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Abstract: In vivo modelling of the pathogenesis of HIV-1 in plasma captures the interplay of
the virus and CD4 cells in the cell-free viral spread process. Modelling is also done for both in
vitro cell-to-cell and cell-to-free viral spread of HIV-1 and its kinetics in tissue cultures. Upon
infection with HIV-1, there is a short intracellular “eclipse phase” or “latency”, during which the
cell is infected but has not yet begun producing virus. One approach to account for the “eclipse
phase” or “latency” is to introduce an intracellular delay in the models. This paper focuses on
the identifiability of the parameters in the most popular HIV models with time delay, in vivo
and in vitro. The identifiability of such parameters as the time-delay parameter; the effective
reproductive rate of healthy cells; death rate of infected cells; average life time of productively
infected cells; viral burst size; etc, is studied by the linear algebraic method based on differential
1-form. Medical interpretation for the identifiability results is given, and it provides guidelines
in data collection for the identification of these parameters.
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1. INTRODUCTION AND A REVIEW OF HIV
MODELS

The markers of the disease progression due to the human
immunodeficiency virus (HIV) and the acquired immun-
odeficiency syndrome (AIDS) are the CD4 cell and viral
levels in the plasma. The interplay of the CD4 cells and
virus is better revealed during the early process of cellular
infection and viral production as well as the post ther-
apeutical period of viral suppression and immunological
recovery. Mathematical models have been proposed to de-
scribe the immunological response to HIV infection, with
HIV dynamics in vivo data verification and extraction of
key parameters of the dynamics (see Ho et al [1995], Wei,
et al [1995], Nowak and May [2000], Perelson and Nelson
[1999] and references therein).

The need of a full set of HIV model parameters is recog-
nized in the approach of model identifiability and param-
eter identification taken by Xia and Moog [2003], Jeffrey
and Xia [2005], Jeffrey et al [2003], as well as the appli-
cations in studies of vaccine readiness in Southern Africa
(Filter et al [2003], Gray et al [2005]), drug effectiveness
and therapy failures on existing patients in France (Ouat-
tara [2005], Ouattara et al [2004] (see also the summary
report given in Xia [2007])).

Investigation of in vitro cell-to-cell spread of HIV is im-
portant since majority of infection occurs in the lymphatic
tissues where 98% of CD 4+ lymphocytes reside (Rosen-
berg and Janossy [1999]) on the one hand, and many
features are easier to determine experimentally in tissue
cultures than in plasma (Culshaw et al [2003]) on the other
hand. A modeling approach was proposed by Spouge et al
∗ Corresponding author

[1996] to simulate the infection and progression of HIV,
the “infected equilibrium” of the co-existence of healthy
cells and infected cells, under realistic parameter ranges.

A short intracellular “eclipse phase” or “latency” is ob-
served during the infection stage and post therapeutical
response. During early infection, the cell is infected but
has not yet started producing virus. While in response
to therapeutical treatment with highly active antiretrovi-
ral therapy (HAART), the virus is not suppressed until
a “shoulder period” of time. There are two approaches
to model this eclipse phase, by a time delay or by an
explicit class of latently infected cells, and Perelson and
Nelson [1999] has taken the approach of modeling with
an explicit class of latently infected cells. The first paper
of taking the “delay” approach is Herz et al [1996] where
it is assumed that cells become productively infected τ
time units after initial infection. Tam [1999] has taken up
the investigation of introducing a delay in modeling the
interaction between the replicating virus and host cells.
Properties of these models in terms of stability and steady
states are studied for clinically reported parameter values
(Culshaw and Ruan [2000], Lloyd [2001]). Extensions are
done in Mittler et al [1998] for a distributed delay, and in
Nelson et al [2001, 2000], Nelson and Perelson [2002], Dixit
and Perelson [2004] to include delays in HIV infection and
treatment for more general cases of combination antiviral
drugs with/without reduced efficacy. A “delayed” version
of the cell-to-cell in vitra model of Spouge et al [1996] was
also proposed by Culshaw et al [2003].

At the theoretical front of identifiability, concepts and al-
gorithmic procedures are developed (Zhang et al [2006]) for
non-linear models with pointwise delays under the general
framework of non-commutative module approach (Xia et
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al [2002]). This paper focuses on the identifiability of the
parameters in the most popular HIV models with time de-
lay, in vivo and in vitro. These parameters, which include
the time-delay parameter; the effective reproductive rate of
healthy cells; death rate of infected cells; viral burst size;
etc, are studied by the algebraic method in Zhang et al
[2006]. After deriving the identifiability results, the corre-
sponding medical interpretations, which give guidelines in
data collection for parameter identification, are provided.

