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Abstract: This paper addresses the high-precision tracking of mechanical systems with friction effect. A 
simple integrated proportional-derivative (PD) scheme is proposed where a support vector machine is 
incorporated to deal with friction. The bounded tracking is proved with Lyapunov’s direct method and the 
bound of tracking error can be made arbitrarily small by selecting large control gains. A major advantage 
of the proposed framework is that it does not use the modeling information in the controller formulation, 
and thus permits easy implementation in practice. Simulations performed on two single-mass servo control 
systems demonstrate the expected better performance of the proposed approach. 

 

1. INTRODUCTION 

It is well known that one of the major limitations to achieve 
high-precision performance in mechanical systems is the 
presence of friction, which is a nonlinear phenomenon 
difficult to describe analytically (Abdellatif, Grotjahn, & 
Heimann, 2007; Armstrong-Helouvry, Dupont, & Canudas 
de Wit, 1994; Canudas de Wit, Olsson, Aström, & 
Lischinsky, 1995). Typical errors caused by friction are 
steady-state errors in position regulation and tracking lags 
(Canudas de Wit & Lischinsky, 1997). Much effort has 
devoted to the development of control law for friction 
compensation. There are two basic strategies for friction 
compensation, named as model-based control and nonmodel-
based control. Model-based controls such as adaptive control 
(Canudas de Wit & Lischinsky, 1997; Friedland & Park, 
1992; Hirschorn, & Miller, 1999; Liao & Chien, 2000; 
Panteley, Ortega, & Gafvert, 1998) which are formulated 
based on the dynamic friction model and the compensation is 
highly dependent on the accurate of the friction model. On 
the other hand, nonmodel-based controls including 
disturbance observer techniques (Canudas de Wit & Kelly, 
2007; Kempf & Kobayashi, 1999; Su, Duan, Zheng, Zhang, 
Chen, & Mi, 2004; Xu & Yao, 2001), nonlinear proportional-
integral-derivative (PID)/PD control (Armstrong, Neevel, & 
Kusik, 2001; Dupont, 1994; Parra-Vega, Arimoto, Liu, 
Hirzinger, & Akella, 2003), learning control (Cho & Ha, 
2000) and artificial neural network techniques (Du & Nair, 
1999; Herrmann, Ge, & Guo, 2005; Huang, Tan, & Lee, 2002; 
Selmic & Lewis, 2002). Since support vector machine have 
an inherent capability of approximating nonlinear functions 
over neural network (Gunn, 1998; Vapnik, 1995), it is 
attractive to apply them in control systems (de Kruif & de 
Vries, 2001; Ong, Keerthi, Gilbert, & Zhang, 2004; Suykens, 
2001; Suykens, Vandewalle, & De Moor, 2001). In particular, 

Wang, Li, & Bi (2004) explored support vector machine to 
static friction modelling for servo motion systems, and 
demonstrated the performance improvements of the 
formulated approach. A little pity is that the stability of the 
closed-loop system has not been thoroughly analyzed. 

In this paper, a very simple integrated PD control scheme 
with support vector machine for friction compensation is 
proposed. The bounded tracking of the state errors with this 
simple control law is shown in agreement with Lyapunov’s 
direct method. The control algorithm does not use the 
modeling information in the controller formulation, and thus, 
it is readily implemented. Simulations performed on two 
different single-mass servo motion systems demonstrate the 
expected better performance of the proposed approach. 

2. PROBLEM STATEMENT 

We consider in this paper a one-DOF mechanical system 
described by 

)(xfuxm &&& −=                                                                        (1) 

where m  is the mass (or inertia), ℜ∈xxx &&&,,  denotes the 
position (or angle), velocity, and acceleration, respectively, 

)(xf &  stands for the friction force, and u  denotes the torque 
input. We employ the dynamic model proposed in Canudas 
de Wit et al. (1997) to model the effect of friction force, 
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where z  denote the average bristle deflections of the contact 
forces, and iσ , iα , 2,1,0=i  are some positive parameters 
which are typical unknown. 

As discussed in Canudas de Wit et al. (1995), it is reasonable 
to assume that the friction is bounded, that is, 

xf &10 Δ+Δ≤                                                                       (5) 

where 0Δ  and 1Δ  are two positive constants. 

Let ℜ∈)(txd  be any reference trajectory for the system (1) 
that is twice continuously differentiable, i.e., the expected 
trajectory-tracking speed and acceleration ℜ∈dd xx &&& ,  are 
bounded by 

)(sup,)(sup txAtxV dMdM &&& ==                                      (6) 

Define the tracking errors ℜ∈)(),( tete &  as follows: 

dxxe −= , dxxe &&& −=                                                            (7) 

Assume x  and x&  are measurable, the friction are bounded in 
(5), and the parameters of the mechanical systems including 
the friction are unknown. Our object is to design a simple 
tracking controller that ensures the tracking errors are 
bounded for all time. Furthermore, the tracking error bound 
can be made arbitrarily small by selecting the control gains. 

