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Abstract: This paper presents a design method for a position-force bilateral teleoperation
system with scattering matrix by using compensators and wave filters. At first, the compensators
and low-pass filters were chosen to guarantee the system’s stability based on the small-gain
theorem. After that, the effects of wave impedance and time delay on the stiffness and the
viscosity of the system were evaluated. Moreover, the existence of oscillation, and even instability
of the local loop caused by properties of remote environment, are recognized and explained.
Finally, the conditions for the designed parameters to stabilize the system are given using
Popov criterion.

1. INTRODUCTION

Teleoperation, where a human operator conducts a task in
a remote environment via master and slave manipulators,
has a wide field of applications such as telemanufacturing,
telemaintenance, telesugery, rescue and so on. Bilateral
teleoperation, in which contact force information is pro-
vided directly to the human operator, can improve task
performance. However, when teleoperation is performed
via a time delay communication environment, this delay
can destabilize a bilaterally controlled teleoperator.

The instability problem of bilateral operation systems
survived until 1989, when Anderson and Spong [1989]
used passivity and the scattering theory to overcome this
problem for arbitrary constant time delay. In addition,
Niemeyer and Slotine [1991] clarified the scattering matrix
from the standpoint of the energy balance. Although
velocity-force architecture teleoperation systems could be
stabilized based on the above researches, it has remained
difficult to improve both the stability and transparency
for teleoperation systems with time delay. The reason for
this difficulty is that position-force architecture cannot be
used, because of its non-passive property. Moreover, as
long as the passivity concept is used, the human operator
and the remote environment must be passive.

In order to overcome the non-passive problem of position-
force architecture when using the scattering matrix,
Miyoshi, et. al [2006] proposed a design method utilizing
wave filters to stabilize a non-passive operating system.
In this method, the scattering matrix is used, but it is
considered with regard to its frequency characteristics
rather than passivity concepts. Therefore, the position-
force architecture can be adopted, and passivity of the
operator and environment is not required. However, the
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effects of wave impedance, have not been carefully eval-
uated. Moreover, the local loop created by the scattering
matrix at each local site has not yet been considered. That
local loop contains the environment and may destabilize
the system.

In the present study, we at first analyzed the effects of
the scattering matrix on the position-force architecture
teleoperation system in Miyoshi, et. al [2006] by consider-
ing the frequency characteristics of the scattering matrix
and the local loop created by the scattering matrix. In
this system, the relation of the designed parameters has
been clarified to guarantee the stability of the system.
In addition, the stiffness and viscosity of the system are
calculated to evaluate the effects of wave impedance and
time delay on the feeling of the human operator. Moreover,
the system has nonlinear properties, such as the environ-
ment force is zero when the robot moves freely, and non-
zero when the robot makes contact with the environment.
The present nonlinear response of the remote environment
may cause oscillation or even instability of the local loop
created by the scattering matrix. This research allows us to
identify the conditions that stabilize the local loop, thereby
stabilizing the whole system.

The paper is organized as follows: the frequency charac-
teristics of the scattering matrix, and the design method
based on the small gain theorem of H∞ norm are given
in Section II. In Section III, the effects of wave impedance
and time delay on the system’s performance are presented.
The problems of the local loop created by the scattering
matrix are shown in Section IV. To conclude, Section V
provides a discussion of the results and some remarks.
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2. TELEOPERATION SYSTEM WITH THE
SCATTERING MATRIX

2.1 Model of the teleoperation system with the scattering
matrix

A fundamental block diagram of the bilateral teleoperation
system with the scattering matrix is shown in Fig. 1. The
human applies his force fh(t) to the master robot; the
master robot also receives feedback force fm(t) from the
slave site. The input force moves the master robot, and
the movement information, ym(t), is sent to the slave site.
At the slave site, the slave robot is moved according to the
movement information yr(t). The contact force of the slave
robot to the environment fs(t) is also transmitted back to
the master site. The transfer functions Wm(s) and Ws(s)
in Fig. 1 are filters and will be explained later. T1 and T2

are the constant time delays, and b is a positive constant
(matrix) known as the wave impedance. Gm(s) and Gs(s)
are transfer functions of the master and the slave robot
respectively.