The layout of the paper is as follows. The next section
gives a quick review on the parameter identifiability results
for nonlinear time-delay systems. Section 3 provides the
identifiability of delay and other parameters of three HIV
models. The last section is the conclusion.

2. PRELIMINARIES

For the readers’ convenience, some results on the identifia-
bility of delay parameter, and the algebraic and geometric
identifiability of other system parameters from Anguelova
and Wennberg [2006] and Zhang et al [2006] are recalled.
Consider the following nonlinear time-delay system
ẋ(t) = f(θ, x(t− iτ), u(t− iτ) : i = 0, 1, 2, · · · , s),
ẏ(t) = h(θ, x(t− iτ), u(t− iτ) : i = 0, 1, 2, · · · , s),
x(t) = φ(t), t ∈ [−sτ, 0],
u(t) = u0(t), t ∈ [−sT, 0],

(1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, θ ∈ Rq, τ ∈ [0, T ),
f, h, φ, u0 are meromorphic, and θ is a parameter. When
θ is known and s = 1, Anguelova and Wennberg [2006]
defines the identifiability of the delay parameter under the
framework of non-commutative modules (Xia et al [2002])
as the following.
Definition 1. (Anguelova and Wennberg [2006]) Assume
that s = 1 and θ is known in (1). The delay parameter τ is
said to be locally identifiable at τ0 ∈ [0, T ) if there exists
an open set U 3 τ0, U ⊂ [0, T ), such that ∀τ1 ∈ U : τ1 6=
τ0,∀φ0, φ1 ∈ C([−τ, 0],Rn), there exist t > 0 and a smooth
input u such that y(t;φ1, u, τ1) 6= y(t;φ0, u, τ0), where
y(t;φ, u, τ) denotes the output for the initial function φ,
the input u and delay τ .

Let Z>0 be the set of nonnegative integers, and K the field
of meromorphic functions of a finite number of variables
in the set {x(t − iτ), θ, u(j)(t − iτ) : i, j ∈ Z>0}. Define δ
to be the shift operator such that δ(a(t)) = a(t − τ). Let
K(δ] be the noncommutative ring which is defined as the
set of polynomials in δ with coefficients in K ( Xia et al
[2002]).

The following is a partial result on the identifiability of τ
in Anguelova and Wennberg [2006] which will be used in
this paper.
Theorem 1. (Anguelova and Wennberg [2006]) Assume
that s = 1, θ is known, and the observability index of
system (1) is (s1, s2, · · · , sp), then the delay parameter τ
is locally identifiable if the rank of

∂(h1, ḣ1, · · · , h(s1−1)
1 , h2, · · · , h(s2−1)

2 , · · · , hp, · · · , h
(sp−1)
p )

∂x
over K(δ] is not equal to the rank of

∂((h1, ḣ1, · · · , h(s1)
1 , h2, · · · , h(s2)

2 , · · · , hp, · · · , h
(sp)
p )

∂x

over K.

For any T ′ > 0 and any integer N > 0, the following basic
definitions such as the function space CN [−sτ, T ′] and
its topology, the set CN

U [−sτ, T ′] of all admissible inputs
on [−sτ, T ′], the topology of CN

U [−sτ, T ′] × CN
U [−sτ, T ′],

and the topology of M -fold product (CN
U [−sτ, T ′])M , are

referred to Xia and Moog [2003]. Let P be the range of θ
and define Wk := P ×M× Ck

U [−sτ, T ′].
Definition 2. (Zhang et al [2006]) The parameter θ in
system (1) is said to be geometrically identifiable if there
exist a T ′ > 0, an integer k > 0, an open subset S1 of
Wk, a function φ which is meromorphic in its arguments,
such that θ = φ(y(i)(t− jτ), u(i)(t− jτ), x(t− jτ) : i, j =
0, 1, . . . , k) holds for all (θ, x0, u) ∈ S1.
Definition 3. (Zhang et al [2006]) The parameter θ in
system (1) is said to be algebraically identifiable if there
exist an integer k > 0, a T ′ > 0, an open subset S1 of Wk,
a meromorphic function ψ, such that

θ = ψ(y(i)(t− jτ), u(i)(t− jτ) : i, j = 0, 1, . . . , k) (2)

holds for all (θ, x0, u) ∈ S1.

