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Abstract: We study the modeling and stability of TCP/AQM systems. The control-theoretic
framework used in most of the previous work is linear system theory. Based on the linearization
of nonlinear congestion control systems, classical linear techniques, such as the Nyquist or
Bode criteria, are applied for the analysis of stability. The success of the linearization method
depends on the assumption that the equilibrium is far away from the zero queue length point
so that the linearization is well-defined. In this paper, the nonlinearity of the queue part is
taken into consideration and TCP/AQM systems with proportional control are modeled as a
class of switched time-delay systems. For such systems, we employ a Lyapunov approach and
establish stability results. Simulations are presented to demonstrate the effectiveness of the
stability analysis.

1. INTRODUCTION

Today’s Internet has developed into a large-scale, hetero-
geneous, distributed system with unparalleled complexity.
The Internet becomes one of the largest artificial feedback
systems. As the Internet continues to evolve in scale and
diversity, it is increasingly important to have a solid un-
derstanding on how this feedback system works.

Internet congestion occurs when the demand for some
resources exceeds the available capacity. For example, if
several users transfer files over a single bottleneck link at
a rate that exceeds the capacity of the link, then some
packets have to be dropped out. In turn, packet losses lead
to the retransmission of lost packets and to the consequent
ineffective utilization of network bandwidth.

Congestion control regulates the rate at which traf-
fic sources inject packets into networks to ensure high-
bandwidth utilization while avoiding network congestion.
End-point congestion control, such as the Transmission
Control Protocol (TCP), can be helped by Active Queue
Management (AQM), whereby intermediate routers mark
or drop packets with the objective of obtaining low packet
losses, short queueing delay and high bandwidth utiliza-
tion (see Kelly (1997), Floyd (1998), Hollot et al.
(2001b), Srikant (2003), Paganini et al. (2001), Pa-
pachristodoulou et al. (2004)). AQM methods measure the
router’s queue length and attempt to throttle the sender’s
rate accordingly. AQM realizes the feedback by marking
packets randomly with a probability determined by the
queue length. Packets are then routed to the receiver. The
receiver acknowledges receipt to the sender. Furthermore,
the acknowledgment states whether the received packet
was marked or not. When the sender received an acknowl-
edgment, it can roughly infer the router queue length from
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the presence or absence of marking. The sender should
then moderate its sending rate in the presence of long
router queues and increase its sending rate in the absence
of queues. As such, the marking probability effectively
serves as a control signal to regulate the sender’s sending
rate. In practice, the configuration of TCP/AQM system
is shown in Fig. 1. Notice that the feedback signal depends
on the queue length, which can only take values between
zero and the router buffer size. Moreover, AQM allows for
arbitrary control laws to be instantiated at the router (see
Fig. 1), and previous work has considered proportional and
proportional-integral controllers in Hollot et al. (2001b),
as well as nonlinear control laws in Floyd (1998).

The work on TCP model development and analysis mostly
is based upon fluid analogies (Misra et al. (2000) etc.),
hybrid systems (Bohacek et al. (2003) etc.) and linear sys-
tems with self-tuning parameters (Naitou et al. (2002)).
In Misra et al. (2000), an ordinary differential equation
model was developed for TCP/AQM systems based on
fluid analogies. The model has been extensively used to
study the stability and dynamic behavior of TCP/AQM
systems (see Hollot et al. (2001a), Al-Hammouri et al.
(2006), Hollot et al. (2002) and Hollot et al. (2001b)). The
basic ideas of these papers are to linearize the differential
equation model at the equilibrium and then use classical
control system tools, such as the Nyquist or Bode criteria,
to determine the stability of the TCP/AQM system. The
linear analysis provides local stability results as long as
the equilibrium is far way from the physical limits of the
system states, such as the minimum or maximum value of
queue lengths.

