
Stabilizing controllers, Lyapunov functions,
and the inverse problem of optimal control

P. Rapisarda ∗ C. Kojima ∗∗

∗ Information: Signal, Images, Systems (ISIS) Research Group, School
of Electronics and Computer Science, University of Southampton,

Southampton SO17 1BJ, United Kingdom, tel.: +44 (0)23 8059 3367,
fax: +44 (0)23 80594498, e-mail: pr3@ecs.soton.ac.uk

∗∗Department of Information Physics and Computing, Graduate
School of Information Science and Technology, The University of

Tokyo, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan tel/fax:
+81-3-5841-6890; e-mail: chiaki kojima@ipc.i.u-tokyo.ac.jp

Abstract: We explore the connections of Margreta Kuijper’s parametrization of stabilizing
controllers, with some issues arising in inverse optimal control and in Lyapunov stability theory
for higher-order linear time-invariant differential systems.

Keywords: Lyapunov functions, stationarity, quadratic differential forms, inverse problems,
dissipative systems.

1. INTRODUCTION

The purpose of this paper is to study some consequences
of the parametrization of controllers which interconnected
with a given behavior B yield a stable desired controlled
behavior Bdes (see Kuijper (1995)). We show that Kui-
jper’s parametrization can be used in order to characterize
the set of Lyapunov functions for Bdes; and to parametrize
the solutions to the inverse optimal control problem for
systems described by higher-order differential equations.

Some of the results presented in this note are reminiscent
of those of Iwasaki et al. (1995); however, we operate in a
different setting. While in Iwasaki et al. (1995) the starting
point of the investigation is a state-space representation of
a system, in this paper we consider systems described by
higher-order linear, constant-coefficient, differential equa-
tions. This choice of setting is motivated by the fact that
state-space representations are usually derived a posteriori
from a model derived from first principles. Such a model
consists of a set of differential equations of high order, usu-
ally involving also auxiliary variables, besides the variables
that one is interested in modeling; and including algebraic
constraints among the variables. It makes sense, conse-
quently, to address issues for this type of representation,
rather than restricting attention to more specific ones, such
as the state-space, no matter how useful they are in other
contexts.

The right language to formulate and solve problems de-
fined at this level of generality is that of behavioral sys-
tem and control theory, which we use extensively in this
paper. We refer the reader unfamiliar with the concepts
and terminology of the behavioral approach to the book
Polderman et al. (1998). In this paper we will also use
extensively the notion of quadratic differential form, and
the related concepts and results; the reader is referred to
the paper Willems et al. (1998).

The paper is organized as follows: in section 2 we recall
some background material regarding linear differential sys-
tems, quadratic differential forms, and the parametrization
of controllers introduced in Kuijper (1995). In section 3
we show how this parametrization can be used in order to
characterize the set of Lyapunov functions associated with
a stable closed-loop behavior. In section 4 we introduce
the inverse problem of optimal control, and we show how
Kuijper’s result can be used in order to parametrize the
solution to this problem.

Notation and terminology : The space of n dimensional real
vectors is denoted by Rn, and the space of m × n real
matrices, by Rm×n. Whenever one of the two dimensions
is not specified, a bullet • is used: R•×n represents the set
of real matrices with n columns and an unspecified (but
finite) number of rows. Given two column vectors x and y,
we denote with col(x, y) the vector obtained by stacking
x over y; a similar convention holds for the stacking of
matrices with the same number of columns.

The ring of polynomials with real coefficients in the
indeterminate ξ is denoted by R[ξ]; the ring of two-variable
polynomials with real coefficients in the indeterminates
ζ and η is denoted by R[ζ, η]. The space of all n × m
polynomial matrices in the indeterminate ξ is denoted by
Rn×m[ξ], and that consisting of all n×m polynomial matrices
in the indeterminates ζ and η by Rn×m[ζ, η]. Given a matrix
R ∈ Rn×m[ξ], we define R(ξ)∼ := R(−ξ)> ∈ Rm×n[ξ].