Denote Y = spanK(δ]{dy(j) : j ∈ Z>0}, X = spanK(δ]{dx},
U = spanK(δ]{du(j) : j ∈ Z>0},Θ = spanK(δ]{dθ}, that
is, Y,X ,U and Θ are the linear combinations of their
generators with row vector coefficients whose elements are
in K(δ]. The notation X + Θ means the span of {dx,dθ}
with suitable row vector coefficients.
Theorem 2. (Zhang et al [2006]) (i) The parameter θ in
(1) is algebraically identifiable if and only if dθ ∈ Y + U
holds for all (θ, x0, u) ∈ S1, where S1 is an open subset of
some Wk.

(ii) The parameter θ in (1) is geometrically identifiable if
and only if dθ ∈ (X + Y + U) holds for all (θ, x0, u) ∈ S,
where S is an open subset of some Wk.

Roughly speaking, the algebraic identifiability of the pa-
rameter θ means that θ can be represented by some mero-
morphic function of the output y and its derivatives and
delays, while the geometric identifiability of θ means θ
can be represented as a function of x and y, and their
derivatives and delays. Therefore the algebraic and geo-
metric identifiability can be tested by the computation of
derivatives of y, or equivalently, the derivatives of dy, to
see if the conditions in the above Theorem 2 hold (see
Theorem 2 and 3 of Zhang et al [2006] for computing
details). That is, one needs to compute y(j)

i or dy(j)
i and

try to solve θ or dθ from the obtained equations.

3. MAIN RESULTS

This section considers two dimensional in vitro HIV model,
and three and four dimensional in vivo HIV models. The
detailed computation for the two and three dimensional
models is omitted since the technique is similar to the
four dimensional case in subsection 3.3 and Xia and Moog
[2003].

3.1 2-dimensional in vitro model

The following is a 2-dimensional HIV in vitro model from
Culshaw et al [2003]:
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Ċ = rCC(t)(1− C(t) + I(t)
CM

)− kII(t)C(t),

İ = k′II(t− τ)C(t− τ)− µII(t),
(3)

where C(t) is the concentration of healthy cells, I(t) is
the concentration of infected cells, rC is the effective
reproductive rate of healthy cells, CM is the effective
carrying capacity of the system, kI is the infection of
healthy cells by the infected cells, k′

I

kI
is the fraction of

cells surviving the incubation period, µI is the death rate
of infected cells, and τ is the time delay. The output is
y(t) = C(t) + I(t). Let x1 = C, x2 = I, θ1 = rC , θ2 =
θ1

CM
, θ3 = kI , θ4 = k′I , θ5 = µI , and θ = (θ1, θ2, · · · , θ5)T .

The delay τ can be identified by using Theorem 1.
Proposition 1. Assume that θ is known and the following
persistent exciting conditions hold:∣∣∣∣ θ1 − (θ2 + θ3)x2 − 2θ2x1 θ4x2(t− τ)

−(θ2 + θ3)x1 − θ5 θ4x1(t− τ)

∣∣∣∣ 6= 0, (4)

(θ4x1(t− τ)x2(t− 2τ))2 + (θ4x1(t− τ)x1(t− 2τ))2 6= 0,
then the delay parameter τ of system (3) is locally identi-
fiable.

Now suppose the delay parameter τ is known and con-
sider the identifiability of θ. It is obvious that dẏ =
a1dθ + (a2 + a3δ)dx1 + (a4 + a5δ)dy, where a1 =
(x1,−x1y,−x1x2, x1(t− τ)x2(t− τ),−x2), a2 = θ1− θ2y−
θ3y+θ5+2x1θ3, a3 = θ4y(t−τ)−2θ4x1(t−τ), a4 = −θ2x1−
x1θ3 − θ5, a5 = θ4x1(t − τ). Let α1 = (x1,−x1y,−x1y +
x2

1, 0, 0), α2 = θ1 − θ2y − θ3y + 2θ3x1, and α3 = −θ2x1 −
θ3x1, then dẋ1 = α1dθ + α2dx1 + α3dy. Now

dÿ = b1dθ + b2dx1 + b3dδx1 + b4dy + b5dẏ,
with b1 = ȧ1 + a2α1 + a3δ(α1), b2 = ȧ2 + a2α2, b3 = ȧ3 +
a3δ(α2), b4 = ȧ4 + a2α3 + [ȧ5 + a3δ(α3)]δ, b5 = a4 + a5δ.
When a2b3 − b2a3 6= 0, one has(

dx1

dδx1

)
=

(
a2 a3

b2 b3

)−1 (
dẏ − a1dθ − (a4 + a5δ)dy
dÿ − b1dθ − b4dy − b5dẏ

)
:=

(
c1dθ + c2dy + c3dẏ

c4dθ + c5dy + c6dδy + c7dẏ + c8dδẏ + c9dÿ

)
,

where c1, · · · , c9 ∈ K are defined obviously by the above
equality, and c9 6= 0. By using dδx1 = δ(dx1) one has

dÿ =
(δ(c3)− c8)dδẏ − c7dẏ + (δ(c2)− c6)dδy − c5dy

c9

+
(δ(c1)− c4)dθ

c9
,

:= e1dθ + e2dy + e3dδy + e4dẏ + e5dδẏ.
For k > 3, it is easy to compute that

dy(k) = e
(k−2)
1 dθ + [e2dy + e3dδy + e4dẏ + e5dδẏ](k−2).