The success of the linearization technique relies on how
well the dynamics of the system is approximated by its
linearization at the equilibrium. If the dynamical equations
of the system are continuous and differentiable everywhere,
the characteristics of the system at the equilibrium can
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be well represented by the linearized system. However, if
the equilibrium lies on or is close to a discontinuous point
of the system dynamics, then linearizing the system at
the equilibrium could lead to wrong conclusions, even for
local stability results (see Branicky (1998) and Liberzon
(2003)). These discontinuities exist in most of the conges-
tion control systems and arise from physical features (for
example, the queue length of congestion control systems
cannot be negative), resulting in the behavior switching
between the cases of positive and zero queue lengths.
As a result, congestion control systems can be viewed
as switched systems with several different dynamics that
switch from one to another dependent on the queue length.

In this paper, we take into account the aforementioned
physical constraints of congestion control systems. The
linearized TCP/AQM systems with a proportional control
are modeled as a class of switched time-delay systems. Due
to the presence of the queue, the system is nonlinear and
hence the classical frequency domain approach cannot be
applied. Instead, a Lyapunov approach is employed to deal
with the resulting switching systems with time delay. We
then present a computational technique of determining the
proportional control gains for stability.

In the next section, we introduce the dynamics of
TCP/AQM systems with proportional control and show
how they can be modeled as a switched delay system.
Stability analysis and simulations are conducted in Section
III and IV. Concluding remarks are given in Section V.

Sender Receiver

Router

Round Trip Time

Control LawRandom Packet

Marking
AQM

Fig. 1. A schematic of AQM marking packets,
sender-receiver connection as a feedback system.

2. DYNAMIC MODEL

2.1 Dynamics of TCP and proportional AQM schemes

In Misra et al. (2000), a dynamic model of the TCP be-
havior was developed based on fluid flow and the analysis
of stochastic differential equations. By ignoring the TCP
timeout mechanism, the following simplified model was
obtained in Hollot et al. (2002):

Ẇ (t) =
1

R(t)
− W (t)

2

W (t − R(t))

R(t − R(t))
p(t − R(t)) (1)

q̇(t) =















−c +
N(t)

R(t)
W (t),

max{0,−c +
N(t)

R(t)
W (t)},

q > 0
q = 0

(2)

where

W
.
= average TCP window size in packets;

q
.
= queue length in packets;

R(t)
.
=

q(t)

c
+ Tp, round-trip time in seconds;

c
.
= link capacity in packets per second;

Tp
.
= propagation delay in seconds;

N
.
= load factor in number of TCP sessions;

p
.
= probability of packet mark.

While (1) models the TCP window control dynamics,
(2) describes the bottleneck queue length. The marking
probability p takes values in [0, 1] and is a function of
the queue length q, which in turn closes the loop of the
feedback system. This feedback control law is also referred
as to the Active Queue Management (AQM) control law.

An Active Queue Management (AQM) algorithm sends
congestion information derived from the queue length.
AQM runs on routers, updates and feedbacks the conges-
tion information to senders by packet marking. AQM is
a core process where packets are marked as a function of
queue lengths. One of current AQMs is proportional or
proportional-integral control, in which the control law of
Fig. 1 is a P or PI controller In other words, packets are
marked depending on the difference between the queue
length q and its reference q0. In this work, we shall fo-
cus on the stability analysis of TCP/AQM systems with
proportional feedback control.

2.2 Switched Time-delay Systems

As shown in Hollot et al. (2002), ignoring the second
condition of (2), the linearized system of the TCP plant
at the equilibrium (W0, q0, p0) is expressed by

P (s) =
b

(s + α)(s + β)

where α = 2N/(d2c), β = 1/d, b = c2/(2N), d is the
round-trip time delay in seconds at the equilibrium. For
simplicity, d is considered as a constant. The equilibrium
is obtained by Ẇ = 0 and q̇ = 0 so that W 2

0 p0 = 2,
W0 = dc/N and d = q0/c + Tp. The perturbed variables
about the equilibrium are represented as δW

.
= W − W0,

δq
.
= q − q0 and δp

.
= p − p0.

P(s)

sd
e

−

f

qv

G(s)

-

p

u

Fig. 2. The closed-loop system of TCP/AQM linearized
model with a proportional controller and nonlinear queue.