3. CONTROL DEVELOPMENT 

Following the idea reported in Panteley et al. (1998), we also 
see the friction force expressed in (2)-(4) as a disturbance to 
the system (1). The control law is developed in two steps, 
first a support vector machine is developed to model the 
friction and then incorporated into a simple commonly-used 
PD control to solve the above formulated problem. The 
reason behind the selection of the commonly-used PD control 
to realize this goal is to make the proposed scheme to a 
widespread field. 

3.1 SVM-Based Friction Estimation 

Because of the complexity and difficulty in modelling the 
friction, support vector machine (SVM) may be used to 
generate input-output maps using the property that a SVM 
can approximate any smooth function, with any desired 
accuracy over a compact set (Gunn, 1998; Vapnik, 1995). In 
fact, various learning algorithms such as neural network 
maybe used for this modeling. Our choice of support vector 
machine (SVM) is motivated by its good performances on a 
variety of problems and its desired properties: a theoretical 
error bound, an optimal solution defined by a convex 
quadratic programming problem, sparsity in solution 
representation and good generalization ability (Scholkopf & 
Smola, 2001; Vapnik, 1998). 

For SVM, the basic idea is to map the input and output data 
points in a higher dimensional feature space H  (reproduced 
kernel Hilbert space), via a nonlinear mapping φ , and then 
do linear regression in this space. 

For a given training set with l  samples constructed by using 
friction model (2)-(4) 

{ }liyxyxyxyxD iill ,,1,,),(,),,(),,( 2211 KK =ℜ∈=          (8) 

where ix  and iy  denote the velocity and friction, 
respectively. The SVM to solve the modeling of friction can 
be formulated as (Vapnik, 1998) 
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where 0>C  is a parameter that determines the tradeoff 
between the model flatness and the training error, )(⋅c  

denotes the loss function, and iξ  and *
iξ  are slack coefficient. 

The most common choice for the loss function is the 
following ε -insensitive loss function defined by Vapnik 
(1998) 
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where ε  is referred to the expected error bound. 

Following the standard approach, introducing Lagrange 
multiplier and kernel techniques, the resulting convex 
programming problem expressed in (9) is solved by its Wolfe 
dual formulation: 
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where iα  and *
iα  denote the non-zero Lagrange multipliers, 

and ),( jik xx  is the kernel function. In this application, the 
following Spline kernel function is utilized 
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Using the KKT conditions, the offset can be calculated by 
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Finally, the output of the SVM for friction modelling can be 
written as 
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where b  is the average value of b  obtained by using (13). 

The modelling error is given by 

ε≤− )()(ˆ xx ff                                                                 (15) 

3.2 Integrated Control Law 

Using the SVM-based friction estimation, the following 
simple PD plus control law is proposed 

)(ˆ xfekeku dp && +−−=                                                          (16) 

where pk  and dk  are positive proportional and derivative 

gains, and )(ˆ xf &  was defined in (14). To keep unanimity with 

(2), here it is written as )(ˆ xf & . 

Substituting (16) into (1), the closed-loop error system is 
obtained as follows 

d
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xmxfxf
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ρ
                                                        (17) 

Upon using (5), (6), and (15), ρ  can be upper bounded by 

MmA+≤ ερ                                                                       (18) 

We are now in a position to perform a composite stability 
analysis for the closed-loop system given by (17) with the 
simple PD incorporated SVM friction compensation given by 
(16). 

3.3 Stability Analysis 

Theorem 1. Under the subsequent conditions (19) and (20), 
the proposed PD incorporated SVM friction compensation 
scheme ensures that all signals remain bounded during 
closed-loop operation. Furthermore, this error bound can be 
made arbitrarily small by selecting large control gains. 
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Proof. The Lyapunov’s direct method is employed to show 
the stability. To this end, we propose the following Lyapunov 
function candidate 
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Substituting (22) into (21) and using (19), it follows that, 
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Hence, we can conclude that V  is a positive definite 
Lyapunov function with respect to ee &, . Furthermore, we 
have the following upper bound for V  

2
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Differentiating V  with respect to time, yields 

eekkemeemeemV dp &&&&&&&& )(2 ++++=                                    (25) 

Substituting em &&  from (17) into (25) and using (18), we have 
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where 
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Upon using (24), (26) can be rewritten as 

43 λλ +−≤ VV&                                                                      (27) 

Therefore, we have 

[ ] teVtV 3
3434 )0()( λλλλλ −−+≤                                      (28) 

Consequently, it can be concluded that the signals e  and e&  
in the system are bounded. Furthermore, upon using (24) 
again, we have 
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It is clearly see that the error bound η  can be made 
arbitrarily small by selecting large control gains pk  and dk . 
This completes the proof.                                                       □ 
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Theorem 1 indicates that the proposed controller does not 
utilize the modeling information in the control law 
formulation, which is the simplest and would give rise to 
bounded tracking for mechanical system with friction effect. 

