment the quantitative relevance of the method.

2. DIFFUSIVE FORMULATION OF CAUSAL
CONVOLUTION OPERATORS

A complete statement of diffusive representation will be
found in Montseny [2005]. Various applications and ques-
tions relating to this approach will be found for example
in Audounet [1998], Carmona [1998], Casenave [2007],
Casenave [2008], Degerli [1999], Garcia [1998], Lenczner
[2005], Levadoux [2003], Montseny [2007], Mouyon [2002],
Rumeau [2006].
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2.1 Mathematical framework

We consider a causal convolution operator defined, on any
continuous function u : R

+ → R, by

u �→
∫ t

0

k(t − s)u(s) ds. (2)

We denote K the Laplace transform of k and K(∂t) the
convolution operator defined by (2).

Let ut(s) = 1]−∞,t](s)u(s) the restriction of u to its past
and ut(s) = ut(t − s) the so-called ”history” of u. From
causality of K(∂t), we deduce:

[K(∂t)(u − ut)](t) = 0 for all t;

then, we have for any continuous function u:

[K(∂t)u](t)=
[
L−1 (K Lu)

]
(t)=

[
L−1

(
K Lut

)]
(t). (3)

We define:

Ψu(t, p) := ep t
(
Lut

)
(p) = (Lut) (−p); (4)

by computing ∂tLut, Laplace inversion and use of (3), we
have:

Lemma 1. 1. The function Ψu is solution of the differential
equation:

∂tΨ(t, p) = p Ψ(t, p) + u, t > 0, Ψ(0, p) = 0.

2. For any b � 0,

[K(∂t)u] (t) =
1

2iπ

∫ b+i∞

b−i∞

K(p)Ψu(t, p) dp. (5)

We denote Ω the holomorphic domain of K (after analytic
continuation). Let γ a closed 1 simple arc in C−; we
denote Ω+

γ the exterior domain defined by γ, and Ω−
γ

the complementary of Ω+
γ . By use of standard techniques

(Cauchy theorem, Jordan lemma), it can be shown:

Lemma 2. For γ ⊂ Ω such that K is holomorphic in Ω+
γ ,

if K(p) → 0 when p → ∞ in Ω+
γ , then:

[K(∂t)u] (t) =
1

2iπ

∫

γ̃

K(p)Ψu(t, p) dp, (6)

where γ̃ is any closed simple arc in Ω+
γ such that γ ⊂ Ω−

γ̃ .

We now suppose that γ, γ̃ are defined by functions of the
Sobolev space 2 W 1,∞

loc (R; C), also denoted γ, γ̃ and such
that:

γ(0) = 0. (7)

We use the convenient notation 〈µ, ψ〉 =
∫

µ ψ dξ; in
particular, when µ is atomic that is µ =

∑
k ak δξ

k
, we

have: 〈µ, ψ〉 =
∑

k ak ψ(ξk).

Under hypothesis of lemma 2, we have (Montseny [2005]):

Theorem 3. If the possible singularities of K on γ are
simple poles or branching points such that |K ◦ γ| is locally
integrable in their neighborhood, then:

1. with µ̃ = γ̃′

2iπ K ◦ γ̃ and ψ̃(t, .) = Ψu(t, .) ◦ γ̃:

[K(∂t)u] (t) =
〈
µ̃, ψ̃(t, .)

〉
; (8)

1 Possibly at infinity
2 W

1,∞
loc

(R; C) is the topological space of measurable functions f :
R → C such that f, f ′

∈ L∞
loc

(that is f and f ′ are locally bounded
in the almost everywhere sense).

2. with 3 γ̃n → γ in W 1,∞
loc and µ = γ̃′

2iπ lim K ◦ γ̃n in the
sense of measures:

[K(∂t)u] (t) = 〈µ, ψ(t, .)〉 , (9)

where ψ(t, ξ) is solution of the following evolution problem
on (t, ξ) ∈ R∗+×R (of diffusive type):

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ψ(0, ξ) = 0. (10)

Definition 4. The measure µ defined in theorem 3 is called
γ-symbol of operator K(∂t). The function ψ solution of
(10) is called the γ-representation of u.

Note in particular that thanks to (9), the Dirac measure

δ is clearly a γ-symbol of the operator u �→
∫ t

0 u(s) ds,

denoted ∂−1
t . We indeed have (∂−1

t u)(t) = 〈δ, ψ(t, .)〉 =
ψ(t, 0), with ∂tψ(t, 0) = u, ψ(0, 0) = 0.

