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Abstract: This article explores coordinated scheduling problem arising in steelmaking and multi-refining 
operations.  Jobs are first processed in converters and then transported downstream to be processed in 
refining furnaces in which two different transporters are employed in tandem at the stage of transportation.  
There exist multi-refining jobs.  The objective is to minimize the maximum completion time satisfying no 
transporters conflict and buffer space.  For the model, we develop a tabu search algorithm and provide the 
worst case analysis.  Computational tests are evaluated to show the efficiency brought by the tabu search 
algorithm relative to lower bound and sequenced and separately algorithm.  

 
1. INTRODUCTION 

This problem is motivated by the coordinated scheduling of 
steelmaking-refining of a steel plant.  An important stage 
before the production of CCM is steelmaking-refining 
operation, in which jobs from converters are transported to 
refining furnaces where different special elements are added.  
The filling of one converter is defined as a ‘job’ in this 
scheduling.  The purpose of refining operation is to subject the 
jobs to element requirement for subsequent operation.  
Usually, there are three types of refining called LF, RH, CAS 
and exist more than one machines for each type of refining 
settled in different refining spans (working areas where 
refining furnaces settled in).  As shown in figure 1.  Those 
jobs to be processed only in refining LF are called LF jobs, 
and similarly jobs to be processed only in refining RH (CAS) 
are called RH (CAS) jobs.  Those jobs to first be processed in 
refining LF (RH) and then in RH (LF) are called LF+RH 
(RH+LF) jobs.  Jobs to be processed in refining LF, RH, CAS 
consequently are called LF+RH+CAS jobs. 

Note that the tracks and the rails where cranes travelling on 
are vertical since the tracks and refining spans are vertical.  
There is exactly one trolley travelling on each track and may 
exist one or two cranes travelling on one refining rail.  Each 
capacity of a trolley or a crane is one.  Jobs to be processed in 
the same converter share one trolley and jobs to be processed 
in those refining furnaces settled in the same span share one or 
two cranes.   

There are no buffer spaces between steelmaking and refining.  
If the trolley was not available when the job has been finished, 
the starting time of current job in converter must be delayed.  

If no crane is available when the trolley has finished the 
transportation, the job being transported must wait with 
occupying the trolley.  If the proceeding job is not finished 
when the current job has arrived refining furnace, the current 
job must wait without occupying the crane.   
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Fig 1 Flow of multi-refining jobs from converters to refining furnaces  

 
Coordinated scheduling problem with transportation 
consideration has been one of the most important topics in the 
last ten years.  Lee and Chen (2001), and Chang and Lee 
(2004) study semi-finished jobs and finished jobs delivery in 
flowshop and parallel environments.  Wang and Cheng (2000) 
consider the scheduling problem with two different 
transportation modes is available.  For crane scheduling
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 problem, only few different alternative approaches have been 
proposed in reactive.  Lim et. al. (2007) study the m-parallel 
crane scheduling problem with non-crossing problem 
motivated by crane scheduling in ports.  David et. al. (2006) 
focus on the case where multiple cranes, sharing the same rail, 
are used to convey a single type of jobs along the line 
according to a given production sequence.  Takashi et. al. 
(2006) consider steelmaking scheduling problem with cranes 
while not consider multi-refining.  There are seldom papers 
consider transporters coordinated problem in a steel plant 
especially with multi-refining consideration.  Tang et.al. 
(2000) study the steelmaking-continuous cast problem without 
refining and transportation consideration. 

2. PROBLEM DESCRIPTION 

Our problem can be formally stated as follows.  Jobs of set N 
= {J1, J2,…, Jn} to first be processed on parallel machines 
(converters) settled in steelmaking span and then transported 
to one or more refining furnaces downstream according to 
requirement.  The transportation system composed of trolleys 
and cranes.  Transportation between steelmaking and refining 
is first executed by trolleys travelling on the tracks behind 
converters and then by cranes travelling on the rail above 
refining spans.  Transportation between refining furnaces in 
the same span is executed by cranes.   