Now the following proposition follows.
Proposition 2. Assume that the delay parameter τ in
system (3) is known, a2b3 − a3b2 6= 0, and the matrix(

eT
1 , (e

(1)
1 )T , · · · , (e(4)1 )T

)
is of rank 5, then the five parameters rC , CM , kI , k

′
I and

µI are all algebraically identifiable and hence geometrically
identifiable.
Remark 1. The above proposition means that when the
delay parameter τ is given and some persistent exciting

conditions hold, then the five parameters in (3) can be
determined by the measured values {y(i)(t), y(j)(t − τ) :
i = 0, 1, · · · , 6; j = 0, 1, · · · , 5} for any fixed time t. Even
if the delays are ignored, one has to measure 7 times
to obtain y, ẏ, · · · , y(6). Therefore the measurement has
to be taken at least 7 times. These persistent exciting
conditions are satisfied roughly at the rapid changing
infection and replication stages. Model (3) describes an
infection taking place in the culture tissues in a well-
controlled laboratory environment, and the above needed
measurements of the derivatives and delays of the output
can usually be completed within one or two days, therefore
the five parameters are determined accordingly.

3.2 3-dimensional in vivo model

The following is a 3-dimensional HIV in vivo model with
time delay:

Ṫ (t) = λ− dT (t)− kT (t)V (t),
Ṫ ∗(t) = kT (t− τ)V (t− τ)e−mτ − δT ∗(t),
V̇ (t) = NδT ∗(t)− cV (t),

(5)

where T is the density of uninfected CD4 cell lymphocytes
(or target cells), which are generated at a rate λ and die
with a first order rate constant d when there is no infection.
When there is virus, T ∗ is the density of infected cells, k is
the second order rate constant of infection, V is the viral
load. The parameter 1

δ is average lifetime of productively
infected cells, N is the viral burst size, c is a first order
rate constant that free virions are cleared with, 1

m is
the average lifetime of infected cells before they become
productive, and τ is the fixed intracellular delay (see Dixit
and Perelson [2004]). The following are the outputs

y1(t) = T (t), y2(t) = V (t). (6)

Let x1 = T, x2 = T ∗, x3 = V, θ1 = λ, θ2 = d, θ3 = k, θ4 =
δ, θ5 = N, θ6 = c, θ7 = m, θ = (θ1, θ2, · · · , θ7)T , then
system (5) can be rewritten as

ẋ1(t) = θ1 − θ2x1(t)− θ3x1(t)x3(t),
ẋ2(t) = θ3x1(t− τ)x3(t− τ)e−θ7τ − θ4x2(t),
ẋ3(t) = θ5θ4x2(t)− θ6x3(t).

(7)

By computing rank K
∂(y1,y2,ẏ2,ÿ2)

∂(x1,x2,x3,x1(t−τ),x3(t−τ)) and

rank K(δ]
∂(y1,y2,ẏ2)
∂(x1,x2,x3)

, one has the following result.

Proposition 3. Assume that θ is known in (5), and
kδNx1(t − τ) 6= 0 or kδNx3(t − τ) 6= 0, then the delay
parameter τ in system (5)-(6) is locally identifiable.

Now consider the algebraic identifiability of θ when τ is
given. Since

ẏ1 = θ1 − θ2y1 − θ3y1y2,

y
(i+1)
1 = −θ2y(i)

1 − θ3(y1y2)(i), i > 1,
the parameters θ1, θ2, θ3 are algebraically identifiable when

rank K

 1 −y1 −y1y2
0 −ẏ1 −(y1y2)(1)

0 −ÿ1 −(y1y2)(2)

 = 3. (8)

The identifiability of the remaining parameters θ4, θ5, · · ·,
θ7 follows from

ÿ2(t) = θ3θ4θ5e
−θ7τy1(t− τ)y2(t− τ)− (θ4 + θ6)ẏ2

−θ4θ6y2.
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Proposition 4. Suppose the persistent exciting conditions
(8) and

rank K

 y1(t− τ)y2(t− τ) ẏ2 y2
(y1(t− τ)y2(t− τ))(1) ÿ2 ẏ2
(y1(t− τ)y2(t− τ))(2) y(3)

2 ÿ2

 = 3 (9)

hold for system (5)-(6).