Beyond the measure framework, the general space of γ-
symbols is a quotient space of distributions, denoted ∆′

γ ; it
is the topological dual of the space ∆γ ∋ ψ(t, .) (Montseny
[2005]). The composition product of operators has an
equivalent in ∆′

γ , denoted ♯γ or simply ♯: if µ and ν are
respective γ-symbols of H(∂t) and K(∂t), then µ♯γν is
a γ-symbol of H(∂t) ◦ K(∂t). Note that the product ♯γ is
inner, commutative and continuous 4 in ∆′

γ and so (∆′
γ , ♯γ)

is an algebra (of γ-symbols) isomorphic to a commutative
algebra of causal convolution operators.

Formulation (10,9) can be extended to operators of the
form K(∂t) ◦ ∂n

t where K(∂t) admits a γ-symbol in ∆′
γ .

We have (formally):

[K(∂t) ◦ ∂n
t u](t) = 〈µ, ∂n

t ψ(t, .)〉 , (11)

with ψ(t, ξ) solution of (10) and µ the γ-symbol of K(∂t).
In the particular case where n = 1, (11) becomes:

[K(∂t) ◦ ∂t u](t) = 〈µ, γ ψ(t, .) + u(t)〉 . (12)

In the same way, ∆′
γ can be extended to an algebra denoted

Σγ whose elements are the γ-symbols of operators of the
form K(∂t) ◦ ∂n

t where K(∂t) is associated to a γ-symbol
µ ∈ ∆′

γ and n ∈ N. γ-symbols ν of K(∂t) ◦ ∂n
t are

characterized by the relation:

µ = ν♯δn

where δn = δ♯δ♯...♯δ︸ ︷︷ ︸
n times

∈ ∆′
γ is a γ-symbol of ∂−n

t .

The inversion of γ-symbols cannot be defined in ∆′
γ

because this algebra is not unitary; this operation is
nevertheless well-defined in Σγ . If µ ∈ Σγ is a γ-symbol of

K(∂t) such that K(∂t)
−1 ◦ ∂−n

t has a γ-symbol ν ∈ ∆′
γ ,

then ν = µ−1♯δn and we have:

[K(∂t)
−1u](t) =

〈
µ−1♯δn, ∂n

t ψ(t, .)
〉
, (13)

with ψ solution of (10). Note in particular that operator
∂−1

t defined above is the unique inverse of the derivative
operator ∂t.

2.2 About numerical approximations

We only give a few indications. More details can be found
in the references cited above.
3 This convergence mode means that on any bounded set P , γ̃n|P

−

γ|P → 0 and γ̃′
n|P

− γ′
|P

→ 0 uniformly.
4 In the sense of the strong topology of ∆′

γ .
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The state equation (10) is infinitedimensional. To get nu-
merical approximations, we consider ML a sequence of L-
dimensional spaces of atomic measures on suitable meshes
{ξL

l }l=1:L on the variable ξ; L-dimensional approximations
µL of the γ-symbol µ ∈ ∆′

γ are then defined in the sense
of atomic measures, that is:

µL =

L∑

l=1

µL
l δξL

l

, µL
l ∈ C. (14)

If ∪LML is dense in the topological space ∆′
γ (that is,

concretely, if ∪L{ξL
l } is dense in R), then we can have

(Montseny [2005]):
〈
µL, ψ

〉
−→

L→+∞
〈µ, ψ〉 ∀ψ ∈ ∆γ ; (15)

so, we have the following L-dimensional approximate state
formulation of K(∂t) (with γ-symbol µ):




∂tψ(t, ξL
l ) = γ(ξL

l )ψ(t, ξL
l ) + u(t), l = 1 : L, ψ(0, ξL

l ) = 0

[K(∂t)u](t) ≃
L∑

l=1

µL
l ψ(t, ξL

l ).

Note that an approximate state formulation of operator
∂t ◦ K(∂t) can be easily deduced under the form:

∂t ◦ K(∂t)u ≃
∑

l
γ(ξL

l )µL
l ψ(., ξL

l ) +
∑

l
µL

l u.

One of the properties of the approach presented above
is that most of non rational operators encountered in
practice can be closely approximate with small L (see for
example Montseny [2004]). In the context of identification
of Volterra models, this will be a great advantage because
only a few numerical parameters µL

l will have to be
identified from experimental data, while the property (15)
will ensure the well-posedness and the robustness of the
problem as soon as the operator to be identified admits a
γ-symbol in Σγ .

