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Abstract: This work presents a method to estimate an unknown varying delay of measurements and 
subsequent Kalman filtering in the networked control system (NCS) framework. The delay estimation 
algorithm is based on the Gaussian error model and a network delay model, either a probability 
distribution or a Markov-chain. This method is used to tackle the problem with varying delays in a NCS. 
The undelayed output of the plant is estimated with a Kalman filter and used for control. The probability 
of a wrong delay estimate is derived. The estimation and control performance is evaluated with 
simulations. From the control perspective, it has comparable performance to the case with known delays.  

 
1. INTRODUCTION 

In low-cost networked control systems (NCS) with 
commercial-off-the-shelf hardware or wireless sensor 
networks, the network induces a varying delay, because hard 
real-time requirements are not incorporated into Ethernet or 
wireless communication standards. The delay can be known 
or unknown, depending on time-stamping and clock 
synchronization of the nodes. In any case, the varying nature 
of the delay poses some problems to the control loop. Control 
theory has few tools to handle stochastically varying delay. 
The research has focused on optimal control (Lincoln and 
Bernhardsson, 2000) and stability (Zhang et al., 2001). 

There are two practical ways to tackle the varying delay 
control problem. The first is to keep the traditional control 
loop and tune the controller to be robust to the varying delay. 
Good results have been achieved with PID controller 
optimization (Pohjola, 2006), (Eriksson, 2007) and there are 
some theoretical bounds on stability (Cervin et al., 2004). 
The other approach is to add an observer, which estimates the 
current output of the process based on the varying delayed 
measurements. A suitable observer is e.g. the Kalman filter. 

In estimation with varying delayed measurements the Kalman 
filter (KF) has been applied in many situations where the 
delay is known. The convergence is proved with LMIs 
(Linear Matrix Inequalities) (Hespanha and Naghshtabrizi, 
2006). Optimal Kalman filtering with varying measurement 
delay is treated in (Schenato, 2006), where the previous 
measurements, the state and the covariance estimates are 
stored in buffers and the filtering is done up to the current 
time every time a new measurement arrives. This is 
computationally heavy and the delay must be known. The 
paper also presents estimation with constant gain. 

In (Xu and Henspanha, 2005) and (Schenato, 2006) a "smart 
sensor" is used. The filtering is done at the sensor and the 
state estimate is sent over the network. This ensures that the 

estimation is optimal, since no measurements are lost, and the 
current state can be calculated by prediction. It has the 
downside that the control input to the plant has to be 
transmitted to the sensor without delay and loss, which is not 
practically achievable. 

Few have studied the case with unknown varying 
measurement delay, which we will do here. In an NCS the 
measurement from a sensor is sent over a network (wired or 
wireless) which has a varying delay, Fig. 1. The varying 
delay can e.g. stem from other control loops communicating 
over the same network, but the delay is not known at the 
controller; it has to be estimated. The delay can change every 
time-step, so delay tracking is not possible. It has to be re-
estimated for every received measurement packet. The 
measurement fusion block resides at the controller. It 
estimates the delay of the received measurement and 
performs Kalman filtering to fuse it with the state estimate. It 
also gives the current estimated plant output to the controller. 

The proposed delay estimation algorithm is based on a 
Gaussian error model and a network delay model, either a 
probability distribution or a Markov-chain. The delay 
estimates are of maximum likelihood type and therefore 
optimal. The filtering is suboptimal, because it assumes 
correct delay estimates before the fusion. 

The output estimation with varying delayed measurement has  
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Fig. 1. NCS with delay estimation and fusion.  

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4192 10.3182/20080706-5-KR-1001.1165



 

been treated in (Sanchis et al., 2007), but there the delay is 
assumed to be known. There are also other Kalman filter 
based algorithms for varying delayed measurements, e.g. in 
(Goodwin et al., 2002) the authors treat the delay estimation 
as errors in variables problem. 

This paper summarizes the use of a Kalman filter with 
varying delayed measurements in the next section. It 
proposes a maximum likelihood algorithm in Section 3 for 
estimating the delay at every time-step of an unknown, 
variably delayed measurement. The probability of wrong 
delay estimation is also derived. Simulation results are 
presented in Section 4 and finally conclusions are drawn. 