The nonlinearity that lies in the queue part (2) is its
boundary condition. Taking this into account, the closed-
loop TCP/AQM system with proportional feedback con-
trol is shown in Fig. 2. A proportional feedback controller
and nonlinearity f in the feedback system are introduced.
The proportional AQM control law G(s) and the nonlinear
function f are given by
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G(s) = k

δq = f(v) = max{v + q0, 0} − q0

where f models the nonlinearity of (2), which is to prevent
the occurrence of negative queue lengths. If the equilib-
rium is around the zero queue length point, the second
equation of the queue part in (2) cannot be ignored any
more, i.e., the nonlinearity must be taken into consid-
eration. In previous work, the nonlinear function f was
discarded in analysis because its nonlinearity makes the
system intractable (Al-Hammouri et al. (2006)). Due to
the presence of the queue, by which the nonlinearity of
the routing algorithm is characterized, the conventional
frequency domain approach cannot be used to establish
stability of the nonlinear closed-loop system. Instead, a
time domain approach, e.g., a Lyapunov approach, must
be employed. In this work, we examine the nonlinear
TCP/AQM system with a proportional controller, i.e.,
G(s) = kp = k. In what follows, we first transform the
nonlinear congestion system into an equivalent state space
model, which will facilitate the stability analysis.

Note that the state space model of the plant P (s) =
b

(s+α)(s+β) is given by

ẋ = Ax + Bu (3)

v = Cx (4)

where A =

[

0 1
−αβ −(α + β)

]

is a Hurwitz matrix, B =

[ 0 1 ]
T
, C = [ b 0 ], the control u(t) = −δp(t − d) =

−kδq(t−d) and the output v is the perturbed queue length
if the nonlinear queue part and feedback delay are ignored.

Consequently, the corresponding closed-loop system with
the proportional controller can be expressed as

ẋ(t) = Ax(t) − Bkδq(t − d) (5)

where δq = f(v) = max{v + q0, 0} − q0, or, equivalently,

δq = f(Cx) = max{Cx + q0, 0} − q0

Taking into account of the delay, the closed-loop system
leads to

ẋ(t) = Ax(t) − Bkf(Cx(t − d)) (6)

Note that Cx = [b 0]

[

x1

x2

]

= bx1 and the switching

surface is bx1 + q0 = 0 , (6) can be written as

ẋ(t) =

{

Ax(t) + Bkq0,
Ax(t) + Adx(t − d),

if x1 ≤ −q0

b
if x1 > −q0

b

(7)

with Ad = −BkC.

In this way, the TCP/AQM system shown as Fig. 2 has
been represented as a switched time-delay system (7).
Since both time delay and switching are involved in the
system, investigating the stability of such system requires
to construct a Lyapunov function that can take care of
both effects simultaneously. The stability analysis will be
given in the next section.

3. STABILITY ANALYSIS

In this section, we present the stability results on the
TCP/AQM system. In physical network systems, the pa-
rameter b = c2/(2N) is usually a very large number in
comparison with q0 and the designed controller gain k is
a very small number. In view of these facts, i.e., Bkq0 ≈ 0
and q0/b ≈ 0 are sufficiently close to zero (see, for instance,
Example 1), the dynamic behavior and stability of the sys-
tem (7) can be understood by investigating the following
simplified model

ẋ(t) =

{

Ax(t),
Ax(t) + Adx(t − d),

if x1 ≤ 0
if x1 > 0

(8)

with Ad = −BkC.

In what follows, we characterize the stability of the
switched delay system (8) using a Lyapunov approach. The
main result of this section is the following theorem.

Theorem 1. The equilibrium of the TCP/AQM system (8)
with time delay d and proportional gain k is globally
asymptotically stable if there exist positive definite ma-
trices P , R, W such that

S1 :=−AT P − PA − W − Rd > 0 (9)

S2 := W − (BkC)T PS−1
1 P (BkC) > 0 (10)

To prove Theorem 1, we introduce the following useful
lemma.

Lemma 1. (See Gu et al. (2003)). For any constant
symmetric matrix M ∈ IRn×n, M = MT > 0, scalar γ > 0,
vector function ω : [0, γ] → IRm such that the integration
in the following is well-defined, we have

γ

γ
∫

0

ωT (β)Mω(β)dβ ≥





γ
∫

0

ω(·)dβ





T

M





γ
∫

0

ω(·)dβ





Proof of Theorem 1. The basic idea of the proof is to
construct a common Lyapunov function, thus yielding the
asymptotic stability of the entire switched system (8).