We denote with C∞(R, Rw) the set of infinitely often differ-
entiable functions from R to Rw; and with D(R, Rw) the set
of infinitely-differentiable compact support trajectories.
The exponential function whose value at time t is eλt, will
be denoted with expλ.
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2. BACKGROUND MATERIAL

2.1 Behavioral system theory

A linear differential behavior is a linear subspace B of
C∞(R, Rw), consisting of all solutions w of a given system
of linear constant-coefficient differential equations. The
set consisting of all linear differential behaviors whose
trajectories w have dimension w is denoted with Lw. A
behavior in Lw can always be represented as

R(
d

dt
)w = 0, (1)

where R ∈ R•×w[ξ]. The equation (1) is called a kernel
representation of B, the latter defined as the set of all
w’s satisfying the equation. The variable w is called the
manifest variable of B. Linear differential systems which
are controllable (see Polderman et al. (1998) for the defi-
nition) can also be represented as follows. If M ∈ Rw×•[ξ]
and B = {w ∈ C∞(R, Rw) | ∃ ` ∈ C∞(R, Rm) s.t. w =
M( d

dt )`}, then we call

w = M(
d

dt
)` (2)

an image representation of B. The image representation
(2) of B is called observable if (M( d

dt )` = 0) =⇒ (` = 0). It
can be shown that this is the case if and only if the matrix
M(λ) has full column rank for all λ ∈ C. The set of all
controllable behaviors with manifest variable of dimension
w is denoted with Lw

cont.

Associated with a system in Lw there are a number of
integer invariants (see Polderman et al. (1998)); in the
following we will refer frequently to p(B), the output
cardinality of the behavior B; and to m(B), the input
cardinality of the behavior B. When it will be clear from
the context which behavior is being referred to, we will
drop the explicit dependence on B in the invariants’
symbols, and write m and p instead.

We now review those definitions and results regarding
quadratic differential forms, which are used in this paper.

Let Φ ∈ Rw×w[ζ, η]; then Φ can be written in the form

Φ(ζ, η) =
N∑

h,k=0

Φh,kζhηk,

where Φh,k ∈ Rw×w and N is an integer. The two-variable
polynomial matrix Φ induces a quadratic functional acting
on infinitely differentiable trajectories as follows:

QΦ : C∞(R, Rw) −→ C∞(R, R),

QΦ(w) =
N∑

h,k=0

(
dhw

dth
)T Φh,k

dkw

dtk
.

Without loss of generality in the following we will assume
that Φ is a symmetric two-variable polynomial matrix, i.e.
Φ(ζ, η) = Φ(η, ζ)>. We denote the set of all symmetric w×w
two-variable polynomial matrices matrices by Rw×w

s [ζ, η].
The QDF QΦ is called nonnegative, denoted QΦ ≥ 0, if
QΦ(w) ≥ 0 for all w ∈ C∞(R, Rw). QΦ is called positive
if QΦ ≥ 0 and [QΦ(w) = 0] =⇒ [w = 0]. In the context of
Lyapunov theory, the need arises to define nonnegativity
and positivity along a behavior. Let B ∈ Lw; then QΦ is

called nonnegative along B, denoted QΦ

B
≥ 0, if QΦ(w) ≥ 0

for all w ∈ B. The notion of positivity along B follows
immediately.

We now illustrate a couple of features of the calculus of
QDF’s which will be used extensively in this paper. One
of them is the notion of derivative of a QDF. Given a QDF
QΦ we define its derivative as the QDF d

dtQΦ defined by
( d

dtQΦ)(w) := d
dt (QΦ(w)). QΦ is called the derivative of

QΨ if d
dtQΨ = QΦ. In terms of the two-variable polynomial

matrices associated with the QDF’s, this relationship is
equivalently expressed as (ζ + η)Ψ(ζ, η) = Φ(ζ, η).