2. KALMAN FILTERING WITH VARYING DELAY 

In this section Kalman filtering with variable delayed 
measurements is summarized. The expansion of the KF to 
accommodate measurement delay is similar to (Goodwin et 
al., 2002). The assumed state-space process model with 
possible multiple inputs and multiple outputs is of the form  
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where wk and vk are Gaussian white-noises with covariances 
Q and R. In the constant delay case the delay is usually 
incorporated into the state-space model, as a process delay. 
Some modifications must be done to (1) to add the varying 
network delay to the model. The model used in the Kalman 
filter is augmented with delayed process output values such 
that the state-vector is of the form 

'
max

T

k k k k d−⎡=⎣x x y y , (2) 

where yd, d = [k, …, k-dmax] are the delayed true (without 
noise) outputs, and dmax is the maximum expected or allowed 
delay. If measurements are delayed more than this, they may 
be dropped, as they may not bring significant information to 
the current process state. A measurement zk-d received at time 
k and delayed d time-steps on transmission, is denoted 

. 

The modified A' and B' matrices become 

C Cn n×
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0 I

n

 and B . (3) 

⎢ ⎥
⎢ ⎥⎣ ⎦0

And C  is the number of measurements. The measurement is 
not corrupted by noise as it is delayed in the network, 
therefore the process noise covariance is accordingly padded 
with zeros 

. (4) 

When the Kalman filter update step is performed, a 
measurement matrix Cf is used. The matrix changes 
depending on the delay of the received measurement, such 
that  

⎡ ⎤
=⎢ ⎥

⎣ ⎦
C 0 0 0 I 0 0 , (5) 

when the delay is dk. The dimensions of the blocks in Cf are 
indicated. Here f refers to filter and k to the current time-step. 
It is assumed that the network induces a delay of at least one 
time-step. This is natural, since any small transmission delay 
will be rounded up to the next computation cycle of the time-
driven Kalman filter. 

The Kalman filtering is done with matrixes A', B' and 
, according to the equations (prediction and update) 

found in Kalman filtering literature, such as (Maybeck, 
1979). If no measurement is received on the current time-
step, only the update part of the Kalman filter is done. When 
the estimated output is calculated a constant Ce matrix can be 
used such that 
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if a de delayed output estimate is desired. 

After the prediction step of the KF, the measurement is fused 
with the measurement matrix . If the measurement 
delay k  is unknown, it can be estimated with the algorithm 
presented in the next chapter. 

( )f
k kdC

d

3. UNKNOWN DELAY ESTIMATION 

In case of no time-stamping, or if the clocks of the sender and 
the receiver are not synchronized, the delay cannot be 
measured, e.g. dk is unknown for the received measurements. 
The goal is to estimate the delay before the KF update step to 
fuse the measurement correctly. 

By using the measurement z, the true output y, and the 
known or estimated delay distribution of the network, the 
likelihood of the delay can be estimated. When the delay is 
unknown, the maximum a posteriori delay, at step k, can be 
estimated by maximizing the conditional probability 

( ) ( ) ( )
( )

|
| k k

k
k

p d p d
p d

p
=

y
y

y
. (7) 

The right part is obtained by the Bayes' Theorem. The 
numerator is a scaling factor and can be left out in the 
maximization. If Gaussian noise is assumed, the error 

d
k d k− −y z

( | )kp dy

, where  is a measurement taken at time k and 
delayed d steps, is Normally distributed. The probability 

 is then proportional to 

d
kz

( ) (11( | ) exp
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where R is the measurement covariance. The difference of 
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the true output and the measurement is assigned to the noise. 
If the difference of the true output delayed by some particular 
d and the measured output is large, the probability that the 
measurement is delayed d steps is small. Since d is not 
known the received measurement  is denoted . d

kz ?
kz

Instead of the true output k d− , which is not available at the 
fusion block, the estimated delayed output  can be used. 
Then the measurement covariance matrix is replaced with the 
residual covariance 

y

( )

ˆ d
ky
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In case of a stationary delay distribution, the probability pk(d) 
is constant as a function of k and obtained from the known 
delay probability density function, f(d) or cumulative 
distribution function F(d) 
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1
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d
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d
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This is because the probability that the delay is d time-steps, 
is equal to the probability mass that the measurement is 
delayed in the interval ]d-1…d]. The values of p(d) can be 
calculated in advance. 