(i) If m and τ are given, then all the remaining parameters
λ, d, k, δ,N,C are algebraically identifiable;

(ii) If τ is given, then all the parameters m,λ, d, k, δ,N,C
are geometrically identifiable.
Remark 2. The above proposition shows that when m and
τ are given and some persistent exciting conditions hold,
then all the parameters in (5) can be determined by the
measurement of {y(i)(t), y(j)(t − τ) : i = 0, 1, · · · , 4; j =
0, 1, 2} for any fixed time t. Even if the delays are ig-
nored, one has to measure at least five times to obtain
y, ẏ, · · · , y(4).

Although the output (6) for system (5) is often available
for post-treatment, the following output is easier to be
measured and hence studied here:

y1 = T + T ∗, y2 = V. (10)

The identifiability of the delay parameter τ can be con-
sidered similarly as above, and the following result is
obtained.
Proposition 5. If kδNx3(t − τ) 6= 0 or kδNx1(t − τ) 6= 0
in system (5)-(10), and the parameter θ is given, then the
delay parameter τ is locally identifiable.

Now consider the identifiability of θ under the output (10).
The following relation is obtained by some computation:
ÿ2 = ξ1 + ξ2y1 + ξ3y1y2 + ξ4y2 + ξ5y

2
2 + ξ6ẏ2 + ξ7y2ẏ2

+ξ8ẏ1,
where ξ1 = −θ1θ4θ5, ξ2 = θ2θ4θ5, ξ3 = θ3θ4θ5, ξ4 =
−θ2θ6, ξ5 = −θ3θ6, ξ6 = −(θ2 + θ6), ξ7 = −θ3, ξ8 = θ4θ5.
Therefore
y
(k+2)
2 = ξ2y

(k)
1 + ξ3(y1y2)(k) + ξ4y

(k)
2 + ξ5(y2

2)(k)

+ξ6y
(k+1)
2 + ξ7(y2ẏ2)(k) + ξ8y

(k+1)
1 , k > 1.

Proposition 6. Assume that τ is given in system (5) with
output (10). If the rank of the following matrix

ẏ1 (y1y2)(1) ẏ2 (y2
2)(1) ÿ2 (y2ẏ2)(1) ÿ1

y
(2)
1 (y1y2)(2) y

(2)
2 (y2

2)(2) y(3)
2 (y2ẏ2)(2) y

(2)
1

...
...

...
...

...
...

...
y
(7)
1 (y1y2)(7) y

(7)
2 (y2

2)(7) y(8)
2 (y2ẏ2)(7) y

(8)
1

 (11)

over K is 7, then θ1, θ2, θ3, θ4θ5, θ6 are algebraically identi-
fiable. If furthermore θ7 is given and θ4θ5 6= 0, then all the
parameters θ1, θ2, θ3, θ4, θ5, θ6 are algebraically identifiable
and hence geometrically identifiable.
Remark 3. The condition θ4θ5 = Nδ 6= 0 holds in general.
Now it follows from the above proposition that when m
is given, then the parameters λ, d, k,Nδ, c,m in (5) can
be determined by the measured values {y(i)(t) : i =
0, 1, · · · , 9} for any fixed time t. If, furthermore, y1(t −
τ), y2(t − τ), ẏ2(t − τ) are known for some time t, then it
is easy to show that N and δ can be determined.

3.3 4-dimensional in vivo model

The following is the 4-dimensional in vivo HIV model from
Dixit and Perelson [2004]

Ṫ = λ− dT − kTV1,

Ṫ ∗(t) = kT (t− τ)V1(t− τ)e−mτ − δT ∗(t),
V̇1 = Nδ(1− ε)T ∗ − CV1,

V̇2 = NδεT ∗ − CV2,

(12)

with the output

y1 = T, y2 = V1 + V2, (13)

where V1 and V2 are infectious and non-infectious viral
load respectively, ε is the instantaneous efficacy of the
protease inhibitors and has been assumed to be constant
in this paper, and all the other variables and parameters
have the same meaning as the 3-dimensional in vivo model
(5). Let x1 = T, x2 = T ∗, x3 = V1, x4 = V2, θ1 = λ, θ2 =
d, θ3 = k, θ4 = δ, θ5 = N, θ6 = C, θ7 = m, θ8 = ε, then the
above system (12) is rewritten as

ẋ1 = θ1 − θ2x1 − θ3x1x3,
ẋ2(t) = θ3x1(t− τ)x3(t− τ)e−θ7τ − θ4x2(t),
ẋ3 = θ5θ4(1− θ8)x2 − θ6x3,
ẋ4 = θ5θ4θ8x2 − θ6x4.