A second notion of the calculus of QDF’s which will be
extensively used in the following is that of equivalence
of QDF’s modulo a behavior. Let B ∈ Lw; two QDF’s
QΦ1 and QΦ2 are called equivalent modulo B, denoted
QΦ1

B= QΦ2 , if QΦ1(w) = QΦ2(w) for all w ∈ B. Let
B = ker R

(
d
dt

)
; then it can be shown (see Proposition 3.2

of Willems et al. (1998)) that QΦ1

B= QΦ2 if and only if
there exists F ∈ R•×•[ζ, η] such that Φ1(ζ, η) = Φ2(ζ, η)+
R(ζ)>F (ζ, η) + F (η, ζ)>R(η). The class of equivalence
of a given QDF modulo an autonomous behavior B
admits a canonical representative, defined as follows. Let
B = ker R

(
d
dt

)
, with R ∈ Rw×w[ξ] nonsingular; then it

can be shown that for any Φ ∈ Rw×w
s [ζ, η] there exists

Φ′ ∈ Rw×w
s [ζ, η] such that QΦ′

B= QΦ and moreover
R(ζ)−>Φ′(ζ, η)R(η)−1 is a matrix of strictly proper two-
variable rational functions. Φ′ is called the R-canonical
representative of Φ.

In this paper, we also use integrals of QDF’s. In order
to make sure that the integrals exist, we assume that the
trajectory w on which the QDF acts is of compact support;
that is, w belongs to D(R, Rw). Given a QDF QΦ, we define
its integral as the functional∫

QΦ : D(R, Rw) −→ R,∫
QΦ(w) =

∫ +∞

−∞
QΦ(w)dt.

Questions such as when the integral of a QDF is a
positive semidefinite operator arise naturally in the study
of dissipativity. We call a QDF QΦ average nonnegative, if∫

QΦ ≥ 0, i.e.,
∫∞
−∞QΦ(w)dt ≥ 0 for all w ∈ D(R, Rw).

2.2 Lyapunov stability

We begin by recalling the definition of asymptotic stability
of a behavior. A behavior B is asymptotically stable if
(w ∈ B) =⇒ (limt→∞ w(t) = 0). It can be shown that if
B is asymptotically stable, then there exists a nonsingular
matrix R ∈ Rw×w[ξ] such that B = ker R

(
d
dt

)
and det(R)

is a Hurwitz polynomial.

The following result from Willems et al. (1998) holds.
Proposition 1. Let B ∈ Lw. The following statements are
equivalent:

(1) B is asymptotically stable;

(2) For every Φ ∈ Rw×w[ζ, η] such that QΦ

B
< 0 there

exists Ψ ∈ Rw×w
s [ζ, η] such that QΨ

B
> 0 and d

dtQΨ
B=

QΦ.
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In practical situations it is of interest to compute a

polynomial matrix Ψ from a given Φ, such that QΦ

B
< 0

and d
dtQΨ

B= QΦ. Let B = ker R
(

d
dt

)
; then from Theorem

3.2 of Willems et al. (1998) it follows that the last equation
can be equivalently written as
(ζ + η)Ψ(ζ, η) = Φ(ζ, η) + Y (η, ζ)>R(η) + R(ζ)>Y (η, ζ)

(3)
for some Y ∈ R•×•[ζ, η]. In particular, it can be shown (see
Peeters et al. (2001)) that if B is asymptotically stable
and Φ is R-canonical, then a R-canonical solution Ψ to
(3) (i.e. a Ψ such that (3) holds for some Y ) always exists,
and it is unique. Indeed, in order to compute Ψ from Φ the
following procedure can be used. Consider the polynomial
matrix equation

X(−ξ)>R(ξ) + R(−ξ)>X(ξ) = Φ(−ξ, ξ) (4)
in the unknown R-canonical matrix X ∈ R•×w[ξ]. Then
under any of the conditions of Proposition 1, equation (4)
has a unique R-canonical solution X; moreover,

Ψ(ζ, η) :=
X(ζ)>R(η) + R(ζ)>X(η)− Φ(ζ, η)

ζ + η

satisfies (3) and is R-canonical. Vice versa, if Φ and Ψ
are R-canonical, and Ψ satisfies (3), then a R-canonical X
satisfying (4) can be found from Ψ as

X(ξ) := − lim
|µ|→∞

µR(µ)−>Ψ(µ, ξ)

These results show that there is a one-one correspondence
between R-canonical solutions of (3) and R-canonical
solutions of (4).

The equations (3) and (4) will play an important role in
the following; they are called the two-variable and one-
variable polynomial Lyapunov equation, respectively.

2.3 Stationarity

Let Φ ∈ Rw×w
s [ζ, η], and consider the corresponding QDF

QΦ(w) on C∞(R, Rw). For a given w we define the cost
degradation of adding the compact-support function δ ∈
D(R, Rw) to w as

Jw(δ) :=
∫ +∞

−∞
(QΦ(w + δ)−QΦ(w))dt.