Job-independent transportation times from converters to 
refining furnaces and transportation times between refining 
furnaces are explicitly considered.  Additionally, non-crossing 
constraint for two cranes in the same refining span is 
considered too.   

The scheduling decision is to find both feasible processing 
machines and transporters, and furthermore, feasible starting 

times in processing machines and transporters for all jobs.  
The objective is to minimize the maximum completion time 
satisfying no transporters confliction and buffer limitation. 
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Fig 2 Figure for plan of one 3-refining job from converter to refining furnaces 

in a steel plant 

 

As in the practice of a steel plant, there are 3 converters settled 
in steelmaking span, 2 RH, 1 LF and 2 CAS refining furnaces 
settled in refining span 1 sharing two cranes, and 1 RH and 1 
LF refining furnace settled in refining span 2 sharing one 
cranes.  Jobs to be processed contain LF, RH, CAS, LF+RH, 
RH+LF, and LF+RH+CAS jobs.  It is obvious that the 
problem is more complex than three machines parallel 
problem, thus, is a strongly NP hard problem.  Consequently, 
it is impossible to find a polynomial or pseudo-polynomial 
algorithm to solve it optimally unless P = NP.  Job processing 
times in converters are about 30 minutes and in refining 
furnaces are about 15 minutes respectively.  The 
transportation time between different types of refining may be 
1 or 5 minutes.   

Now, we provide parameters, variables and the mathematical 
model for the practical problem of a steel plant:  

 
  

Φ The set of all steelmaking furnaces,︱Φ︱= C, where C is the total number of steelmaking furnaces. 
Ω The set of jobs, Ω = {1, 2,…, N}, where N is the total number of jobs. 
Ψ The set of all refining furnaces, ︱Ψ︱= Q, where Q is the total number of refining furnaces. 

{qr} The set of all jobs to be processed in the rth refining of type q only, where Nqr is the number of jobs, 
q∈   {LF , RH , CAS}, r ∈  {1 , 2 , 3}, {q} ={q1}∪{q2}∪{q3}. 

{qr+q’r’} The set of all jobs to first be processed in the rth refining of type q and then in the r’th refining of 
type q’, where Nqr+q’r’ is the number of jobs, q, q’ ∈  { LF , RH }, r,r’ ∈  {1, 2, 3}, { q+q’} = 

, 'r r
∪ { qr+q’r’}. 

{LF+RH+CAS} The set of all jobs to first be processed in LF refining and then in RH refining, finally in CAS 
refining, where NLF+RH+CAS is the number of jobs.  

Hhj The index of span in which the crane transporting job j settled in, where hj is the crane transporting of 
j. 

t Transportation time of trolley from converter to crane which is the same as the transportation time of 
crane from trolley to refining furnace.  Thus, the transportation time from one converter to refining 
furnace and from one refining furnace to another refining furnace settled in opposite direction in the 
same span are both 2t. 

t' Transportation time of crane from one refining furnace to another adjacent refining furnace.   
Pi

j Processing time of job j in the (i+1)th processing machine it passed through, i = 0, 1, 2, 3. 
Si

j  Production starting time of job j in the (i+1)th processing machine it passed through, i = 0, 1, 2, 3. 
Ci

j  Completion time of job j in the (i+1)th processing machine it passed through, i = 0, 1, 2, 3. 
si

j  Transportation starting time of the crane which transport job j to the (i+1)th refining it passed 
through, i = 0, 1, 2.  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14871



ei
j  Transportation completion time of the crane which transport job j to the (i+1)th refining it passed 

through, i = 0, 1, 2. 
1
0jckx
⎧

= ⎨
⎩

 If job j is processed in the kth position of the cth converter.  
Else if. 

1
0jqrly
⎧

= ⎨
⎩

 If job j is processed in the lth  position of the rth refining of type q.  
Else if. 

1
0jcqrz
⎧

= ⎨
⎩

 If job j is processed in the cth converters, and the first refining it passed through is the rth refining of 
type q. 
Else if. 

