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Abstract: This paper describes a novel simple model based predictive controller with ma-
nipulated value constraints. This controller is suitable for substitution of the classical PID
controller used in industrial practice. It is assumed that the controlled system is stable, linear
and t-invariant FIR system. The discrete step response sequence is used as the process model.
Alternatively it is possible to use three-parameter model. To make the open-loop optimization
easier the set of admissible control sequences is restricted to stepwise pulse-step sequences. The
optimization procedure is then executable in reasonable time. A single tuning parameter is
available for manual fine-tuning of the controller - the control moves penalty coefficient.

Keywords: optimal control, predictive control, step function responses, constraints, reduction,
quadratic performance indices.

1. INTRODUCTION

The predictive control approach is an up-to-date topic
in the automation sphere, which can be proven by many
recent papers and books [J.M. Maciejowski, 2002, Huang
et al., 2002]. It is the only advanced control technique
which found its place in industrial process control aside the
classical PID control. The main advantage of the predictive
control is its general principle which is suitable for both
linear and nonlinear systems and also the possibility to
include constraints directly into the design procedure. On
the other hand, this generality brings several problems,
especially the computational cost which makes the imple-
mentation of predictive control algorithms into compact
controllers and PLCs almost impossible.

To become a classical PID controller substitution, the
predictive controller must fulfill the following:

• it is as easy (or easier) to use as the classical PID
controller

• the performance of the closed loop system is distinc-
tively better

• the existing compact controllers and PLCs are able
to meet its computational and memory requirements

2. SIMPLE PREDICTIVE CONTROLLER

2.1 The pulse-step control sequence

A tough problem in predictive control with constraints
is its complexity and computational cost. To lower the
computational burden, it is possible to use some blocking
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strategy [Tondel and Johansen, 2002], for example con-
stant manipulated value or constant manipulated value
differences over time intervals of specified length. Another
possibility is the so-called functional predictive control
[Richalet et al., 1987], where the control sequence is re-
stricted to a linear combination of suitable base functions.

Alternative approach to complexity restriction presented
in this paper is based on the so-called pulse-step con-
trol, a well known aggressive technique used for manual
control in industrial practice. The properties of pulse-
step feedforward control in combination with the classical
PID feedback control were studied by Wallén and Åström
[2002]. This paper shows how to incorporate the pulse-step
control idea into MPC. As shown in Figure 1, the control
sequence u(k) begins with n1 maximal (minimal) elements,
followed by n2−n1 minimal (maximal) elements according
to the constraints u− ≤ u(k) ≤ u+. The remaining part of
the control sequence is constant, u(k) = u∞ for k > n2,
where n1 and n2 are limited by the control horizon HC ,
0 ≤ n1 ≤ n2 < HC and of course u∞ is subject to
constraints u− ≤ u∞ ≤ u+. So the whole control sequence
is determined by only 3 variables n1, n2, and u∞.

2.2 The controlled process model

The model based predictive control always employs some
model of the controlled process. In this approach, the
discrete step response g(j), j = 1, . . . , N is used. Figure 2
shows how to obtain the discrete step response g(j), j =
0, 1, 2, . . . and the discrete impulse response h(j), j =
0, 1, 2, . . . with sampling period TS from continuous step
response. Note that g(0) = h(0) = 0, h(j) = g(j)−g(j−1)
for j ≥ 1.

For stable, linear and t-invariant FIR systems with
monotonous step response it is also possible to use the
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Fig. 1. Example of pulse-step up (a) and pulse-step down
(b) control sequence

moment model set approach [Schlegel and Večerek, 2005]
and describe the system by only 3 characteristic numbers
κ, µ, and σ2, which can be obtained easily from a very
short and simple experiment. This identification technique
has been widely accepted in industrial practice for PID
controllers tuning purposes. The characteristic numbers
κ, µ, and σ2 of the system in the form

P (s) =
K

l∏
i=1

(τis + 1)

· e−Ds

are defined as

κ = K,

µ = D +

l∑

i=1

τi, (1)

σ2 =

l∑

i=1

τ2
i .