The cost degradation equals Jw(δ) =
∫ +∞
−∞ QΦ(δ)dt +

2
∫ +∞
−∞ LΦ(w, δ)dt, where LΦ is the bilinear differential

form associated with Φ, defined as the functional from
C∞(R, Rw)× C∞(R, Rw) to C∞(R, R), defined as:

LΦ(w1, w2) =
N∑

h,k=0

(
dhw1

dth
)T Φh,k

dkw2

dtk
.

We call the integral 2
∫ +∞
−∞ LΦ(w, δ)dt the variation associ-

ated with w. It defines a linear functional which associates
with every δ ∈ D(R, Rw) a real number 2

∫ +∞
−∞ LΦ(w, δ)dt.

We call w a stationary trajectory of QΦ if the variation
associated with w is the zero functional. The following
proposition (for a proof, see Proposition 4.1 of Rapisarda
et al. (2004)) establishes a representation of all stationary
trajectories of given QDF QΦ. In the following, for a given
two-variable polynomial matrix Φ(ζ, η), ∂Φ(ξ) is defined
as the one-variable polynomial matrix Φ(−ξ, ξ).

Proposition 1. Let Φ ∈ Rw×w[ζ, η] be symmetric. Then
w ∈ C∞(R, Rw) is a stationary trajectory of the QDF QΦ if
and only if w satisfies the system of differential equations

∂Φ
(

d

dt

)
w = 0. (5)

Often a B ∈ Lw
cont and a QΦ are given, and it is desired to

characterize the set of stationary trajectories of B with
respect to QΦ. Let M ∈ Rw×m[ξ] an observable image
representation B = im M( d

dt ); in this case, the result of
Proposition 1 can be applied to the QDF induced by the
two-variable polynomial matrix

Φ′(ζ, η) := M(ζ)>Φ(ζ, η)M(η) (6)

2.4 Kuijper’s parametrization of controllers

In Kuijper’s work an essential role is played by the image
and kernel representation of the behavior, respectively
equation (2) and (1). In the following we assume that the
kernel representation is “minimal”, and that the image
representation is “observable”; this implies p + m = w.
Observe that the assumption of controllability of B and of
minimality of (1) also implies that R(λ) has full row rank
for all λ ∈ C.

In Kuijper’s framework, the desired sub-behavior Bdes ⊂
B which one aims to achieve after interconnection of
B with a controller, is assumed to be autonomous, and
consequently representable in the form

w = M(
d

dt
)`

0 = D(
d

dt
)` (7)

where D ∈ Rm×m[ξ] is nonsingular.

Instrumental in Kuijper’s parametrization is a doubly
coprime factorization over the polynomials, i.e.[

R
C0

]
[N M ] =

[
Ip 0
0 Im

]
(8)

where C0 ∈ Rm×w[ξ], N ∈ Rw×p[ξ]. The existence of
this factorization is guaranteed by standard polynomial
algebra arguments.

For the purposes of this paper, the most important result
of Kuijper’s work is the following (see Theorem 3.3 p. 624
of Kuijper (1995)).
Theorem 2. Let Bdes be described as in (7), and let (8) be
a doubly-coprime factorization. A controller behavior Bc

is such that B ∩ Bc = Bdes, if and only if there exist
G ∈ Rm×p[ξ], and U ∈ Rm×m[ξ] unimodular, such that
Bc = ker C( d

dt ), where
C = GR + UDC0 (9)

In the next section we show how the result of Theorem 2
relates to Lyapunov functions.