Gm(s) =
Ym(s)
−Fm(s)

, Gs(s) =
Fs(s)
Yr(s)

. (1)

The wave variables um, vm, us, vs given by.

um =
1√
2b

(fm + bym), vm =
1√
2b

(fm − bym),

us =
1√
2b

(fs + byr), vs =
1√
2b

(fs − byr). (2)

while Gmm and Gss are defined as follows:

Gmm(s) = Um(s)/Vm(s), Gss(s) = Vs(s)/Us(s). (3)
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Fig. 1. The bilateral teleoperation system with the scat-
tering matrix

2.2 Stability of the velocity-force architecture teleoperation

Under velocity-force architecture in Anderson and Spong
[1989], movement information is velocity, and the contact
force that is transmitted back to the master site is the
coordinating force (the output of the PI controller of the
slave robot). In addition, under the assumption that the
human operator and the environment are passive, then Gm

and Gs are passive.

From (2) and (3), Gss can be calculated as

Gss(s) =
Gs(s) − b

Gs(s) + b
(4)

Then

|Gss(jω)|2 = Gss(jω)Gss(−jω)

=
(Re{Gs(jω)} − b)2 + Im{Gs(jω)}2

(Re{Gs(jω)} + b)2 + Im{Gs(jω)}2
, (5)

where Re{Gs(jω)} and Im{Gs(jω)} are real and image
parts of Gs(jω), respectively.

Because Gs is passive, Re{Gs(ω)} ≥ 0 (Slotine and Li
[1991]). Therefore

|Gss(jω)|2 =
(Re{Gs(ω)} − b)2 + Im{Gs(ω)}2

(Re{Gs(ω)} + b)2 + Im{Gs(ω)}2
≤ 1

This leads to ||Gss(s)||∞ ≤ 1.

Similarly, we can get ||Gmm(s)||∞ ≤ 1.

By choosing Wm(s) = Ws(s) = 1, we have
J∞ = ||Gmm(s)Wm(s)||∞||Gss(s)Ws(s)||∞ ≤ 1 (6)

With invariant time delay, following the small gain theo-
rem, the system is stable.

2.3 Teleoperation system with position-force architecture

Under position-force architecture, the movement informa-
tion is position, and the contact force that is transmitted
back to the master site is the measured force. Therefore,
the system is no longer passive and the problem is to design
the wave filters Wm(s) and Ws(s) such that (6) is satisfied.

A. System model Fig. 2 shows the block diagram of the
master site.

sεs+1
km
s+bm

1

fh

fm ym
-

+s+a
Gcm(s)

Fig. 2. Master site’s model

Here, the master robot model is assumed to be

Pm(s) =
Ym(s)

Fh(s) − Fr(s)
=

km

s(s + bm)
, (7)

where
Fr(s) = GcmFm(s) =

s + a

εs + 1
Fm(s). (8)

The purpose of introducing Gcm will be explained later.
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Fig. 3. Slave site’s model

Fig. 3 shows the block diagram of the slave site. The slave
robot model is assumed to be

Ys(s)
Vs(s)

=
ks

s(s + bs)
, (9)

where Ys(t) is the slave robot position and Vs(t) is the
motor voltage.
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The slave robot is controlled by a Proportional-Derivative
(PD) Controller.

Vs(t) = kp(yr(t) − ys(t)) + kd(ẏr(t) − ẏs(t)) (10)

We assume that the environment is a spring-damper type.
The environmental force fe(t) is caused by the spring
stiffness Kenv × ys(t) and damping Denv × ẏs(t). As such,

Fe(s) = (Denvs + Kenv)Ys(s) (11)
The feedback force Fs(s) is related to the environmental
force Fe(s) by

Fs(s) = Gcs(s)Fe(s) =
εs + 1
s + a

Fe(s) (12)

The purpose of introducing Gcs is also explained later.

Finally, we have the transfer function of the slave site as

Gs(s) = Gcs(s)
Fe(s)
Xr(s)

=
εs + 1
s + a

ks(kds + kp)(Denvs + Kenv)
s2 + (bs + ks(kd + Denv))s + ks(kp + Kenv)

(13)

B. Choosing of compensators and wave filters The pur-
pose of the compensators and wave filters is to satisfy
(6), i. e, to guarantee the stability of the system with
invariant time delay. In the master site, in order to get
||Gmm(s)||∞ ≤ 1 or as small as possible, instead of using
the wave filter Wm(s) such as in the slave site, a phase-
lead compensator Gcm(s) = (s + a)/(εs + 1) ∼ s +
a(0 < a < bm, ε � 1) is used as the design of the wave
filter may require some conditions that are difficult for the
master site.