Consider the Lyapunov function

V = V1 + V2 + V3 (11)

where

V1 = xT (t)Px(t), V2 =

t
∫

t−d

xT (s)Wx(s)ds

and V3 =

t
∫

t−d

(d − t + s)xT (s)Rx(s)ds

P , R and W are symmetric, positive definite matrices
such that AT P + PA < 0. The unique solution P to this
Lyapunov equation is guaranteed since A is Hurwitz.

In the case when x1 ≤ 0, the time derivative of V along
the solution trajectories of the system (8) is given by

V̇ = V̇1 + V̇2 + V̇3, where

V̇1 = xT (t)(AT P + PA)x(t)
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V̇2 = xT (t)Wx(t) − xT (t − d)Wx(t − d)

V̇3 = dxT (t)Rx(t) −
t

∫

t−d

xT (s)Rx(s)ds

By Lemma 1, we have

V̇3 ≤ dxT (t)Rx(t) − d





1

d

t
∫

t−d

x(s)ds





T

R





1

d

t
∫

t−d

x(s)ds





From the above equations and inequality, it follows that

V̇ ≤ xT (t)(AT P + PA)x(t) + xT (t)Wx(t)

−xT (t − d)Wx(t − d) + dxT (t)Rx(t)

−d





1

d

t
∫

t−d

x(s)ds





T

R





1

d

t
∫

t−d

x(s)ds





=−XT Π1X

where XT =





 xT (t) xT (t − d)





1

d

t
∫

t−d

x(s)ds





T





and

Π1 =





−AT P − PA − W − Rd 0 0
0 W 0
0 0 Rd



.

When x1 > 0, the time derivative of V along the solution
trajectories of (8) yields

V̇ ≤ xT (t)(AT P + PA)x(t) + 2xT (t)P (−BkC)x(t − d)

+xT (t)Wx(t) − xT (t − d)Wx(t − d) + dxT (t)Rx(t)

−d





1

d

t
∫

t−d

x(s)ds





T

R





1

d

t
∫

t−d

x(s)ds





=−XT Π2X

with Π2 =





−AT P − PA − W − Rd P (BkC) 0
(BkC)T P W 0

0 0 Rd



 .

In order to guarantee the negative definiteness of V̇ , both
Π1 and Π2 must be positive definite simultaneously, i.e.,
the following conditions need to be satisfied

−AT P − PA − W − Rd > 0

W − (BkC)T PS−1
1 P (BkC) > 0

which guarantee the asymptotic stability of the system (8).
This completes the proof. 2

For convenience of applications, we choose a set of specific
matrices W and R, leading to the following corollary.

Corollary 1. The equilibrium of the TCP/AQM system
(8) with time delay d and proportional gain k is globally
asymptotically stable if there exist positive numbers γ, ε1,
ε2 with γ − ε1 − dε2 > 0, such that

0 < k <
2αβ(α + β)

√

ε1(γ − ε1 − dε2)

γb
√

(α + β)2 + (αβ + 1)2
(12)

Proof. With the conditions (9) and (10) holding, set W =
ε1I, R = ε2I and P such that AT P + PA = −γI where
ε1, ε2, γ are positive numbers and I denotes the identity
matrix. As a result, S1 = (γ − ε1 − dε2)I and

S2 =





ε1 −
(p2

2 + p2
3)b

2k2

γ − ε1 − dε2
0

0 ε1



 > 0 (13)

with P =

[

p1 p2

p2 p3

]

. Using AT P + PA = −γI, P can

be solved with p1 = (α+β)γ
2αβ

+ (αβ+1)γ
2(α+β) , p2 = γ

2αβ
and

p3 = (αβ+1)γ
2αβ(α+β) . Then, substituting p1, p2 and p3 into (13),

a straightforward calculation leads to the inequality (12)
immediately. 2

Substituting α = 2N/(d2c) , β = 1/d and b = c2/(2N)
into the condition (12), we obtain

0 < k <
8N2(cd + 2N)