3. STABILIZING CONTROLLERS AND LYAPUNOV
FUNCTIONS

In the rest of this paper, we will make use of the fol-
lowing rather straightforward consequence of the mate-
rial presented in the previous section, namely that the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5887



autonomous interconnected system with behavior Bdes =
B ∩Bc is described in kernel form by the matrix

R̂ :=
[
R
C

]
=

[
Ip 0
G U

] [
Ip 0
0 D

] [
R
C0

]
(10)

Observe that the first- and the last matrix in the factor-
ization (10) are unimodular. Observe also that col(R,C0)
defines a one-one correspondence between Bdes and the
set {

col(0p, `) | ` ∈ D

(
d

dt

)}
(11)

This correspondence implies that if Bdes is asymptotically
stable, then also the set (11) is asymptotically stable.
Moreover, we can associate in a one-one way a Lyapunov
function QΨ for the behavior

B′ := kerR′(
d

dt
) := ker

 Ip 0

G

(
d

dt

)
U

(
d

dt

)I 0

0 D

(
d

dt

)
(12)

with a Lyapunov function QΨ̂ for ker R̂( d
dt ) in the following

way:

Ψ(ζ, η) → Ψ̂(ζ, η) :=
[
R(ζ)> C0(ζ)>

]
Ψ(ζ, η)

[
R(η)
C0(η)

]
An analogous relation holds for the derivative Φ̂ of Ψ̂.

Now consider the col(Ip, D)-canonical representatives of Ψ̂
and Φ̂. Observe that in this case there exists Q̂ ∈ R•×w[ξ]
such that the col(Ip, D)-canonical representative of Φ̂(ζ, η)
is −Q̂(ζ)>Q̂(η) (see Willems et al. (1998)). Observe also
that since Q̂ is col(Ip, D)-canonical, it is of the form

Q̂ :=
[
0 0
0 L

]
with L such that LD−1 is strictly proper. Moreover, from

QΦ̂

B
< 0 it follows that col(L(λ), D(λ)) is of full column

rank for all λ ∈ C.

From the one-one correspondence existing between R-
canonical solutions of the two-variable polynomial Lya-
punov equation and R-canonical solutions of the one-
variable polynomial equation illustrated in section 2.2, it
follows that the col(Ip, D)-canonical representative of Ψ̂
is associated with a unique col(Ip, D)-canonical solution
X̂ ∈ Rw×w[ξ] to the univariate polynomial Lyapunov equa-
tion

col(Ip, D)∼X + X∼col(Ip, D) = −Q̂∼Q̂ (13)
Observe that since X is diag(Ip, D)-canonical, it is of
the form diag(0p, Z) for some D-canonical Z ∈ Rm×m[ξ]
satisfying D∼Z + Z∼D = −L∼L. It follows from this
discussion that the diag(Ip, D)-canonical representative of
Ψ̂ is

1
ζ + η

[[
0

Z(ζ)

]> [
Ip

D(η)

]
+

[
Ip

D(η)

]> [
0

Z(η)

]

+
[

0
L(ζ)

]> [
0

L(η)>

]]

This expression can be rewritten as

1
ζ + η

[[
0

Z(ζ)

]> [
Ip 0

G(η) U(η)

]−1 [
Ip 0

G(η) U(η)

] [
Ip

D(η)

]

+
[

Ip
D(ζ)

]> [
Ip 0

G(ζ) U(ζ)

]> [
Ip 0

G(ζ) U(ζ)

]−> [
0

Z(η)

]
+

[
0

L(ζ)

]> [
0

L(η)

]]

By pre- and post-multiplying this expression by
col(R(ζ), C0(ζ))>

and
col(R(η), C0(η))

respectively, we obtain

1
ζ + η

[
Y (η, ζ)>R̂(η) + R̂(ζ)>Y (ζ, η)

+R̂(ζ)>col(0, L(ζ)>)col(0, L(η)>)R̂(η)
]

(14)

where

Y (ζ, η) :=
[

Ip 0
G(ζ) U(ζ)

]−> [
0

Z(η)

] [
R(η)
C0(η)

]
(15)

The above argument proves the following statement.
Proposition 3. Let B ∈ Lw

cont, and let Bdes be described
as in (7), with (8) a doubly-coprime factorization. Let Bc

be such that B ∩ Bc = Bdes, and let (10) be a kernel
representation of Bdes. A two-variable symmetric matrix
Ψ ∈ Rw×w[ζ, η] induces a Lyapunov function for Bdes if
and only it is Bdes-equivalent to a QDF induced by an
expression (14), where

(1) L ∈ Rm×m[ξ] is such that col(D(λ), L(λ)) has full
column rank for all λ ∈ C;

(2) Z ∈ Rm×m[ξ] is a D-canonical matrix satisfying Z∼D+
D∼Z = −L∼L;

(3) Y is defined as in (15).