' '

1
0jqrq rr
⎧

= ⎨
⎩

 If job j is processed in the rth refining of type q and the immediately later refining furnaces it passed 
through is r’th refining of type q’.  

Else if. 
  

Objective function 
Minimize { }{ }1 2 3

0
max , ,

j j jj N
C C C

≤ ≤
 

 
Constrains between Si

j and Ci
j 

Ci
j = Si

j + Pi
j  j =  1, 2,…, N, i = 0, 1, 2, 3 (1)

C0
j +2t ≤ S1

j  j =  1, 2, …, N (2)

C1
j +2t ≤ S2

j  j ∈  {LF + RH , LF + RH + CAS }, Hhj = 1, hj = 1 (3)
C1

j +t’ ≤ S2
j  j ∈  {LF + RH , RH + LF }, Hhj = 2 (4)

C2
j + t’ ≤S3

j  j ∈  { LF + RH + CAS }, Hhj = 1, hj = 2, (5)
Completion time constraints of two adjacent jobs in converters 

0 0
11 1

N N
j jck i ickj i

S x C x −= =
≥∑ ∑  c = 1, …, C, k = 2, …, N (6)

0 0
, 11 1

2N N
j jck i ic kj i

C x C x t−= =
≥ +∑ ∑  c = 1, …, C, k = 2, …, N (7)

Starting time constraints of two adjacent jobs in refining furnaces 
31

, 1 ' ' , 1 ' '1 ' 1 ' 1 1 2 ' 1 ' 1 1
r rN Q q N Q q Ni i

j jqrl h hqr l hqrq r h hqr l hq r qrj q r h i q r h
S y C y r C y r− −= = = = = = = =

≥ +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑  

 q = 1, …, Q, r = 1, …, qr , l = 1, 2, …, N, i =  1, 2, 3 (8)
Non-crossing constraints of cranes  
(sv

j – s1
i)( ev

j – s1
i) ≥ 0                               

 hi = hj or i ∈  { LF + RH , LF+ RH+ CAS }, j∈  { RH , CAS, LF+ RH+ CAS }, hi ≠ hj, Hhi = Hhj , v = 0,2.    (9)
(s1

i – sv
j)( e1

i –sv
j) ≥ 0                                            

hi = hj or i ∈  { LF + RH , LF+ RH+ CAS }, j∈  { RH , CAS, LF+ RH+ CAS }, hi ≠ hj, Hhi = Hhj , v = 0,2. (10)
Unique position constraints of jobs(omitted) 
 

3. PROPERTIES AND DOMINANCE RULES 

In this section, we present two properties of the problem 
formulated in the previous section.  Both of them describe the 
relationship between transportation starting time and finishing 
time of two non-crossing jobs to be processed in the same 
refining span. 

Property 1: In an optimal scheduling, two jobs transported by 
one cranes must satisfy (sv1

j – sv2
i)( ev1

j – sv2
i) ≥ 0 and (sv2

i–
sv1

j)( ev2
i – sv1

j) ≥ 0, where v1, v2 ∈  {0,1,2}. 

Proof: There are two feasible scenarios for two jobs 
transported by one crane, i.e., if sv2

i > sv1
j, then sv2

i > ev1
j; if sv2

i 

< sv1
j , then ev2

i ≤ sv1
j .  The former (later) implies that job i ( j ) 

can start the transportation only when the transportation of job 
j ( i ) has been completed.  

Property 2: In an optimal scheduling, two jobs transported by 
two cranes settled in the same rail must satisfy (sv1

j – sv2
i)( ev1

j 
– sv2

i) (sv1
j –ev2

i)( ev1
j –ev2

i) ≥ 0, where v1, v2 ∈  {0,1,2}. 