Thus the controlled system can be approximated by first
order plus dead-time system

PFOPDT (s) =
K

τs + 1
· e−Ds, (2)

κ = K, µ = τ + D, σ2 = τ2

or second order plus dead-time system

PSOPDT (s) =
K

(τs + 1)2
· e−Ds, (3)

κ = K, µ = 2τ + D, σ2 = 2τ2

with the same characteristic numbers. The discrete step
response of these systems is then used to model the
controlled system.

As shown in Figure 3, the characteristic numbers have a
clear physical meaning for the systems (2) and (3), so it
is also possible to adjust them manually to fit the step
response of the real system. The characteristic number
κ is static gain, the number µ has the character of time
delay (known also as resident time constant, it shifts the
step response along the time axis) and the parameter σ2

changes the slope of the step response.
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Fig. 2. Discrete step response

2.3 Computing the control sequence

Consider the controlled system described by the discrete
step response g(j), j = 1, . . . , N obtained either directly
from the measurements on the real system or from three-
parameter models (2) or (3) described in the previous
section. The input u(k) and output y(k) of linear discrete
system are related by well known convolution

y(k) =

∞∑

j=0

h(j)u(k − j) ≅

≅

N∑

j=1

h(j)u(k − j), (4)

where h(j), j = 1, . . . , N, is the discrete impulse response
of the system and N is suitable natural number (h(j) ≅ 0
for j = N + 1, . . . ,∞). From (4) we can obtain another
relation which will be used further. It holds

y(k) =

N∑

j=1

h(j)u(k − j) =

=

N∑

j=1

[g(j) − g(j − 1)] u(k − j) =

= g(1)u(k − 1) + g(2)u(k − 2) + . . . +

+g(N − 1)u(k − N + 1) + g(N)u(k − N) −

−g(0)u(k − 1) − g(1)u(k − 2) − . . . −

−g(N − 2)u(k − N + 1) − g(N − 1)u(k − N) =

=

N∑

j=1

g(j) [u(k − j) − u(k − j − 1)] +

+g(N)u(k − N − 1).

In other form

y(k) =

N∑

j=1

g(j)∆u(k − j) +

+g(N)u(k − N − 1), (5)

where ∆u(k) = u(k) − u(k − 1).
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Fig. 3. Physical meaning of the characteristic numbers κ,
µ, and σ2

Then the i-step ahead output prediction at time k, 0 ≤
i ≤ N , is given by

ŷ(k + i|k) =

N∑

j=1

g(j)∆u(k + i − j) +

+g(N)u(k + i − N − 1) =

=

N∑

j=i+1

g(j)∆u(k + i − j) +

+g(N)u(k + i − N − 1) +

+

i∑

j=1

g(j)∆û(k + i − j|k) =

= ŷf (k + i|k) +

i∑

j=1

g(j)∆û(k + i − j|k), (6)

where the first term is the response caused by the past
inputs and the sum represents the response determined by
future changes of the input signal ∆û(k + i − j|k), j =
1, . . . , i. The disturbance d (prediction error) is defined as

d , ym(k) − ŷ(k|k − 1), (7)

where ym(k) is the real (measured) output of the system
at time k.

For the pulse-step control strategy described in section 2.1
we get from (6)

ŷ(k + i|k) = ŷf (k + i|k) + g(i)∆û(k|k) + (8)

+g(i − n1)∆û(k + n1|k) + g(i − n2)∆û(k + n2|k),

where

∆û(k|k) = u+ − u(k − 1), ∆û(k + n1|k) = u− − u+,

∆û(k + n2|k) = u∞ − u−

for the pulse-step up case (Figure 1a) and

∆û(k|k) = u− − u(k − 1), ∆û(k + n1|k) = u+ − u−,

∆û(k + n2|k) = u− − u∞

for the pulse-step down case (Figure 1b).