4. SIMULATION RESULTS 

Simulations on two servo control systems were conducted to 
illustrate the effectiveness of the proposed simple PD 
incorporated SVM friction compensation controller. The first 
system model can be found in (Canudas de Wit & Lischinsky, 
1997). The inertial 2mKg0022.0 −⋅=m , and other 
parameters described friction are shown in Table 1. 

Table 1. Nominal friction parameters for Figs. 1-6 

Friction parameter 0>x&  0<x&  Nominal value 

)radmN( 1
0

−⋅⋅σ  － － 260.0 

)radsmN( 1
1

−⋅⋅⋅σ  － － 0.6 

)radmN( 1
2

−⋅⋅σ  0.0176 0.0189 0.018 

)mN(0 ⋅α  0.28 0.29 0.285 

)radsmN( 1
1

−⋅⋅⋅α  0.06 0.04 0.05 

)srad( 1
2

−⋅α  0.001 0.01 0.01 

 
The sampling period was ms1=T . The reference trajectory 
is rad)sin()( ttxd = , and the initial parameters were all set as 
zero. The parameters of the SVM were determined as 

510=C  and 410−=ε ; and the proportional and derivative 
gains were chosen in accordance with stability conditions (19) 
and (20) as: 5=pk  and 1=dk . The position and velocity 
tracking errors with the simple PD control only are illustrated 
in Figs. 1 and 2, respectively. The simulation results with the 
proposed SVM-based PD control are shown in Figs. 3-6. It 
can be clearly see that, with the proposed controller, the 
position and velocity realize very better tracking. Notice that 
the favorable result is obtained with a very simple controller, 
which does not require any model information in the control 
law formulation. 
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Fig. 1. Position tracking by using PD only. 
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Fig. 2. Velocity tracking by using PD only. 

0 5 10 15
-1

-0.5

0

0.5

1

Time [sec]

P
os

iti
on

 [r
ad

]

Desired
Real   

0 5 10 15
-0.1

-0.05

0

0.05

0.1

Time [sec]

P
os

iti
on

 e
rro

r[r
ad

]

 
Fig. 3. Position tracking with the proposed SVM-based PD control. 
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Fig. 4. Velocity tracking with the proposed SVM-based PD control. 
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Fig. 5. Input torque of the proposed SVM-based PD control. 
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Fig. 6. Friction estimation of the SVM. 

To further demonstrate the most advantage of the proposed 
model-free friction compensation method, simulations on 
another one-DOF robot system presented in (Mallon, van de 
Wouw, Putra, Nijmeijer, 2006) were also performed. The 
inertial is 2mKg0026.0 −⋅=m , and the friction model is 

)()( 0 xfxbxf &&& +=                                                                 (30) 
The dry friction model is expressed as a set-valued force law 
by the following algebraic inclusion (Mallon et al., 2006): 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

<−

>

=
+−

−

+

0if][

0if)(

0if)(

)(0

xff

xxg

xxg

xf

ss &

&&

&&

&                                              (31) 

with )(xg &+  and )(xg &−  the Stribeck curve for positive and 
negative velocity, respectively. The set-valued nature of (31) 
at 0=x&  allows to model the stiction phenomena. The 
Stribeck curve is defined by the exponential curve (here, for 

0>x& , indicated by the superscript “+”) 

( )+−++++ −+= vx
csc efffxg &

& )()(                                         (32) 
The friction parameters are summarized in Table 2. 

Table 2. Friction parameters for another system 

Friction parameter 0>x&  0<x&  

)radsmN( 1−⋅⋅⋅b  0.0828 0.0790 

)mN( ⋅sf  0.5735 0.5123 

)mN( ⋅cf  0.3990 0.3887 

)srad( 1−⋅v  0.0688 0.0817 

Note that the friction model presented in (30)-(32) has not 
only the different structure, but also the totally different 
parameters to that of the above mentioned first system. 
The parameters of the controller including the model 
parameters of the SVM are kept unchanged. The simulations 
with PD only and proposed SVM-based PD control are 
shown in Figs. 7-12. It can be seen that for this totally 
different friction model to the learning friction model, the 
proposed SVM-based friction compensation PD control also 
obtains a better result over the conventional PD control. 
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Fig. 7. Position tracking error of another system with PD only. 
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Fig. 8. Velocity tracking error of another system with PD only. 
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Fig. 9. Position error of another system with SVM-based PD control. 
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Fig. 10. Velocity error of another system with SVM-based PD 
control. 
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Fig. 11. Input torque of another system with SVM-based PD control. 
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Fig. 12. Friction estimation of another system with SVM. 
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5.  CONCLUSIONS 

A very simple model-free friction compensation scheme has 
been proposed, by incorporating a SVM into an available 
commonly-used PD control. The bounded of all signals in the 
closed-loop system is shown with Lyapunov’s direct method. 
The tracking error can be made arbitrarily small by selecting 
large control gains. The most advantage of the proposed 
scheme is that its formulation does not require any modelling 
information, and thus readily implement. Simulations 
demonstrate the effectiveness of the proposed approach. 
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