Proof: There are four feasible scenarios for the given cranes 
schedule:  sv1

j > sv2
i , ev1

j > sv2
i , sv1

j >ev2
i , ev1

j >ev2
i , this 

implies that job j starts the transportation only when the 
transportation of job i has been completed; sv1

j > sv2
i , ev1

j > 
sv2

i , sv1
j <ev2

i , ev1
j <ev2

i , this implies that the transportation 
starting time of job i earlier than that of job j and 
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transportation completion time of job i later than that of job j; 
sv1

j < sv2
i , ev1

j > sv2
i , sv1

j <ev2
i , ev1

j >ev2
i, this implies that the 

transportation starting time of job j earlier than that of job i 
and transportation completion time of job j later than that of 
job i; sv1

j < sv2
i , ev1

j < sv2
i , sv1

j <ev2
i , ev1

j <ev2
i, this implies that 

job i starts the transportation only when the transportation of 
job j has been completed. 

We then provide two dominance rules to show the priority of 
different type of jobs in one refining furnace. 

Dominance rule 1:  In an optimal schedule, jobs of set 
{LF+RH+CAS} take precedence of jobs of set {LF+RH} 
({LF}) in refining RH (LF) if transporter after processing is 
available. 

Proof:  We note that the processing times in three types of 
refining furnace are similar for all jobs. If transporter is 
available, we can always get smaller makespan by processing 
jobs of set {LF+RH+CAS} earlier since it may reduce the idle 
time in mult-refining furnace, thus reduce the makespan.   

Dominance rule 2:  In an optimal schedule, jobs of set 
{LF+RH} (or {RH+LF}) take precedence of jobs of set {LF} 
(or {RH}) in one LF (RH) refining furnace if transporter after 
refining is available. 

Proof is omitted. 

4. TABU SEARCH ALGORITHM 

Now we are ready to present our tabu search algorithm which 
can provide an upper bound of optimal function value.  

 

Crane1  in span 1 1,1 1,1

1,1 1,1

1,2 1,2

1,1 1,1

1,2

Crane in span 2 2 2 2

2 2 2

LF+RH+CAS

RH+LF

CAS

LF+RH ( may be processed in convert  2)

LF+RH

RH (may be processed in convert  2)

RH

1,2 1,2

  ( may be processed in convert 1)LF

2 2

1,2 1,2

1,1

1,1 1,1

1,1

Crane 1  in span 1

Crane 2 in span 1

Crane  2 in span 1

Crane in span 2

 
Fig 3 Gantt chart of permutation π0 

 
Tabu search, introduced by Glover (1989), is a universal 
procedure to gain good solution for combinatorial 
optimization problem.  In this section, we provide a tabu 
search algorithm for this coordinated problem which contains 
only fundamental elements called move, neighborhood, initial 
solution, searching strategy, memory, aspiration criterion, 
stopping rule.  Short-term memory (Z*, T*) stores in Z* the 
best unperformed move associated with the currently best 
permutation πTS and in T* the tabu list associated with πTS.  

The aspiration criterion is denoted as the current optimal 
function value.  The stopping criterion is defined as the 
starting processing time of the last job in any converter no 
larger than the completion time of those last jobs processed in 
other converters or the total recurrence times larger than 
n(n+1)/2.  The working of our tabu search algorithm can be 
explained as follows: 

Step 1: 

Select an initial solution π0, initialize the best unperformed 
move Z* corresponding solution π0, and empty the tabu list 
associated with the currently best permutation T*.   

The initial permutation π0 can be reached as follows: as shown 
in Figure 3, jobs of sets {LF+RH+CAS} followed by {LF+RH} 
are processed in converter 1, then jobs processed in converter 
1 are transported by crane 1 in span 1 to LF refining settled in 
span 1.  The transportations from LF refining to RH refining 
are executed by crane 1 in span 1 too.  The transportation of 
jobs {LF+RH+CAS} from RH refining to CAS refining is 
executed by crane 2 in span 1.  Jobs of sets {RH+LF} 
followed by {LF} are processed in converter 2, and then jobs 
processed in converter 2 are transported to span 2.  Jobs of 
sets {CAS} followed by {RH} are processed in converter 3, 
and then jobs processed in converter 3 are transported by 
crane 2 in span 1.  We choose to settle jobs in those refining 
furnace with smaller total completion time if two refining 
furnaces are available. 