(14)

The identifiability of the delay parameter τ follows from
the following computation.
ẏ1 = θ1 − θ2x1 − θ3x1x3,
ẏ2 = θ5θ4x2 − θ6x3 − θ6x4,
ÿ2 = θ3θ4θ5x1(t− τ)x3(t− τ)e−θ7τ − (θ24θ5 + θ4θ5θ6)x2

+θ26x3 + θ26x4.

The following matrix

∂(y1, y2, ẏ1, ẏ2)
∂(x1, x2, x3, x4)

=

 1 0 −θ2 − θ3x3 0
0 0 0 θ4θ5
0 1 −θ3x1 −θ6
0 1 0 −θ6


has rank 4 over K(δ] when θ3θ4θ5x1 6= 0. Note that

∂ÿ2
∂(x1(t−τ),x3(t−τ)) = θ3θ4θ5e

−θ7τ (x3(t− τ), x1(t− τ)),
therefore

rank K
∂(y1, y2, ẏ1, ẏ2, ÿ2)

∂(x1, x2, x3, x4, x1(t− τ), x3(t− τ))
= 4

when θ3θ4θ5x1(t)x3(t−τ) 6= 0 or θ3θ4θ5x1(t) x1(t−τ) 6= 0.
It follows from Theorem 1 that τ is identifiable. Now the
following result is obtained.
Proposition 7. Assume that the parameter θ is known in
system (12)-(13), then the delay parameter τ is locally
identifiable if kδNx1(t)x3(t − τ) 6= 0 or kδNx1(t)x1(t −
τ) 6= 0 .

Now consider the algebraically identifiability of θ under
the condition that τ is given. It is easy to compute that

x3 =
θ1 − θ2y1 − ẏ1

θ3y1
, x2 =

ẏ2 + θ6y2
θ4θ5

,

ÿ1 = −θ2ẏ1 + (−θ3ẏ1 + θ3y1θ6)x3

−θ3θ4θ5(1− θ8)y1x2

= θ1θ6 − θ2θ6y1 − θ6ẏ1 −
θ1ẏ1
y1

+
ẏ2
1

y1
−

θ3(1− θ8)y1ẏ2 − θ3(1− θ8)θ6y2,
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ÿ2 = θ3θ4θ5y1(t− τ)e−θ7τx3(t− τ)− θ24θ5x2 − θ6ẏ2
= θ1θ4θ5e

−θ7τ − θ2θ4θ5e
−θ7τy1(t− τ)−

θ4θ5e
−θ7τ ẏ1(t− τ)− (θ4 + θ6)ẏ2 − θ4θ6y2,

y
(k+2)
2 = −θ2θ4θ5e−θ7τy

(k)
1 (t− τ)− θ4θ5e−θ7τy

(k+1)
1 (t− τ)

−(θ4 + θ6)y
(k+1)
2 − θ4θ6y

(k)
2 , k > 1.

Thus if

rank K


ẏ1(t− τ) ÿ1(t− τ) ÿ2(t) ẏ2(t)
ÿ1(t− τ) y

(3)
1 (t− τ) y(3)

2 (t) ÿ2(t)
y
(3)
1 (t− τ) y(4)

1 (t− τ) y(4)
2 (t) y(3)

2 (t)
y
(4)
1 (t− τ) y(5)

1 (t− τ) y(5)
2 (t) y(4)

2 (t)

 = 4, (15)

then the parameters
(θ2θ4θ5e−θ7τ , θ4θ5e

−θ7τ , θ4 + θ6, θ4θ6)
are algebraically identifiable. By the expression of ÿ2, the
parameters θ1, θ2, θ4, θ5e−θ7τ , θ6 are algebraically identifi-
able if θ4θ5 6= 0. If, furthermore, y1ẏ2 + θ6y2 6= 0, then
θ3(1−θ8) is also algebraically identifiable by the expression
of ÿ1. The geometric identifiability of θ3 and θ5 follows
from

θ3 =
θ1 − θ2y1 − ẏ1

x3y1
, θ5 =

ẏ2 + θ6y2
θ4x2

.