The maximum a posteriori delay estimate, d* is then 
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Note that only delay values from dmin to dmax need to be 
considered. This can be simplified for online calculations by 
taking the logarithm and manipulating. The resulting 
equivalent optimization problem is 
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min max
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The first term is the kS -weighted 2-norm of the 
difference k k  and L(d) can be seen as a regularization 
term, stemming from the delay distribution. L(d) can be 
calculated in advance. If the residual covariance is small, the 
estimation trusts the measurements and the delay that gives 
the smallest error is chosen. If the residual covariance is large 
the delay distribution has more weight and the most probable 
delay is chosen. The algorithm has thus the advantage to 
naturally incorporate the confidence of the estimator in the 
delay estimation. 

The output of the process needs to change for the 
optimization to differentiate between the possible delays, 
otherwise the E(d) term is constant. Note that the matrix 
inversion in (12) has the dimensions of the measurement 
vector, not the augmented state-vector. 

This method is suboptimal, since it does not re-filter the 
measurements when more information arrives and a better 
delay estimate could be obtained. An approach would be to 

use relaxed dynamic programming to re-estimate the delay 
when new information is obtained (Alriksson and Rantzer, 
2006). It is however computationally heavier and increases 
memory requirements. Instead of using a Kalman filter, an 
output predictor, such as the one described in (Sanchis et al., 
2007) could be used, since the state estimate produced by the 
Kalman filter is not needed in the delay estimation algorithm. 

The stability proofs for the case with known varying delay 
are already tedious. Proofs for the unknown delay case are 
left for future research. Next a derivation of the probability of 
a wrong delay estimate is presented. 

3.1 Probability of wrong delay estimate  

To assess the delay estimation reliability, the probability of a 
wrong estimate is calculated. We consider ?ˆ d

k k−y z  as a 
random variable in (12) and calculate the probability of 

( ) ( )( )?

? min
d d

p J d J d
≠

≥ , (13) 

which is the probability that the cost function J has its 
minimum for a delay other than the true delay, . We 
assume that the Kalman filter has reached steady-state, i.e. 
the constant state covariance matrix 

?d

ss  is the solution of the 
discrete-time algebraic Riccati equation 
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Also the steady-state value of S is obtained as 

( )Tf f
ss ss= +S C P C R . (15) 

The next task is to find the probability distribution of ( )J d . 
?ˆ d −y z  is Normally distributed with mean ( )dΔ Δy  and 

covariance ss , where S ( )dΔ Δy  is the change of y compared 
to the measurement z as a function of difference of delay.  
Naturally ( )0 0Δ =y , since the expectation { }ˆ d d 0E − =y z . 

The quadratic form , where x is a Normally distributed 
random vector with mean m and covariance Σ, and W is a 
positive definite matrix, follows a noncentral chi-square 
distribution 

Tx Wx
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where tr is the trace. The parameters of 2χ  are ν degrees of 
freedom and noncentrality coefficient c: 
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The quadratic form 1
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to nC. The probability distribution 
n=Σ I  and

( )Jp t d  of thus the 
shifted (because of the regularization term L(d)) noncentral 
chi-square distribution 

J is 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4194



 

( ) ( )( ) ( ) ( )(2 2 ln , T
J k C sp t d t p d n d dχ −

Δ Δ Δ Δ= + y S y )1
s . (19) 

The probability that ( ) ( )?J d J d≥  is computed with 

( ) ( )( ) ( ) ( )? ?
J Jp J d J d p t d p d t d dt

∞

−∞

≥ = <∫ . (20) 

(Jp d t d< )

0
⎥
⎥
⎥
⎥⎦

⎤⎦

 is the cumulative distribution function of (19). 

3.2 Markov delay model 

Instead of using a static delay distribution as a model for the 
network, a Markov-chain can be used to model correlated 
network delay. One suitable Markov-chain model is here 
briefly presented. It has N = dmax - dmin states, each 
corresponding to a delay value. The delay is assumed to 
change at most by one time-step at a time. The Markov chain 
state-transition matrix is then of the death-birth form 

11 12

21 22 32

, 1

0 0 0
0 0

0
0 0 0

delay

N N NN
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p p p
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p p−
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. (21) 

Other chain types are naturally also possible with the 
presented delay estimation algorithm. Another assumption 
taken is that the average delay distribution follows the 
Gamma distribution, since it is typical for computer networks 
(Mukherjee, 1994). The task is now to find the transition 
probabilities pjj, so that the delay model meets these criteria. 