In contrast, by using Gcm in the master site, the phase-
lag compensator Gcs(s) = 1/Gcm(s) must be used in the
slave site to maintain the physical relationship between
environmental force fe(t) and implemented feedback force
at the master site fr(t). Although Gcs makes the slave
site non-passive and |Gss(jω)| > 1, its frequency range
is relatively high. Therefore, we can get J∞ ≤ 1 by an
adequate low-pass filter Ws(s).

The low-pass filter Ws(s) should be chosen so that
||Gss(s)Ws(s)||∞ ≤ 1 , and therefore, the inequality (6)
is satisfied.

From (5), it is found that

|Gss(jω)| ≤ 1 if Re{Gs(jω)} ≥ 0

|Gss(jω)| > 1 if Re{Gs(jω)} < 0

Fig. 4 describes this characteristic of the scattering matrix.
Therefore, Ws(s) is chosen such that |Ws(jω)| = 1 at
frequencies such that Re{Gs(jω)} > 0, and |Ws(jω)| � 1
at frequencies such that Re{Gs(jω)} ≤ 0. This choice
makes ||Gss(s)Ws(s)||∞ ≤ 1 and (6) is satisfied.

Commonly, there exists a frequency ω0 such that

Re{Gs(jω)} > 0 if ω < ω0

Re{Gs(jω)} = 0 if ω = ω0

Re{Gs(jω)} < 0 if ω > ω0

Re{Gs(jω)}

Im
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Fig. 4. The Nyquist plot of Gs(s)(left figure) and the Bode
diagram of Gss (right figure).

The filter Ws(s) is a low-pass filter with cut-off frequency
ω0 that is determined from Gs(s).

However, depending on the application of the teleoper-
ation system, the working frequency range is required
(for example, the frequency range is from 0 Hz to 5
Hz). The cut-off frequency ω0 usually has the lower limit,
ω0 ≥ ωmin. Therefore, adjustable parameters of Gs(s) such
as the parameters kp, kd of the PD controller should be
determined carefully, in order that the corresponding ω0

satisfies the lower bound condition. To do that, instead
of deriving ω0 from equation Gs(ω0) = 0, which might
be complicated, the condition of kp, kd is derived from
inequality Re{Gs(jωmin)} ≥ 0.

C. Experimental Results The experiment was carried out
with the same master-slave robot system as in Rodŕıguez-
Seda, et. al [2006]. This system has two degree of freedom
(DOF). However, for linearity and simplicity, we only work
with a 1DOF robot system, and the other joint is fixed.
The remote environment is a wall for which the stiffness
can be changed. The parameters for the experiment are
shown in Table I. Note that when we design the wave filter,

Table 1. Typical parameters of experiments

Parameter Unit Value

Denv [N/(rad/s)] 0

Kenv [N/rad] 0-1000

kp - 300

kd - 30

T1 [s] 0.1

T2 [s] 0.1

a - 2

ε - 0.01

b - 20

Wm(s) - 1

Ws(s) - 1
(0.03s+1)2

Kenv is considered in the range mentioned in Table I, but
in the experiment, Kenv is a constant value.

The experimental results are as shown in Fig. 5 and Fig.
6 for position and force data, respectively. From these
figures, it can be seen that the system almost has good
position and force tracking. At the time the slave robot
touches the wall, there is a difference between the positions
of the master and the slave robots. However, this difference
will be compensated for. When the slave robot stops,
the environmental force becomes constant. After a period
of time equaling the time delay, the system updates the
information, and the forces at both sites are balanced thus
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compensating for the position difference. When the slave
robot is in free movement, there is also a difference between
environmental force and feedback force. This difference is
caused by the viscosity of the system that is discussed in
the next section.

Regarding the feeling of the human operator, when he
moves the master arm freely, he feels the viscosity of the
system. And when the time delay increases, he must use
more force to move the robot. The same situation occurs
when the wave impedance is increased. This relation is
explained clearly in the next sections.