Now the requirement that the system output reaches the
desired value w in N1 steps and stays steady until N2

th

step is formulated by

ŷ(k + N1|k) + d = . . . =

= ŷ(k + N2|k) + d = w, (9)

where N1, N2 are appropriate natural numbers defining
the prediction horizon. Note that the disturbance d given
by (7) is presumed to be constant over the whole time
interval 0, . . . , N (btw. this presumption incorporates in-
tegrator into the structure of the controller, which ensures
total compensation of arbitrary constant disturbance act-
ing on the system). From equations (8) and (9) we obtain

w = ŷf (k + i|k) + g(i)∆û(k|k) +

+g(i − n1)∆û(k + n1|k) +

+g(i − n2)∆û(k + n2|k) + d, i = N1, . . . , N2.(10)

Note that (10) is a set of linear equations with only a single
variable u∞ for fixed n1 and n2. The coincidence condition
(9) (or (10)) cannot be fulfilled exactly so it is necessary
to define quadratic performance index in the form

I =

N2∑

i=N1

(ŷ(k + i|k) + d − w)
2

+

+λ

HC−1∑

i=0

∆û(k + i|k)2 → min, (11)

where the optimized variables are n1, n2, 0 ≤ n1 ≤ n2 ≤
HC , and u∞ ∈ [u+;u−].

It is important to mention that the parameters N1, N2,
HC , and λ in the criterion (11) take the role of design
parameters. The parameters N1 and N2 define the coin-
cidence interval (9) and strongly influence the resulting
optimal control sequence. The standard choice is N1 = 0
and N2 = N−1. If dead-time D is present at the controlled
system, it is reasonable to set N1 > D/TS , where TS

is the sampling frequency. For monotonous step response
systems it is possible to use N2 << N to speed up the
closed loop. The control horizon HC , 1 ≤ HC ≤ N − 1,
influences the closed loop performance and mainly the
complexity of the optimization procedure. If the require-
ments on the speed of the closed loop are not critical,
it is possible to use the prediction horizon of HC = 1,
otherwise the choice of HC = 10 seems to be the most
appropriate (supposing the sampling frequency is adequate
with respect to the controlled system dynamics). In the
case when HC = 1, the nonlinear part of the control
action cannot be applied and the only optimized variable
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is u∞. Finally the parameter λ penalizes the changes in
the control signal. The greater this parameter is, the less
aggressive controller we get. Recommended value to start
the tuning from is λ = 0.

The algorithm used for solving the optimization task (11)
combines brute force and the least squares method. The
value u∞ is determined using the least squares method for
all admissible combinations of n1 and n2 and the optimal
control sequence is selected afterwards. The computational
cost is proportional to HC

2. The selected sequence in the
pulse-step shape is optimal in the open-loop sense. To
convert from open-loop to closed-loop control strategy,
only the first element of the computed control sequence is
applied and the whole optimization procedure is repeated
in the next sampling instant.

3. EXAMPLE

The properties of the model based predictive controller
based on the algorithm described in section 2.3 will be
illustrated here. Consider the controlled system described
by the transfer function

P (s) =
3

(5s + 1)2(10s + 1)2
· e−50s (12)
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Fig. 5. The setpoint step change response and input step
disturbance rejection, the exact model is used for
prediction, TS = 1s, HC = 5, N1 = 50, N2 = 150,
λ = 0.1, N = 190.

and manipulated value constraint u ∈ 〈0, 1〉. The sampling
frequency of TS = 1s will be used. It is of course necessary
to work with the discretized model of the system (12)
because the predictive control algorithm is discrete by its
nature.

Figure 4 illustrates the step responses which will be used
for prediction of the controlled system behavior. They
belong to the system (12) and its approximations in the
form (2) and (3) with the same characteristic numbers κ,
µ, and σ2. Note that the most significant discrepancies
occur at the beginning of the step responses, while the
static gain of all systems is the same.