There are 3N-2 unknowns. The total transition probabilities 
of the Markov-chain and the desired average state probability 
distribution  give 2N equations 

min maxd dπ π⎡Π =⎣
1ij

j
p =∑  and ij i j

i
p π π=∑ . (22) 

jπ  is calculated by integrating the gamma probability density 
function over the intervals ]d-1…d], [ mind d∈ ,..., ]maxd  

1
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1 1
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where Pgamma((x) is the incomplete gamma function and Γ is 
the gamma function 

1
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( ) n xn x e dx
∞
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The average of the gamma distribution is /d n α=

21 23

1, 2 1,N N N N

p p c

p p c− − −

+ =⎧
⎪
⎨
⎪ + =⎩

. Due to 
the truncation of the gamma distribution, the integration 
limits of the first and the last integrals (d = dmin and d = dmax) 
are exchanged to 0 and infinity, respectively. 

The last N-2 equations are obtained by specifying a 
probability of the delay to change: 

, (25) 

where c is the change probability ]0…1[. The change 
parameter specifies how fast the delay changes. With smaller 
c the probability to change is little and the delay estimation 
algorithm should be able to follow the delay changes easier. 

Solving these linear equations in pij results in the desired 
Markov delay model with desired delay distribution and 
maximum change rate of 1 step/time-step. To avoid getting 
stuck with a wrong delay estimate, a small positive constant 
should be added to every element in the transition matrix. 
The final Markov chain is 

( ) ( )Markov delayP P Nε ε= +

)

k

. (26) 

When using a Markov chain delay model the delay 
probabilities in (12) change at every step depending on the 
estimated delay, so that pk(d) is the  row in 
PMarkov. Other Markov-chain delay models could also be used. 
It could e.g. depend on the congestion of the network. 

( *
1

th

k mind d− −

4. SIMULATION RESULTS 

The performance of the delay estimation and filtering is 
investigated with simulations of two processes. Process 1 
(P1) is given in discrete-time as the state-space representation 

1

0.9 0 1
0.2 1 0k k

k k
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with sample time h = 0.1 s. It is controlled by state-feedback, 
placing both poles at 0.5. The second process (P2) is a 
continuous-time first-order process 

1( )
1mG s

s
=

+
. (28) 

The process model used in the delay estimation is the 
discretized version of (28) with the sample time h. It is 
controlled by a discrete-time PID controller of the form: 

( ) ( )
( )

( ) ( )
1

1
1

d d
PID p

i d d d

T N zhu k K e k
T hz T N h z T

⎛ ⎞−
= + +⎜ ⎟⎜ ⎟− + −⎝ ⎠

. (29). 

The processes are measured with a sensor with a sample time 
of h. The measurement is transmitted over a simulated 
network with unknown varying delay. The network model is 
simulated as the Markov-chain model derived in Section 3.2 
with parameters α = 1, n = 2 (with a mean delay of 2d = ), 
dmin = 1, dmax = 6 (N = 6), c = 0.5 and ε = 0.001/N. The 
proposed delay estimation and fusion block resides at the 
controller and calculates output estimates of the process.  

Several fusion variations are compared in simulations: 
1. A Kalman filter with a model (2)-(5) that assumes a 

constant delay kd d= , the mean of the network 
delay, a heuristic to ignore the varying delay. 

2. Two Kalman filters with delay estimation as 
explained in Section 3: 
a. one with a delay distribution (gamma distribution 

with parameters α = 2, n = 6)  
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b. one with the Markov-chain of Section 3.2. 
3. The same Kalman filter as in 2., but with known 

delay. The delay is obtained by time-stamping and 
time-synchronization of the sender and receiver. 

The same delay realization is used for all the methods to 
reduce the variance when comparing the methods. All the 
Kalman filters have diagonal process (Q) and measurement 
(R) covariance matrixes with 0.032 and 0.012 on the 
respective diagonals. The output of the Kalman filter for P1 is 
the current state estimate, and for P2 the two-steps delayed 
estimated output, i.e.  in (6). 2ed =

The PID controller is tuned by optimizing the ITSE cost (35) 
with a constant feedback delay of 2h, i.e. without the 
unknown varying delay. The optimal parameters are  
Kp = 3.26, Ti = 1.17, Td = 0.08 and a derivative filter Nd = 10. 