4. PARAMETRIZATION OF ALL SOLUTIONS TO
THE INVERSE PROBLEM OF OPTIMAL CONTROL

In this section we first formulate the inverse optimal
control problem in the behavioral framework; and then
proceed to show how the result of Kuijper (1995) can be
used in order to parametrize its solutions.

Problem 1 (inverse optimal control problem)
Let B ∈ Lw be controllable, and let Bs ⊂ B be

asymptotically stable. Find a quadratic differential
form QΦ acting on the variables of B such that

(1)
∫

QΦ

B
≥ 0;

(2) Bs consists of all stable trajectories of B sta-
tionary with respect to QΦ.

The main result of this section is the following.
Proposition 4. Let a doubly coprime factorization (8) be
given, and assume that Bs of the statement of Problem
1 is described as in (7). Then QΦ solves the inverse
optimal control problem if and only if there exist F ∈
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Rp×w[ζ, η], G ∈ Rm×p[ξ], a symmetric Ψ ∈ Rw×w[ζ, η], and
a unimodular matrix U ∈ Rm×m[ξ] such that

Φ(ζ, η) = (ζ + η)Ψ(ζ, η)

+
[

R(ζ)
C0(ζ)

]> [
Ip G(ζ)>

0 D(ζ)>U(ζ)>

]
·
[

Ip 0
G(η) U(η)D(η)

] [
R(η)
C0(η)

]
(16)

Proof. We prove necessity first. Let Φ(ζ, η) ∈ Rw×w
s [ζ, η] be

a solution to the inverse optimal control problem. Observe
that condition 2) of the inverse optimal control problem
and the result of Proposition 1 implies that there exists a
polynomial matrix S ∈ Rw×w[ξ] such that

∂Φ = SR′

where R′ induces a kernel representation of Bdes. More-
over, from the fact that ∂Φ is para-Hermitian it follows
that ∂Φ = R′∼S∼. A simple argument shows that there
exists a para-Hermitian, unimodular matrix V ∈ Rw×w[ξ]
such that ∂Φ = R′∼V R.

Now from ∂Φ = R′∼V R′ it follows (see Theorem 3.1
p. 1711 of Willems et al. (1998)) that there exists a
Ψ ∈ Rw×w

s [ζ, η] such that

Φ(ζ, η) = R′>(ζ)Φ′(ζ, η)R′(η) + (ζ + η)Ψ(ζ, η)
where Φ′(ζ, η) ∈ Rw×w

s [ζ, η] is such that ∂Φ′ = V . Observe
that for example, Φ′(ζ, η) = 1

2V (ζ)> + 1
2V (η) is such a

matrix.

We now investigate further the structure of Φ′(ζ, η). Apply
the result of Theorem 2 in order to conclude that the
polynomial matrix R′ of the kernel representation of Bdes

can be chosen as

R′ =
[
Ip 0
G′ U ′D

] [
R′′

C0

]
for some minimal kernel representation R′′ of B, some
G′ ∈ Rm×p[ξ], and unimodular U ′ ∈ Rm×m[ξ]. Partition
Φ′(ζ, η) as

Φ′(ζ, η) =
[

Φ′11(ζ, η) Φ′12(ζ, η)
Φ′12(η, ζ)> Φ′22(ζ, η)

]
with Φ′11 ∈ Rp×p

s [ζ, η], Φ′12 ∈ Rp×m[ζ, η], and Φ′22 ∈
Rm×m

s [ζ, η].

We now prove that since the set of stable stationary tra-
jectories of QΦ is Bdes, it follows that ∂Φ′22 is unimodular.
Indeed, assume by contradiction that this is not the case;
then there exists a nonzero trajectory w′22 ∈ C∞(R, Rm),
such that limt→∞ w′22(t) = 0, which is a stationary trajec-
tory for QΦ′

22
. Recall that R′ is nonsingular, and conse-

quently it represents a surjective polynomial differential
operator from C∞(R, Rw) to itself. Consequently there
exists a trajectory w ∈ C∞(R, Rw) such that R′ ( d

dt

)
w =

col(0p, w′22). It is easy to see that since Bdes is asymptot-
ically stable, and consequently R′(λ) loses rank only for
λ ∈ C−, it must hold that limt→∞ w(t) = 0. Evidently
w 6∈ Bdes = ker R′ ( d

dt

)
, since w′22 6= 0; moreover, w is

also stationary for QΦ′ , since it belongs to ker ∂Φ′
(

d
dt

)
.