3. IDENTIFICATION OF VOLTERRA MODELS

In this section, we focus on the problem of identification of
Volterra models of the form (1). We simply introduce the
principle of the approach and give some indications about
the numerical aspects of the problem. The statement is
essentially formal. More details will be given in a further
work.

3.1 Principle

In the sequel, we suppose for simplicity that the dynamic
operators H(∂t)

−1 and H(∂t)◦∂−1
t both admit a γ-symbol

in ∆′
γ ; we denote µ any γ-symbol of H(∂t) ◦ ∂−1

t .

For any fixed u, equation (1) expresses the balance between
two trajectories obtained from x, relating respectively to
the linear dynamic operator H(∂t) and the (nonlinear)
static operator defined from function f by 5 : [f(u, x)](t) =
f(u(t), x(t)) ∀t. So, from the point of view of trajectories
(and if the numerical evaluation of H(∂t)x is of reasonable
cost), we can remark that the operators H(∂t) and f(u, .)
play a comparable role in expression (1). The proposed

5 We distinguish carefully trajectories (u, x,...), which are functions
of the time, and values taken by trajectories at time t (i.e. u(t),
x(t),...).

identification method then consists in parameterizing both
operator H(∂t) by means of its γ-symbol and function f
by means of a suitable functions basis. So, we will get
an equivalent problem in which the unknown parameters
are linearly dependent on the data and of reasonable
dimension under numerical approximation (thanks to the
properties of diffusive representation mentioned in the
previous section).

Given a suitable γ and denoting ψx the γ-representation
of x, according to (12), we consider the γ-realization of
H(∂t) defined by:

H(∂t)x = 〈µ, γ ψx〉 + 〈µ, 1〉 x.

By denoting Ax the linear operator defined on any γ-
symbol µ by:

∀t > 0, [Ax µ](t) = 〈µ, γ ψx(t, .)〉 + 〈µ, 1〉 x(t), (16)

we then get: H(∂t)x = Ax µ.

Now suppose that: f = f̃+f̄ where f̃ is known a priori and
f̄ is unknown (to be identified from experimental data).
We consider a topological basis {gi ⊗ kj}i,j=1:+∞ of a
tensorial product of Hilbert spaces to which belongs the
function f̄ ; we then have:

f = f̃ +
∑

i,j

aij gi ⊗ kj ,

where the unknown is now the set of real parameters
a := (aij). If the trajectories u and x are known (from
measurements), so is it for the trajectories gi(u),kj(x) and

f̃(u, x); equation (1) can then be equivalently expressed
under the linear form:

Ax µ −
∑

i,j

gi(u)kj(x) aij = f̃(u, x). (17)

By denoting

Gu,x : (µ, a) �→ Ax µ −
∑

i,j

gi(u)kj(x) aij , (18)

b = f̃(u, x), Ξ = (µ, a)

and given two suitable Hilbert spaces E and F , the
identification problem of model (1) from data (u, x∗),
x∗ = x+v where v designates some additive measurement
noise, can be expressed as:

min
Ξ∈E

‖Gu,x∗ Ξ − b∗‖2
F

. (19)

Thanks to the linearity of operator Gu,x∗ , the solution of
(19) is obtained by orthogonal projection:

Ξ∗ = G†
u,x∗ b∗, (20)

where G†
u,x∗ denotes the pseudo-inverse of Gu,x∗ (Ben-Israel

[2003]). In the sense of the hilbertian norm of F , the
estimation Ξ∗ of Ξ is then optimal.

The physical system under consideration can then be
described by the model H∗(∂t)x = f∗(u, x) where H∗

and f∗ are deduced from the identified parameters µ∗, a∗.
Furthermore, we deduce from the equivalent expression
x = H∗(∂t)

−1f∗(u, x) that the following input-output
state realization is available (up to the computation of
δ♯(µ∗)−1 which can be numerically performed) for simula-
tion or control purposes:{

∂tψ = γ ψ + f∗
(
u,

〈
δ♯(µ∗)−1, ψ

〉)
, ψ(0, .) = 0

x =
〈
δ♯(µ∗)−1, ψ

〉
.