As the delay estimation depends on a change in the output, a 
step (unit steps every 4 seconds) and a sine reference with 
amplitude 1, frequency π/2 rad/s) is used. The step reference 
emulates the case with periods of steady-state when the delay 
estimation cannot be performed reliably and the sine case 
with a constantly changing output. 

The integral error costs 

(
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are used to evaluate the delay, estimation and control 
performance of the proposed methods. Je is the squared 
output estimation error, D% the percentage of correct delay 
estimates, JD and 2

Dσ  the mean and variance of the error in 
delay estimation in units of time-steps. The control 
performance is measured with JISE and JITSE, which are the 
mean step response ISE and ITSE costs, respectively, over  
I = 250 runs ( ( )iy t  refers to the process output of the ith run) 
when using the different methods 1-3 as estimators. The 
results of T = 1000 s long simulations are collected in the 
following tables. Table 1 tabulates the delay estimation 
performance. The output estimation and control performance  

Table 1. Delay estimation results for P1 and P2. 
Method, 
reference 

D% JD 

Table 2. Estimation and control performance of P1. 
Method, 
P1 

Sine reference Step reference 
Je JISE Je JITSE 

1 0.103 1.89 0.069 1.65 
2a 0.084 1.14 0.038 0.268 
2b 0.089 1.17 0.039 0.263 
3 0.011 0.97 0.011 0.178 

for P1 are in Table 2 and for P2 in Table 3. 

The plots in Fig. 2 show some histograms of the estimated 
delay versus the true delay. The areas of the squares are 
proportional to the number of estimates. In the ideal case 
there would only be squares on the diagonal. 

The theoretical probability of a wrong delay estimation of P2 
is calculated. J depends, among other things, on the change of 
y and the sensor noise R. Δ  is modeled to be linear with 
respect to the delay difference 

y
( ) ( )?d d d dΔ Δ Δ= = − Δy y

]T

, 
i.e. the case of a linearly increasing response. In Fig. 3 (13) is 
illustrated as a function of Δ  (with fixed R, the same as in 
the simulations) and as a function of noise covariance R 
(with fixed ). The examples are for the 
case of the delay 

y

.025[0.025 0Δ =y
? 2d = . 

Examining Table 1 shows that the delay estimation performs 
better with the sine reference (52-78 % are estimated 
correctly) compared to the step response (36-44 %). This 
indicates, as expected, that the output must change constantly 
for the algorithm to be able to estimate the delay correctly. In 
the case of the step response the estimator relies more on the 
delay distribution than on the measurements and hence the 
squares in Fig. 2 are concentrated on the average delay. 

The output estimation results shown in Table 2 and Table 3 
are good for both step and sine references, even if the delay 
estimation with the step response is worse. This can be 
explained because at steady-state the output is the same 
regardless of the delay. The estimation error cost, Je, is a 
fraction of the error of the naive case 1. The estimate in this 
case can be far off if the actual delay deviates from the mean. 

2
Dσ

P1 P2 P1 P2 P1 P2 
1 33 1.02 1.86 
2a, sine 53 77 0.65 0.30 1.07 0.53 
2b, sine 52 78 0.68 0.28 1.10 0.49 
2a, step 44 36 1.07 1.19 2.61 2.61 
2b, step 44 36 1.07 1.18 2.54 2.94 
3 100 0 0 

The control performances with delay estimation are almost 
equally good as the optimal case with known delay (case 3) 
and the constant delay assumptions give considerably poorer 
results. The differences in control performances are small 
because the closed loop control naturally rejects disturbances, 
such as estimation errors. Moreover, wrong delay estimates at 
steady-state with the step reference, do not impact the control 
performance notably. With both delay estimation variants the 
estimation and control performance are near or equal to the 
optimal case with known delay. 

Table 3. Estimation and control performance of P2. 
Method, 
P2 

Sine reference Step reference 
Je JISE Je JITSE 

1 0.039 0.146 0.0147 0.0225 
2a 0.0015 0.103 0.0011 0.0093 
2b 0.0015 0.103 0.0011 0.0091 
3 0.0010 0.103 0.0010 0.0091 
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