Step 2: 

Generate a permutation from the neighborhood of πi by 
interchanging two jobs of the same type processed in the same 
convert to reach local optimal solution, such that the move is 
not in the tabu list or satisfies aspiration condition, then 
refresh tabu list and πi.   

If the move is in the tabu list and does not pass the aspiration, 
then select another move.  The new permutation is obtained by 
inserting one job of set {LF+RH}, {LF} or {RH} processed in 
one converter to another, as shown in figure 2.   

Step 3:  

If the stopping criterion is fulfilled, STOP.  Else if, go to Step 
2. 

In the following section, we give the computational results 
which show the tabu search algorithm is efficient relative to 
sequenced and separately algorithm and the lower bound.  In 
sequenced and separately algorithm which is always used in 
production face, LPT(Largest Processing Time first) strategy 
of all jobs is used to minimize the makespan for parallel 
machine problem, and then jobs are transported by those 
available transporters to available refining furnaces 
downstream.  Denote the function value found by sequenced 
and separately one CS, and the function value found by 
coordinated algorithm CTS.  Then, the relative improvement 
from separated Algorithm to the coordinated approach is 
defined as CS/CTS.  The lower bound of the problem is shown 
as follows: 
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{ }( )
{ } { }

{ }

{ }

1 2
, ,

1 2
, ,

3 1

0 1

max{2 2,

                  2 ( ) 3,

                  2 ( ) 2,

                  3 2 min }

LB
j jj LF LF RH LF RH CAS j RH LF

j jj RH RH LF j LF RH LF RH CAS

j jj LF RH CAS j CAS

j j jj N

C t P P

t P P

t P P

P t P

∈ + + + ∈ +

∈ + ∈ + + +

∈ + + ∈

∈Ω∈

= + +

+ +

+ +

+ +

∑ ∑
∑ ∑
∑ ∑

∑

(11) 

Then the relative improvement from tabu search algorithm to 
the lower bound is defined as CTS/CLB. 

All the algorithms were programmed in C language and run 
on a PC with Pentium-Ⅳ (2.40 GHz) CPU using the windows 
XP operating system.  We consider job processing times in 
refining furnaces Pj

1, Pj
2, Pj

3 were generated the discrete 
uniform distribution [10, 30] respectively.  The transportation 
time t was generated from the discrete uniform distribution [2, 
5].  The transportation time t’ from RH refining to CAS 
refining in span 1 and transportation time from LF refining to 
RH refining in span 2 are both 1.  The number of each type of 
jobs were generated the discrete uniform distribution [a, b].   

Based on the analysis of solution quality in Table 1 and Table 
2 the following observations can be made: 

(1) The results indicate that the coordinated tabu Search 
algorithm gives much better function value compared to the 
practical algorithm function value, and the gap between tabu 
search algorithm and lower bound is small. 
(2) There is no obvious improvement from separated 
algorithm to the coordinated approach as a/b changed, while 
the solution quality improves as the job number increases for 
given a/b.  The solution quality from tabu search algorithm to 
lower bound improves as job number and a/b increase. 
(3) There is no obvious improvement from random processing 
time in converters to those constant processing time because 
there are seldom idle times in converters for both random 
processing time and those constant processing time in given 
algorithms. 

5. WORST CASE ANALYSIS 

We note that the solution quality obtained from random 
processing time is no worse than those constant processing 
time as shown in computational results, thus in the following 
section, we provide the worst case analysis for constant 
processing time in converters for simplifying the problem.  

Theorem:  The worst case ratio of the tabu search algorithm 
must be no more than 6 if job processing times in converters 
are constant, and furthermore, no more than 3 if the number of 
each type of jobs no more than a quarter of total jobs number 
can be satisfied too. 