√

ε1(γ − ε1 − dε2)

γc3d2
√

c2d6 + c2d4 + 8cNd3 + 4N2d2 + 4N2
(14)

The stability region given in (14) depends on the choice of
γ, ε1 and ε2. In what follows, we illustrate how to choose
ε1, ε2 and γ so that the gain k can have a maximal range.
For a given TCP/AQM system with some α, β, b and delay
d, the inequality (14) can be rewritten as

0 < k <

√

ε1(γ − ε1 − dε2)

γ
· F (15)

with F being a constant defined by

F =
8N2(cd + 2N)

c3d2
√

c2d6 + c2d4 + 8cNd3 + 4N2d2 + 4N2

In order to reach the maximal range of k, we only need to

focus on the function

√
ε1(γ−ε1−dε2)

γ
. Denote g(ε1, ε2, γ) =√

ε1(γ−ε1−dε2)

γ
. Consequently, the problem of finding the

maximal range of k boils down to solving the following
optimization problem

max g(ε1, ε2, γ) =

√

ε1(γ − ε1 − dε2)

γ
(16)

s.t. γ − ε1 − dε2 > 0, ε1 > 0, ε2 > 0, γ > 0

As for ε2, the maximizer of g(·) is reached when ε2 → 0. It
does not affect the maximum of g(·) much if ε2 is ignored
in g(ε1, ε2, γ), as we can choose ε2 arbitrarily small after
ε1 and γ are fixed. Let m = ε1 > 0 and n = γ − ε1 > 0,

then g(ε1, ε2, γ) reduces to g(m,n) =
√

mn
(m+n)2 . It is easy

to see that g(m,n) reaches its maximum 1
2 at m = n > 0.

Hence, g(ε1, ε2, γ) obtained its maximum around 1
2 when

γ = 2ε1 > 0 and ε2 → 0. By (15), the stability region of k
ends up with

0 < k <

√

1

4
− dε2

γ2
· F ≈ 1

2
· F (17)

Therefore, 0 < k < 1
2 · F gives an estimation of the range

of the controller gain k.

Remark 1. From the right hand side of the inequality (14),
it is easy to see that the range of k can be enlarged to
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0 < k < ∞ when the delay d → 0. It means that any
positive proportional gain k would stabilize the system
(8) with sufficiently small delay. On the other hand, the
stability region of k shrinks to null if the delay d → ∞.

Remark 2. The system (8) is actually a particular case of
a class of switched time-delay systems that take the form
ẋ(t) = Aix(t)+Adix(t−d), i = 1, 2, ... . For such systems,
a continuous piecewise quadratic Lyapunov function is

constructed as V = xT (t)Pix(t)+
∫ t

t−d
xT (s)Wx(s)ds +

∫ t

t−d
(d − t + s)xT (s)Rx(s)ds. Note that such Lyapunov

functions are continuous everywhere in terms of x and t.
The continuity of x on the switching surface is guaranteed
by the term xT (t)Pix(t), in which Pi is computed as in the
case of switched linear systems in Johansson et al. (1998).
The other two terms are introduced to take care of the
delay effects of the systems. Since A1 = A2 = A in (8), the
continuous piecewise quadratic Lyapunov function reduces
to a common Lyapunov function, i.e., P1 = P2 = P .

Remark 3. Theorem 1 gives a conservative yet strong
stability result in the sense that the stability follows
independent of cell partition. Moreover, the inequalities
(9) and (10) hold regardless of any switching schemes.

4. SIMULATIONS

Three examples are studied to simulate the set-point
tracking responses of the system shown in Fig. 2. We
apply the established stability results to the system (7)
and demonstrate the effectiveness of the stability results.

Example 1. Consider a network with the following pa-
rameters: N = 60, c = 3750 pkt/sec, d = 0.246 sec,
and q0 = 50 (the same scenario as Example 4.1 in Al-
Hammouri et al. (2006)). We have W0 = 15.375 and
p0 = 0.0085. Choosing γ = 11, ε1 = 5.5, ε2 = 0.01, with
g(ε1, ε2, γ) =

√

ε1(γ − ε1 − dε2)/γ ≈ 0.5, gives that the
TCP/AQM system is stable if 0 < k < 1.513 · 10−5. Fig. 3
shows the response of the system (the queue length) when
k = 1.5 · 10−5. If we keep increasing k, the system starts
to oscillate at k = 1.86 · 10−4, which is shown in Fig. 4.