(21)
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3.2 Numerical formulation

We consider now a finitedimensional subspace Ek of E .
After suitable time discretization and approximation of
µ such as described in section 2, we deduce from (16,18):
∀n = 1 : N,

[Gu,x (µL, a)](tn) =

L∑

l=1

µL
l

(
γ(ξL

l )ψx(tn, ξL
l ) + x(tn)

)

−
I∑

i=1

J∑

j=1

gi(u(tn))kj(x(tn)) aij ;

then the operator Gu,x can be expressed by means of
a matrix Gu,x ∈ MN,L+I×J whose pseudo-inverse is
classically given by 6 (with N ≫ L + I × J):

G†
u,x = (G∗

u,x Gu,x + ǫI)−1G∗
u,x.

Remark 5. Note that thanks to the state realization (10)
of ψx and the static nature of operators gi,kj , recursive
formulations of (20) can be established, which allows to
treat real-time identification or even pursuit problems.

4. APPLICATION TO A MODEL OF FLAME

In this section, we illustrate the identification method
introduced above by implementing it on data (u, x∗) elab-
orated from numerical simulations of a complex dynamic
phenomenon studied in Joulin [1985], Audounet [1998].

4.1 The model under consideration

In Joulin [1985], Joulin elaborated a Volterra model to
describe, in suitable thermodynamic conditions, the evo-
lution of a spherical flame initiated by a source at point
0 in a mixture of reactive species. Under some reasonable
physical hypothesis, such a phenomenon can be described
by a system of two partial differential equations relating
to the temperature and the mass density of the mixture.
By considering the reactive zone as a thin sheet located
on a sphere with radius x(t), Joulin has established that
when the flame is developing in free space, x is solution of
the following nonlinear singular Abel-Volterra equation 7

(u(t) designates the source strength at time t):

x(t)

∫ t

0

ẋ(s) ds√
π(t − s)

= 2 x(t) lnx(t) + 2 u(t) ∀t > 0, (22)

with the additional conditions: x(0) = 0, u � 0, x � 0
(whose physical interpretation is obvious). By denoting

H(∂t) the convolution operator 8 x �→
∫ t

0
ẋ(s) ds√
π(t−s)

and

f(u, x) := 2 lnx + 2 u
x
, (22) can be formally rewritten

under the form (1). It has been shown in Audounet [1998]
that the evolution problem (22) is well-posed, that is the
solution x exists, is unique and depends continuously on u.

In real conditions however, various perturbations are in-
volved in the evolution of x (due for example to the loss
of spatial symmetries), and both the convolution operator

6 G∗ is the dual of G with respect to the scalar product under
consideration. As usual, ǫ � 0 is devoted to numerical reconditioning.
7 Here adimensional for simplicity.

8 Note that in this ideal case, H(∂t) = ∂
1

2

t .

H(∂t) and the function f will be more or less far from the
ideal ones. So, an identification process can be justified if
accuracy of the model is required.

We will consider in the sequel the problem of identification
of (1) from data (u, x∗) obtained from highly accurate
numerical simulations of (22) (not described here).

4.2 On the dynamic behavior of the flame radius

It has been shown in Audounet [1998] that there exists a
threshold relating to the power of the source u, beyond
which the flame is developing whereas a quenching occurs
below. In that sense, this evolution phenomenon is essen-
tially unstable with two qualitatively different behaviors.
Because of the hereditary nature of the problem, it is
difficult to know the value of this threshold which must be
evaluated on the basis of numerical simulations. In figures
1 and 2, the flame is either quenching or developing, the
source function being given, as in Audounet [1998], by:

u(t) = E t0.3(1 − t)1[0,1](t). (23)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time (s)

Fig. 1. Source (- - -) and radius of the flame (—) with
E = 1.7390.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

time (s)

Fig. 2. Source (- - -) and radius of the flame (—) with
E = 1.7393.

Such dynamic behaviors generate ill-conditioned identifi-
cation problems due to the sensitivity of the solutions x of
(1) with respect to the source power. As a consequence,
this model can be viewed as a significant test for the
proposed identification method.

4.3 Parameterization of the problem

The flame model under consideration can be written under
the form (1) with, on the one hand: f(u, x) = 2 k(x) + 2u

x
where the function k is to be identified, and on the other

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4027



hand, the operator H(∂t) which is also to be identified
with the assumption that H(∂t) ◦ ∂−1

t admits a γ-symbol
µ ∈ ∆′

γ . As described in section 3, we search an estimation
of f of the (simpler) form:

f(u, x) = 2
u

x
+ 2

∑

j

aj kj(x),

where kj are (known) basis functions by means of which
the function f(u, x)−2u

x
can be approximate, for example

in the sense of L2(xmin, xmax). We simply consider power
functions:

kj(x) = xj−1.