Proposition 8. In the system (12)-(13), assume that τ is
given, the persistent exciting condition (15) holds, then
θ2, θ4, θ6 and θ5e

−θ7τ are algebraically identifiable. If,
furthermore, θ4θ5 6= 0, then θ1 is algebraically identifiable,
and so is θ3(1 − θ8) when y1ẏ2 + θ6y2 6= 0. When all the
above conditions for algebraically identifiability hold, and
θ4y1x2x3 6= 0 for some time t, then all the parameters
θ1, θ2, · · · , θ8 are geometrically identifiable.
Remark 4. Whenm, ε and τ are given and some persistent
exciting conditions hold, then all the parameters in (12)
can be determined by the measurement of {y(i)

2 (t), y(j)
1 (t−

τ) : i = 0, 1, · · · , 6; j = 0, 1, · · · , 5} for any fixed time t.

Now consider the second type of output for system (12):
y1 = T + T ∗, y2 = V1 + V2. (16)

The delay parameter τ is also identifiable by a similar
computation.
Proposition 9. For system (12) with output (16) and
known parameter θ, the delay parameter τ is locally iden-
tifiable if kδNx3(t)x3(t−τ) 6= 0 or kδNx1(t)x1(t−τ) 6= 0.

Now consider the identifiability of θ when τ is given. Let
Γ11 =

(
0, 0, 0, −x2

θ4
, −x2

θ5
, y2

θ4θ5
, 0, 0

)
, then dx2 = Γ11dθ +

1
θ4θ5

dẏ2 + θ6
θ4θ5

dy2. Since ÿ2 = θ3θ4θ5x1(t − τ)x3(t −
τ)e−θ7τ − (θ4 + θ6)ẏ2 − θ4θ6y2, one has

θ3x1(t−τ)x3(t−τ)e−θ7τ =
1

θ4θ5
[ÿ2 +(θ4 +θ6)ẏ2 +θ4θ6y2].

Thus

ẏ1 = θ1− θ2x1− θ3x1x3− θ4x2 +
ÿ2
θ4θ5

+
θ4 + θ6
θ4θ5

ẏ2 +
θ6
θ5
y2,

or equivalently
ÿ2 = −θ1θ4θ5 + θ2θ4θ5x1 + θ3θ4θ5x1x3 + θ24θ5x2

+θ4θ5ẏ1 − (θ4 + θ6)ẏ2 − θ4θ6y2.

If one computes ÿ2 directly by definition, then a delay
parameter τ appears, while the above obtained ÿ2 does
not contain τ , which simplifies some late computation.

By finding differentials of the above ÿ2, one has
dÿ2 = Γ21dθ + Γ22dx1 + θ24θ5dx2 + θ3θ4θ5x1dx3

+θ4θ5dẏ1 − (θ4 + θ6)dẏ2 − θ4θ6dy2
= Γ31dθ + θ3θ4θ5x1dx3 + Γ32dẏ2 + Γ33dy2 + Γ34dẏ1

+Γ35dy1,
where

Γ21 = (−θ4θ5, θ4θ5x1, θ4θ5x1x3,−θ1θ5 + θ2θ5x1+
θ3θ5x1x3 + 2θ4θ5x2 + θ5ẏ1 − ẏ2 − θ6y2,−θ1θ4+
θ2θ4x1 + θ3θ4x1x3 + θ24x2 + θ4ẏ1,−ẏ2 − θ4y2,
0, 0),

Γ22 = θ2θ4θ5 + θ3θ4θ5x3,

Γ31 =
(
− θ4θ5, θ4θ5x1, θ4θ5x1x3,−θ1θ5 + θ2θ5y1+

θ3θ5x3y1 + θ4θ5x2 + θ5ẏ1 − ẏ2 − θ6y2,−θ1θ4+
θ2θ4y1 + θ3θ4x3y1 + θ4ẏ1,−ẏ2 − θ2y2 − θ3y2x3,
0, 0

)
,

Γ32 = −θ6 − θ2 − θ3x3, Γ33 = −θ2θ6 − θ3θ6x3,
Γ34 = θ4θ5, Γ35 = θ4θ5(θ2 + θ3x3).