When we increase the stiffness of the environment, the
system may become oscillatory or even unstable. This
instability is caused by the local loop created by the
scattering matrix at the slave site, and we will consider
this situation in the next sections.
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Fig. 5. Experimental result of the master and the slave
robot position
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Fig. 6. Experimental result of environment force and
feedback force

3. PERFORMANCE OF THE POSITION-FORCE
TELEOPERATION SYSTEM

It is easily found that by using the scattering matrix, at
a steady state, yr = ym and fm = fs. Therefore, good
position tracking can be obtained by the PD controller

at the slave site. However, since the human operates the
system by moving the master arm, the feeling stiffness and
viscosity of the system are also very important. In this
section, the stiffness of the system during contact with the
remote environment and the viscosity of the system during
free movement (non-contact) are respectively evaluated
considering the wave impedance and communication time
delay.

From (3), (4), (8), and (13), we can derive the relation

Fm(s) = −b
Vm(s)/Um(s) + 1
Vm(s)/Um(s) − 1

Ym(s)

= −b
Hs(s) + 1
Hs(s) − 1

Ym(s), (14)

where

Hs(s) = e−sT Wm(s)Ws(s)Gss(s),

with T = T1 + T2 being the round trip delay (RTT).

Then,
Ym(s)
Fh(s)

=
1 − Hs(s)

1−Hs(s)
Pm(s)Gcm(s) + b(1 + Hs(s))

1
Gcm(s)

, (15)

Ẏm(s)
Fh(s)

=
(1 − Hs(s))Pm(s)s

(1 − Hs(s) + b(1 + Hs(s))Pm(s)Gcm(s)
(16)

In the case of contact with the remote environment, the
stiffness at the steady state can be calculated from (15),
and the result is

Ym(s)
Fh(s)

∣∣∣∣
s=0

=
kp + Kenv

kpKenv
=

Yr(s)
Fs(s)

∣∣∣∣
s=0

Accordingly, the stiffness Fh(s)/Ym(s) in the steady state
at the master site is consistent with the stiffness of the
slave site, which includes the environment and the position
controller, regardless of time delay.

In the case of free motion (non-contact, Gs(s) = 0), then
Hs(s) = −e−sT Wm(s)Ws(s). In order to simplify, suppose
that the low-pass filter Ws(s) is equivalent to a first-order
low-pass filter of Ws(s) = 1/(Ts0s + 1), (Wm(s) = 1). The
viscosity of the system that the human operator feels at
the steady state can be calculated from (16), and the result
is as follows

Fh(s)
Ẏm(s)

∣∣∣∣
s=0

=
bm

km
+

ab

2
(T + Ts0)

The viscosity is the sum of the viscosity of the master robot
itself and a part that is proportional to wave impedance b
and round trip delay T . Therefore, there is a difference
between the feedback force fr and environmental force
fe. Moreover, the human feels higher viscosity if the time
delay or the wave impedance b is increased.

4. LOCAL LOOP CREATED BY THE SCATTERING
MATRIX

The scattering matrix creates a local loop at both the
master site and the slave site. It is easily found that the
local loop in the master site is stable. However, the local
loop in the slave site that includes the remote environment
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may cause instability in the slave site. In this section, we
evaluate the stability of the local loop in the slave site
shown in Fig. 7.

(2b)1/2 1/b Env
-

+us
fsfmys Gcs(s)

yr PD 
Controlled

Robot

Fig. 7. Local loop created by the scattering matrix at the
slave site

4.1 Condition of absolute stability at the slave site

Let us consider the case that the slave robot collides with
a wall. Before the collision, the measured force is zero. At
the position x0, the robot touches the wall and the wall
resists the robot’s movement. Therefore, the response of
the environment (in this case, the wall) is as follows:

Suppose that x0 = 0,

fe = φ(x) =
{

0 if x ≤ 0
Kenvx if x > 0

(17)

Here, we consider the environment with high stiffness, with
the damping factor being much smaller than the stiffness,
and the damping factor is therefore ignored. Fig. 8 shows
the response of the environment corresponding to the slave
robot position.

0 x

φ(x)

in contact areanon-contact area

Fig. 8. The environment force versus slave robot position

The non-linear characteristics of the environment may
cause oscillation or even the system instability. In order
to stabilize the local loop in the slave site, we derive the
condition for absolute stability using the Popov criterion
(Khalil [1996]). Fig. 9 shows the block diagram of the local
loop for the purpose of using the Popov criterion.