This contradicts the fact that the set of stable stationary
trajectories of QΦ′ equals Bdes, and proves that ∂Φ′22 is
unimodular.

Now observe that from ∂Φ′(iω) ≥ 0 for all ω ∈ R it follows
that there exists a unimodular matrix U ′′ ∈ Rm×m[ξ] such
that ∂Φ′22 = U ′′∼U ′′. Observe that

∂Φ′(ξ) =
[
Ip 0
0 U ′′∼(ξ)

]
[

∂Φ′11(ξ) ∂Φ′12(−ξ, ξ)U ′′(ξ)−1

(U ′′∼(ξ))−> ∂Φ′12(ξ,−ξ)> Im

]
[
Ip 0
0 U ′′(ξ)

]
and moreover that[

∂Φ′11(ξ) ∂Φ′12(ξ)U
′′(ξ)−1

(U ′′∼(ξ))−> ∂Φ′12(ξ)
> Im

]
=

[
Ip Φ′12(ξ,−ξ)>U ′′(ξ)−1

0 Im

]
[
∂Φ′11(ξ)− (U ′′∼(ξ))−> ∂Φ′12(ξ)∂Φ′12(ξ)

>U ′′(ξ)−1 0
0 Im

]
[

Ip 0
(U ′′∼(ξ))−1

∂Φ′12(ξ)
> Im

]
Observe that since ∂Φ′ is unimodular, also the matrix

∂Φ′11(ξ)− (U ′′∼(ξ))−> ∂Φ′12(ξ)∂Φ′12(−ξ)>U ′′(ξ)−1

is unimodular. Moreover, since ∂Φ′(iω) ≥ 0 for all ω ∈ R,
the matrix

∂Φ′11(ξ)− (U ′′∼(ξ))−> ∂Φ′12(ξ)∂Φ′12(−ξ)>U ′′(ξ)−1

is also nonnegative definite on the imaginary axis. It
follows by standard results on spectral factorization that
there exists a unimodular matrix V ′ ∈ Rp×p[ξ] such that

V ′∼(ξ)V ′(ξ) =

∂Φ′11(ξ)− (U ′′∼(ξ))−1
∂Φ′12(−ξ)>Φ′12(ξ,−ξ)>U ′′(ξ)−1

Now define

R := V ′R′′

G(ξ) := (U ′′∼(ξ))−1Φ′12(ξ,−ξ)>G′(ξ)

U(ξ) := U ′′(ξ)V ′(ξ)

and conclude that equation (16) holds. This concludes the
proof of necessity.

Sufficiency follows easily by computing ∂Φ for the two-
variable polynomial matrix Φ defined in (16).
Remark 2. Using the framework developed in Willems
et al. (2005) it can be shown that the inverse problem
of optimal control as stated in this section is equivalent to
the following problem in the theory of dissipativity.

Problem 1 (dissipativity version)
Let B ∈ Lw be controllable, and let Bs ⊂ B be

asymptotically stable. Find a supply rate defined
by a quadratic differential form QΦ acting on the
variables of B, such that
(1) B is dissipative with respect to QΦ;

(2) Bs consists of all stable trajectories of B with
zero-dissipation respect to QΦ.
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The result of Proposition 4 can be used in order to
parametrize the solutions to this problem. We will not
enter into this ramification of our results here.

CONCLUSIONS

The main results of this paper are Propositions 3 and 4,
which use the parametrization of controllers introduced
in Kuijper (1995) in order to investigate the structure
respectively of the set of Lyapunov functions for a given
stable behavior obtained by interconnection of a plant and
a controller; and the solutions to the inverse problem of
optimal control defined in section 4 of this paper.

Current research is concentrated on extending the applica-
tion of Kuijper’s results in the development of a unifying
point of view on dissipativity and stabilization of linear,
time-invariant systems described by higher-order differen-
tial equations.
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