Then
dx3 = Γ41dθ+Γ42dẏ2 +Γ43dy2 +Γ44dẏ1 +Γ45dy1 +Γ46dÿ2
with Γ46 = 1

θ3θ4θ5x1
, Γ4i = −Γ3i

θ3θ4θ5x1
, i = 1, 2, · · · , 5. Thus

dẋ3 = θ5(1− θ8)x2dθ4 + θ4(1− θ8)x2dθ5 − x3dθ6−
θ5θ4x2dθ8 + θ4θ5(1− θ8)dx2 − θ6dx3

= [−x3 + (1− θ8)y2]dθ6 − θ5θ4x2dθ8 + (1− θ8)dẏ2
+(1− θ8)θ6dy2 − θ6dx3

= Γ51dθ + Γ52dẏ2 + Γ53dy2 + Γ54dẏ1 + Γ55dy1
+Γ56dÿ2,

where Γ50 =
(
0, 0, 0, 0, 0,−x3 + (1 − θ8)y2, 0, −θ4θ5x2

)
,

Γ51 = Γ50−θ6Γ41, Γ52 = 1−θ8−θ6Γ42,Γ53 = (1−θ8)θ6−
θ6Γ43,Γ54 = −θ6Γ44,Γ55 = −θ6Γ45,Γ56 = −θ6Γ46.

Now it is ready to compute dy(3)
2 .

dy(3)
2 = Γ̇31dθ + Γ̇35dy1 + (Γ̇34 + Γ35)dẏ1 + Γ34dÿ1+

Γ̇33dy2 + (Γ33 + Γ̇32)dẏ2 + Γ32dÿ2+
θ3θ4θ5ẋ1dx3 + θ3θ4θ5x1dẋ3

= Γ61dθ + Γ62dẏ2 + Γ63dy2 + Γ64dẏ1 + Γ65dy1
+Γ66dÿ2 + Γ67dÿ1,

where Γ61 = Γ̇31 + θ3θ4θ5ẋ1Γ41 + θ3θ4θ5x1Γ51,Γ62 =
Γ33 + Γ̇32 + θ3θ4θ5ẋ1Γ42 + θ3θ4θ5x1Γ52,Γ63 = Γ̇33 +
θ3θ4θ5ẋ1Γ43+θ3θ4θ5x1Γ53,Γ64 = Γ̇34+Γ35+θ3θ4θ5ẋ1Γ44+
θ3θ4θ5x1Γ54,Γ65 = Γ̇35+θ3θ4θ5ẋ1Γ45+θ3θ4θ5x1Γ55,Γ66 =
Γ32+θ3θ4θ5ẋ1Γ46+θ3θ4θ5x1Γ56,Γ67 = Γ34. For any k > 1,
dy(k+3)

2 is easily computed by the above dy(3)
2 :

dy(k+3)
2 = Γ(k)

61 dθ +
k+2∑
j=0

(µjdy
(j)
1 + τjdy

(j)
2 ),

where µj , τj , j = 0, · · · , k+2, are coefficients which can be
determined by Γ6i, i = 1, 2, · · · , 7. Note that Γ61 = Γ̇31 +
θ6x1−ẋ1

x1
Γ31 + θ3θ4θ5x1Γ50, thus the 7-th column of Γ61 is

zero, and the following result is obvious from Theorem 2.
Proposition 10. Assume that τ is given in system (12)-
(16). If rankK

(
ΓT

61, Γ̇
T
61, Γ̈

T
61, · · · , (Γ

(6)
61 )T

)
= 7, then θ1, θ2,

θ3, θ4, θ5, θ6, θ8 are algebraically identifiable, and hence
geometrically identifiable.
Remark 5. Whenm, ε and τ are given and some persistent
exciting conditions hold, then all the parameters in (12)
can be determined by the measurement of {y(i)

2 (t), y(j)
1 (t) :

i = 0, 1, · · · , 8; j = 0, 1, · · · , 7} for any fixed time t. One can
measure nine times to know y(t), ẏ(t), · · · , y(8)(t).
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For the 3-dimensional and 4-dimensional in vivo models
(5) and (12), the identifiability conditions of the delay
parameter τ are given in Proposition 3, 5, 7, and 9, and the
conditions are quite similar and have reasonable medical
meanings. In fact, if k = 0, then infection does not take
place; if δN = 0, then virus replication does not happen;
x1 = 0 corresponds to completely damaged immune
system; and x3 = 0 indicates no (infectious) free virus.
In these cases, either the time delay does not matter or it
is “invisible”. Proposition 4, 6, 8, and 10 give persistent
exciting conditions for the algebraic identifiability of θ.
The most likely period for these conditions to hold is
either the primary infection stage or the not-too-short
period after disturbing the asymptomatic period through
chemotherapy.

4. CONCLUSION

The identifiability of parameters in two dimensional HIV
in vitro model, three and four dimensional HIV in vivo
models are discussed in this paper by the linear alge-
braic method based on differential 1-form. For the in
vivo models, two types of outputs are considered. The
identifiability of delay parameters and the algebraic and
geometric identifiability of other parameters are obtained.
The results provide a guideline for data collection and
parameter identification of these systems.
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