Firstly the exact discrete step response is used for pre-
diction. Figure 5 compares the behavior of pulse-step
predictive controller to the classical PID controller. The
PID controller was tuned in the virtual PID laboratory
[Schlegel and Čech, 2004] with respect to the following
design specifications: gain margin Gm = 2, phase margin
Pm = 60◦, and restriction on the peak of the sensitivity
function MS < 1.8. The step response has only a small
overshoot and reaches the steady state much faster with
the predictive controller. Notice the pulse-step shape of
the control sequence. The manipulated value constraints
are kept and fully exploited when setpoint changes. The
input disturbance is also rejected faster by the predictive
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Fig. 6. The setpoint step change response and input step
disturbance rejection, the SOPDT approximation is
used for prediction, TS = 1s, HC = 5, N1 = 50,
N2 = 150, λ = 0.15, N = 190.
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controller but the improvement is not so significant in this
case.

Now the second order plus dead-time (SOPDT) approx-
imation was used for prediction of the controlled system
behavior. It was necessary to increase the λ parameter
to avoid too aggressive behavior of the controller resulting
from discrepancies between the model and the real system.
The controller is then more conservative and one can see
in the Figure 6 that the control sequences changed. For the
step response it degraded from pulse-step shape to pulse-
constant shape. This leads to a small overshoot and a bit
slower step response, but the PSMPC still outperforms
the classical PID controller. Notice the wobbling control
signal within the interval 50-100 seconds. The predictive
controller deals with the discrepancy between the model
and the real system during this phase.

The last set of responses is depicted in Figure 7. In this
case the controlled system is modelled by first order plus
dead-time (FOPDT) system, which means the difference
between the real system and the model is even bigger. Thus
the λ parameter had to be increased once again, otherwise
wild oscillations would occur. Small overshoot occurs again
but the step response is still significantly faster with
the predictive controller. The input disturbance rejection
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Fig. 7. The setpoint step change response and input step
disturbance rejection, the FOPDT approximation is
used for prediction, TS = 1s, HC = 5, N1 = 50,
N2 = 150, λ = 0.18, N = 190.

remains almost the same regardless of the prediction model
used.

Robustness

As was shown in the previous section even such simple
predictive controller can provide a high quality closed loop.
It was shown that the controller works fine even if a rough
approximation of the controlled system is used for predic-
tion. To test the robustness more deeply, inaccurate char-
acteristic numbers κ, µ and σ2 were used. Such situation
can occur in industrial practice as the characteristic num-
bers are usually computed from measurements on the real
system, where noise and disturbances are always present.
All the characteristic numbers were successively perturbed
by ±10% and the resulting perturbed FOPDT systems
were used for prediction, while keeping the parameters
from the experiment with the original FOPDT system.

Figure 8 compares the closed loop behavior when the
FOPDT and perturbed FOPDT approximations are used
for prediction. The inaccurate characteristic numbers re-
sult in small under- or overshoot but the overall per-
formance is still acceptable. Furthermore it is possible
to easily adjust the characteristic numbers manually in
such case, because they have a clear physical meaning
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disturbance rejection, perturbed FOPDT approxima-
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as was already mentioned. The robustness can be further
improved by increasing the λ parameter.

4. CONCLUSION

The described pulse-step model predictive controller en-
sures high quality behavior of the closed control loop.
It keeps and exploits the manipulated value constraints
while the computational cost is kept at a reasonable level.
The tuning of the controller is very easy, as it has only 3
parameters (except the step response): the control horizon,
the prediction horizon, and the weighting coefficient λ.
Only the last one is meant for manual tuning of the
controller, the others are determined automatically from
the step response sequence. It was illustrated that this
controller can also deal with model uncertainties very well.
All this makes the PSMPC controller a suitable candidate
for the PID controller successor in industry. The PSMPC
controller has been recently added to the Matlab/Simulink
compatible RexLib function block library, which is avail-
able for open public and whose general description can be
found in Balda et al. [2005].
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