Proof: Without loss of generality, we denote P0, P0 ∈  [30, 40], 
as the processing time in converters of all jobs and thus there 
is no cranes conflict in initial solution.  Denote n’ as 
NLF+RH+CAS and Pi as the maximum processing time in the i-
multiple refining of all jobs.  Note that Pi < P0 and 4t < P0 for 
Pi ∈  [10, 30] and t < 5.  For LF+RH+CAS jobs taken from the 
input queue according to initial permutation, we index them as 
1, 2, …, n’.  We conclude that the maximum completion time 

 

Table 1 : Average optimality gaps of the separated algorithm with 
respect to the coordinated approach (100%) 
 

CS/CTS Pj
0 ∈[30, 40] Pj

0=30 Pj
0=35 Pj

0=40

a =10, b =40 2.3124 1.4961 1.8946 2.4082

a =30, b =120 1.3886 1.0997 2.1479 2.0689

a =50, b =200 1.1966 1.7771 1.4477 1.7033

a =10, b =30 2.1856 2.3824 1.6347 1.9737

a =30, b =90 1.6182 2.2377 1.4625 2.1483

a =50, b =150 1.1039 3.3377 1.0021 1.7308

a =10, b =20 2.5887 1.8825 2.4056 2.193

a =30, b =60 2.1262 1.8118 2.1563 2.2124

a =50, b =100 1.9299 1.6634 2.1798 1.8185

a =40, b =60 2.0335 2.2137 2.1009 1.9665

a =60, b =80 1.3774 1.4716 1.3782 1.3629

a =80, b =100 1.3957 1.3058 1.6988 1.4154

a =100, b =120 1.3676 1.3521 1.3584 1.3401

a =120, b =140 1.5340 4.1222 2.6631 1.6216

a =140, b =160 1.4593 1.1874 1.3655 1.0443

Table 2 : Average optimality gaps of the lower bounds with respect 
 to the coordinated approach (100%) 
 

CTS/CLB Pj
0 ∈[30, 40] Pj

0=30 Pj
0=35 Pj

0=40

a =10, b =40 1.3326 1.3515 1.2983 1.0730

a =30, b =120 1.4010 1.3058 1.1136 1.3927

a =50, b =200 1.2580 1.2929 1.5179 1.1895

a =10, b =30 1.2086 1.1182 1.2643 1.3001

a =30, b =90 1.2496 1.0979 1.2326 1.0637

a =50, b =150 1.2652 1.2674 1.4523 1.2607

a =10, b =20 1.0920 1.0779 1.1351 1.2122

a =30, b =60 1.0890 1.0839 1.0828 1.1651

a =50, b =100 1.0774 1.0799 1.0771 1.1825

a =40, b =60 1.0712 1.0309 1.0934 1.1436

a =60, b =80 1.0499 1.0526 1.0714 1.0537

a =80, b =100 1.0694 1.1008 1.1065 1.0598

a =100, b =120 1.0491 1.0223 1.0541 1.0525

a =120, b =140 1.0599 1.0412 1.0393 1.0586

a =140, b =160 1.0504 1.0217 1.0568 1.0484
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of those jobs which steelmaking operation occurred in 
converter 1 is no more than 

{ } { }{ }
{ }{ }

0 0 1 0 2 1
1

0 2 1 2 3
' 2 ' 1 ' '

0 1

0 2 3

0 1

max , 4 max ,max 1,2 2

max ,max 1,2 2 1

( 1)4 4

( ' 1)4 1

( 1)4 4

n n n n

LFj LF

j LF RH CAS

LFj LF

P P P t P P t P t

P P t P t P P

P N t t P

P n t P P

P N t t P

− −

∈

∈ + +

∈

+ + + + + +

+ + + + + + + +

+ + − + +

≤ + − + + +

+ + − + +

∑
∑
∑

L  (12) 

Similarly, the maximum completion time of those RH+LF and 
LF jobs which have been processed in converter 2 is no more 
than  

0 2

0 1

(2 1) 1

( 1)4 2

RH LFj RH LF

LFj LF

P t N P

P N t t P

+∈ +

∈

+ + + −

+ + − + +

∑
∑

   (13) 

The maximum completion time of those RH+LF and LF jobs 
which is processed by converter 3 for their steelmaking 
processing is no more than  