According to section 3, the vector b∗ is then defined by:

b∗n = 2
u(tn)

x∗(tn)
,

and the matrix Gu,x∗ by:

Gu,x∗ = [Ψ |K],

Ψnl = γ(ξL
l )ψx∗(tn, ξL

l ) + x∗(tn), Knj = 2 (x∗(tn))j−1.

4.4 Numerical identification results and comments

Recall that the problem consists in identifying the model
(1) with the following functions to be estimated from
numerical experimental data via the parameterizations
µ, a defined above:

H(p) = p
1

2 , f(u, x) = 2 ln(x) + 2
u

x
.

In a first time, only the operator H(∂t) is identified, while
the function f is suppose to be known. Then, H(∂t) and
f are identified together.

The data are composed of 4 trajectories (u, x∗) (see figure
3) associated with 4 different sources of the form 9 (23)
with E = 1.5, 1.738, 1.8 and 5.0 respectively. The time
step ∆t has been taken equal to 5.10−5 and the maximal
final time is equal to 10.
The measured output is x∗ = x + ε v where v is a unity
gaussian white noise and ε = 10−3.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

time (s)

Fig. 3. The trajectories x used for identification.

The function γ is chosen as γ(ξ) =

{
ξ ei 3π

4 if ξ > 0

−ξ e−i 3π

4 if ξ < 0.

First, we suppose that f is known and we identify H(∂t)

via the γ-symbol µ. We use L = 20 values ξL
l geometrically

9 Note that the source function is physically realistic but rather poor
from the point of view of information, which strengthen the difficulty
of the problem.

spaced to cover 4 decades from 10−1 to 103. The frequency
response of the so-identified operator H(∂t) is given in fig-
ure 4. In the accessible frequency band, the identification
is good. To complete the validation, we can compare in
figures 5 and 6 the respective responses of the identified
model and of the exact one for inputs u different from those
used for identification. In conclusion, when f is known, the
identified model closely behaves like the exact one.

10
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0

10
1
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2
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3

10
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−3

10
−2

10
−1

10
0

10
1

10
2

10
3

frequency (rad/s)

m
ag

ni
tu

de

Fig. 4. Exact (- -) and identified (—) frequency responses
H(iω) when f is known.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (s)

Fig. 5. Evolution of x for the exact (- -) and identified (—)
models with u(t) = 1.3 t0.3(1 − t)1[0,1](t).

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

time (s)

Fig. 6. Evolution of x for the exact (- -) and identified (—)
models, with u(t) = 4.0 t0.3(1 − t)1[0,1](t).

We can add that results with comparable quality are
obtained when f is identified only (i.e. H is supposed to
be known).

We now consider the problem of identification of oper-
ator H(∂t) and function f together (both are supposed

unknown). We use L = 20 values ξL
l geometrically spaced

to cover 4 decades from 100 to 104 and the estimation of
f is searched as:

f(u, x) = 2
u

x
+ 2

9∑

j=0

aj xj .
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Fig. 8. Exact (- -) and identified (—) function f .

The so-identified operator H(∂t) and function f are given
in figures 7 and 8. The identified H and f remain close to
the exact ones, which agrees with the theoretical analysis.
However, due to the increasing number of parameters to
be identified, the ill-conditioning of the problem and the
dynamic poverty of the data (u, x∗), the estimation error
on H and f is greater than previously. It follows that the
validation by simulation of the identified model reveals
itself more delicate, in particular in the case of inputs with
power close to the bifurcation threshold, which leads to the
conclusion that more data will be necessary to improve the
identification quality.

5. CONCLUSION

Relating to the first attempt to identify nonlinear Volterra
models by use of the method presented in section 3, the
numerical results obtained in section 4 can be considered
as positive, from both points of view of implementation
simplicity and accuracy. Several questions must be studied
in order to improve such results. For example, among the
most significant, the involved hilbertian norms should be
judiciously chosen and adapted to the specific properties
of the class of models under consideration; indeed, this
choice is crucial in terms of sensitivity with respect to
perturbations of any nature. It can also be shown that
the measurement noise induces some estimation bias which
should be significantly reduced by appropriate treatments.
All these questions are currently under study and will be
discussed in a deepened paper.
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