Example 2. Let N = 60, c = 1250 pkt/sec, d = 0.22
sec, and q0 = 50 (as Example 4.2 in Al-Hammouri et al.
(2006)). We have W0 = 4.58 and p0 = 0.0952. Choose
γ = 50, ε1 = 25, ε2 = 0.001, then g(ε1, ε2, γ) ≈ 0.5. The
system is stable as 0 < k < 3.781 · 10−4. The output
response is shown in Fig. 5 using k = 3.78 · 10−4. If we
increase k, the system will become unstable when k = 2.83·
10−3, as shown in Fig. 6.

Example 3. Assume the network parameters are N = 75,
c = 1250 pkt/sec, d = 0.15 sec, and q0 = 50 (the same
scenario as Example 4.3 in Al-Hammouri et al. (2006)).
We have W0 = 2.5 and p0 = 0.32. Setting γ = 100,
ε1 = 50, ε2 = 0.01 gives g(ε1, ε2, γ) ≈ 0.5 and the stability
region for k as k ∈ (0, 0.0011). Choose k = 0.001 and the
corresponding output response is shown in Fig. 7. Fig. 8
shows that the system becomes to oscillate at k = 0.0097.

Note that since the marking probability p takes values in
[0, 1], it is only physically realizable that the chosen k is not
too large so that p is not larger than 1. In Example 3, the
value of q is no more than 110 from Fig. 8 and thus δq is less
than 60. Hence the range of the marking probability p can

be calculated as p = p0 + kδq = 0.32 + 0.0097 · 60 = 0.902,
which lies in [0, 1].

The derived stability region of k is somewhat conservative
from the simulation comparisons. The stability region cri-
terion based on Corollary 1 gives an explicitly analytic
condition instead of solving LMIs at the cost of being
conservative. The explicit stability condition (17) is a
trade off between the computational complexity and con-
servativeness in the analysis. The conservativeness might
be reduced by a more meticulous examination of other
Lyapunov function candidates or numerically solving the
inequalities (9) and (10), which however are unlikely to
result in explicit stability conditions.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

time(seconds)

q
u
e
u
e
 l
e
n
g
th

 (
p
a
c
k
e
ts

)

Fig. 3. The output response (queue length)
of Example 1 using k = 1.5 · 10−5
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Fig. 4. The output response (queue length)
of Example 1 using k = 1.86 · 10−4
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Fig. 5. The output response (queue length)
of Example 2 using k = 3.78 · 10−4
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Fig. 6. The output response (queue length)
of Example 2 using k = 2.83 · 10−3
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Fig. 7. The output response (queue length)
of Example 3 using k = 0.001
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Fig. 8. The output response (queue length)
of Example 3 using k = 0.0097

5. CONCLUSION

The work presented in this paper has provided an addi-
tional insight in understanding the stability of TCP/AQM
networks under proportional control, in the presence of the
queue nonlinearity. Our method is different from the exist-
ing ones in the literature, which do not take into account
the involved nonlinearity. A class of common quadratic
Lyapunov functions was developed for investigating the
stability of TCP/AQM network that is modeled by a
switched time-delay system. The range of the proportional
gain was determined based on the Lyapunov analysis and
the related LMI technique. With the help of such anal-
ysis tools, it is expected that the stability problem of
TCP/AQM system under PI control can also be solved.
This result will be reported in a future work.

On the other hand, most of the Internet congestion control
systems involve nonlinear queue parts, which are usually
discarded in the existing literature. Such nonlinearities
cannot be ignored especially when the equilibria lie on or

are closed to the physical limits. As demonstrated in this
work, congestion control systems involving queue nonlin-
earities can be modeled as switched time-delay systems.
The proposed Lyapunov methodology can deal with both
time delay and switching simultaneously. It is believed
that the developed tool might also be applied to other
Internet congestion control systems with both time-delay
and nonlinearity.
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