G(s)
-

fe

ys

Fig. 9. Diagram of the local loop at the slave site for using
Popov criterion

The transfer function G(s) of the open loop is

G(s) = G1(s) + G2(s), (18)

G1(s) =
ks

s2 + (bs + kskd)s + kskp
, (19)

G2(s) =
ks

b

(εs + 1)(kds + kp)
(s + a)(s2 + (bs + kskd)s + kskp)

(20)

Because ε � 1,

G2(s) =
ks

b

kds + kp

(s + a)(s2 + (bs + kskd)s + kskp)
(21)

The nonlinear function φ(x) satisfies the condition
φ(x)(φ(x) − Kx) ≤ 0, ∀x (22)

with K ≥ Kenv. Because Kenv can be any value, K should
be chosen to be infinite, K = +∞
The Popov criterion said that if there exist η ≥ 0 such
that the Popov plot (Re{G(jω)} versus ωIm{G(jω)}) lies
to the right of the line that intercepts the point −1/K+j0
with the slop 1/η, the system is absolute stable.

In our case, K = +∞, and the shape of the Popov plot
is as shown in Fig. 10(a). Therefore, the condition to
ensure the absolute stability of the system in Fig. 7 is
ωIm{G(jω)} ≤ 0.

Popov plot Popov plot

0 0

Re{G(jω)} Re{G(jω)}
ω

Im
{G

(j
ω

)}

ω
Im

{G
(j
ω

)}

(a)Stability is not guaranteed (b) Absolute stable

ωIm{G(jω)} <= 0

Fig. 10. Popov plot in two cases: (a) the stability is not
guaranteed and (b) absolute stable

We have G(jω) = G1(jω)+G2(jω), and after some simple
calculations from (19), we can obtain ωIm{G1(jω)} <
0. Therefore, the condition for absolute stability now is
ωIm{G2(jω)} ≤ 0.

From (21), after some calculations, we get the condition
ωIm{G2(jω)} ≤ 0 is equivalent to

kd(a + bs + kskd) ≥ kp (23)
This is also the condition for the absolute stability of the
system in Fig. 7

4.2 Stable validation of the slave site

The validation is carried out by simulation under the
condition with the initial position of 1[rad], the initial
velocity of 1[rad/s], ks = 1.3, bs = 0.65, ε = 0.001, a = 1,
Kenv = 100 and b = 1. Fig. 11 shows the Popov plot and
the phase portrait of the system with kp = 100, kd = 0.83.
It is clear that the inequality (23) is not satisfied, the
Popov criterion is also not satisfied, and the phase portrait
of the system converges to a limit-cycle. The system is
oscillated.

In the case of kp = 100, kd = 10, the inequality (23) is
satisfied. As shown in Fig. 12, the Popov criterion is also
satisfied, and the phase portrait of the system converges
to the origin.

4.3 Problems to practice

The Popov criterion guarantees the absolute stability of
the system; however, it does not guarantee fast conver-
gence to the equilibrium point. In some cases, the system
oscillates before converging to an equilibrium point. This
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Fig. 11. The Popov plot and the phase portrait with
kp = 100, kd = 0.83
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Fig. 12. The Popov plot and the phase portrait with
kp = 100, kd = 10

phenomenon should be avoided in the practice. Therefore,
a control system guaranteeing only absolute stability is
not enough in practice. This problem will be considered in
future study.

5. CONCLUSION

Bilateral teleoperation system of the position-force archi-
tecture using the scattering matrix can be stabilized by us-
ing compensators and wave filters, despite its non-passive
property.Good tracking with regard to both position and
contact force can be achieved.

The working frequency range of the system depends on the
application’s requirements. The wave filters must maintain
this frequency range, and therefore the designed param-
eters of the controller (kp and kd) must be chosen to
match the bandwidth of the filter. Moreover, in order to
stabilize the local loop created by the scattering matrix,
the designed parameters must satisfy some conditions. At
the steady state, when the robot moves freely, the human
operator feels the viscosity that is proportional to the wave
impedance b. Therefore b should be a small value. The
viscosity is also proportional to the round trip time delay
T , and it is harder to work with the larger time delay. If
the robot is in contact with the environment, transparency
is obtained.

This design method can guarantee system stability. How-
ever, in practice, the oscillation may occur before the sys-
tem converges to the stable steady state. This phenomenon
is undesired and the future study will require obtaining
fast convergence for the system.
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