0 2 0 22 2CAS RHj CAS j RH
P tN P P tN P

∈ ∈
+ + + + +∑ ∑ . (14) 

Thus,  
0 0

0

max{2 ( ),2 ( ),

                 2 ( )}

H
LF RH CAS LF RH RH LF LF

CAS RH

C P N N P N N

P N N
+ + + +≤ + +

+
 (15) 

It is well known that 
1

3N
jj

P
=∑  is a lower bound for three 

machines parallel problem, thus { }0 13 2 min j jj N
P t P∈Ω∈

+ +∑  is 

a lower bound for the problem described in this section 
obviously, It follows that  

{ }

0 0
*

0 0 1

0 0

0 0

max{2 ( ), 2 ( ),

                  2 ( )}/ 3 2 min

     max{2 ( ), 2 ( ),

                 2 ( )}/ 3 6

H

LF RH CAS LF RH RH LF LF

CAS RH j jj N

LF RH CAS LF RH RH LF LF

CAS RH j N

C P N N P N N
C

P N N P t P

P N N P N N

P N N P

+ + + +

∈Ω∈

+ + + +

∈

≤ + +

+ + +

≤ + +

+ ≤

∑

∑

 (16) 

Where C* is the optimal solution value of the problem.  Thus, 
we conclude that the makespan of tabu search algorithm may 
be 6 times that of an optimal schedule for constant processing 
time in converters.  Furthermore, it can be easily reached that 
the worst case ratio may reach 3 if the number of each type of 
jobs no more than a quarter of total jobs number is satisfied 
too.   

6. CONCLUSIONS  

In this study, steelmaking and multi-refining scheduling 
problem with trolleys and cranes transportation consideration 
has been addressed. Mathematical model are abstracted from 
the production fact firstly, and then a tabu search algorithms 
are proposed for the model, finally, we provide the 
computational results which show the average relative 
improvement from coordinated approach to sequence and 

separately algorithm and bound. We also prove the tabu 
search algorithm can provide a worst case ratio no more than 
3 in practice. 

Acknowledgment 

This research is partly supported by National Natural Science 
Foundation for Distinguished Young Scholars of China (Grant 
No. 70425003), National 863 High-Tech Research and 
Development Program of China through approved 
No.2006AA04Z174, National Natural Science Foundation of 
China (Grant No. 60674084) and 111 Project (B08015). 

REFERENCES 

Chang, Y.C., Lee, C.Y. (2004). Machine scheduling with job 
delivery coordination, European Journal of Operational 
Research, vol. 158, 470-487.  

David, J., Dae-Won, K., Pierre, B. and Kwang, H.L. (2006). A 
contract net based intelligent agent system for solving the 
reactive hoist scheduling problem," Expert Systems with 
Applications,  vol. 30, 156-167.  

Glover, F. (1989). Tabu Search-Part I, ORSA Journal on 
Computing, vol. 1, 190-206.  

Lee, C.Y., Chen, Z.L. (2001). Machine scheduling with 
transportation considerations, Journal of Scheduling, vol. 
4, 3-24.  

Lim, A., Rodrigues, B. and Xu, Z. (2007). A m-parallel crane 
problem with a non-crossing constraint, Naval Research 
Logistics, vol. 54, 115-127. 

Takashi, T., Takayoshi, T., Hideaki, S., Yutaka, T. and Taichi, 
I. (2006). A heuristics scheduling algorithm for steel 
making process with crane handling, Journal of the 
Operations Research Society of Japan, 2006, vol. 49, 
188-201. 

Tang, L.X., Liu, J.Y., Rong, A.Y. and Yang, Z.H. (2000). A 
mathematical programming model for scheduling 
steelmaking-continuous casting production, European 
Journal of Operational Research, vol. 120, 423-435. 

Wang, G.Q., Cheng, T.C.E. (2000). Parallel machine 
scheduling with batch delivery costs, International 
Journal of Production Economics, vol. 68, 177-183. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14875


