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Abstract: The robust state estimation problem is studied in this paper for a class of neural networks with 
multiple time-varying delays and norm-bounded parameter uncertainties. The problem is to estimate the 
neuron states through available measured outputs such that for all admissible time-delays and parameter 
uncertainties, the dynamics of the estimation error is globally stable. A sufficient condition for the 
existence of such estimators for the multi-delayed neural networks is derived via the linear matrix 
inequality (LMI) approach, and a design procedure of the estimators is presented in terms of the feasible 
solutions to a certain LMI. Finally, a numerical example is given to demonstrate the effectiveness of the 
proposed method. 
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1. INTRODUCTION 

In the past decades, neural networks have received a great 
interest due to their wide applications in signal and image 
processing, artificial intelligence, system identification, 
industrial automation, and other areas. It is well known that 
time delays are likely to be present due to the finite switching 
speed of amplifiers and occur in the signal transmission 
among neurons in the electronic implementation of neural 
networks, which will affect the dynamics and other properties 
of neural networks (Baldi and Atiya, 1994). In Baldi and 
Atiya, 1994, the effects of delays on the dynamics and, in 
particular, on the oscillatory properties of simple neural 
networks are investigated. It is pointed out in Baldi and Atiya, 
1994 that the delays in neural networks have a dramatic 
influence on the stability of the corresponding networks. In 
particular, many convergent networks become oscillatory due 
to the presence of delays. In recent years, the stability problem 
of different classes of time-delay neural networks, such as 
bidirectional associative neural networks, cellular neural 
networks, etc., has been extensively studied and a lot of 
stability conditions have been obtained for these neural 
networks, see (Arik et al., 2005; Xu et al., 2005; Huang et al., 
2005; Li et al. 2005; Arik et al. 2000; Senan et al., 2005; Cao 
et al., 2002; Arik et al., 2002)  for example. In most of these 
works, sufficient conditions, either delay-dependent or delay-
independent, have been proposed to guarantee the 
asymptotical or exponential stability of the neural networks. 
Nevertheless, it is well known that the stability of a well-
designed system may be destroyed by the unavoidable 
uncertainty due to the existence of external disturbance, 
modeling error and parameter fluctuation during the operation. 
So it is necessary to take the robust stability problem into 
consideration. Recently, several global and robust stability 
criteria for different kinds of neural networks with time-delays 
have been proposed (Li et al., 2004; Chen et al., 2004; Singh 
et al., 2005; Liao et al., 2005; Arik et al., 2003; Cao et al., 
2005; Liao et al., 2004; Li et al., 2004). 

On the other hand, the neuron state estimation problem 
becomes precursor for many applications. In large-scale 
neural networks, it is often the case that only partial 
information about the neuron states is available in the 
measurement outputs (Wang et al., 2005). Therefore, in order 
to utilize the neural networks, it is essential to estimate the 
neuron state through available measurement. In Wang et al., 
2005, studied the state estimation problem for neural networks 
with time-varying delays and provided a design procedure to 
the desired state estimators. However, Wang et al., 2005 did 
not consider the parameter uncertainties and perturbations in 
the model of the neural networks. To the best of our 
knowledge, few results have been reported in literature on the 
robust state estimation for delayed neural networks with 
parameter uncertainties. 

In this paper, the robust state estimation problem for neural 
networks with multiple time-varying delays and parameter 
uncertainties is studied. The system parameter uncertainties 
are assumed to be norm-bounded. The problem under 
consideration is to estimate the neuron states through 
available measured outputs such that for all admissible time-
delays and parameter uncertainties, the dynamics of the 
estimation error is globally robustly stable. Using the linear 
matrix inequality (LMI) approach, we first derive a sufficient 
condition for the existence of the desired estimators for the 
delayed neural networks, and then show that this condition is 
equivalent to the feasibility of a certain LMI and the feasible 
solutions to this LMI are used to construct the estimators. 
Finally, a numerical example is presented to illustrate the 
effectiveness of the proposed method.

2. PROBLEM DESCRIPTION AND PREPARATION 

Consider the following multi-delayed neural network with 
neurons: 

    (1) 

n  

1

( ) ( ) ( ( )) ( ( ( )))
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k k
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u t Au t Wg u t B g u t t Vτ
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where  is the state vector of the neural network, ( ) nu t R∈

1 2diag{ , , , }nA a a a=
entries 0ia > . 

 is a diagonal matrix with positive 
 and n  are the 

matrix and the delayed connection 
atrices, respectively. 

( )ij n nW w ×= ( )k
k ij nB B ×=

connection weighting 
weighting m ( ( ))g u t  

1 1 2 2[ ( ), ( ), , ( )]T
n ng u g u g u=  

function with (0) 0g = , and 
denotes the neuron activation 

is a constant 
external input r denotes the time-
varying delays satisfying  
 

1 2[ , , , ]T
nV v v v=  

 vector. ( )k tτ , 1, 2, ,k =  

0 ( )k ktτ τ≤ ≤ < ∞ , ( ) 1k ktτ η≤ < , 1, 2, ,k r=       (2) 
 
where kτ  and kη  are known scalar constants. Suppose that 
the parameter matrices of the system (1) are uncertain and of 
the following form: 
 

k
b

         (3) 
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0A , , and  denote, respectively, the nominal 
matrices of 

0W ( )
0

kB
A , , and . , W kB aE aF , wE , wF , ( )k

bE , and 
( )k

bF  are known constant matrices which describe the structure 

uncertainties.  and  are unknown 

real time-varying matrices satisfying  

, and 

of the )(taΔ , )(twΔ )()( tk
bΔ

Ia
T
a ≤ΔΔ , Iw

T
w ≤ΔΔ ,

Ik
b

Tk
b ≤ΔΔ )()( I  is the identity matrix of appropriate 

dimension. 
 
When modelling a neural network, a typical assumption is that 
the activation functions are continuous, differentiable, 
monotonically increasing and bounded, such as the sigmoid-
type of function. However, in many electronic circuits, the 
input-output functions of amplifiers may be neither 
monotonically increasing nor continuously differentiable. 
Thus, non-monotonic functions may be more appropriate to 
describe the neuron activation in designing and implementing 
an artificial neural network. As discussed in Wang et al., 2005, 
in this paper, we assume that the neuron activation function 

 in (1) satisfies the following Lipschitz condition: 
 

)(⋅g

( ) ( ) ( )g x g y G x y− ≤ −                      (4) 
 
where is a known constant matrix. In this paper, the 
network measurements are assumed to be 
 

                      (5) 
 
where is the measurement output,  is a known 
constant matrix. m

nnRG ×∈  

))(,()()( tutftCuty +=

( ) my t R∈  C
: nf R R R× →  is the nonlinear 

disturbances on the network outputs, and satisfies the 
following Lipschitz condition: 

 
)(),(),( yxFytfxtf −≤−                  (6) 

 
where the constant matrix nnRF ×∈  is known. 
 
In practice, it is often the case that the information about the 
neuron states is incomplete from the network measurements. 
That is, only partial information about the neuron states is 
available in the network measurements. On the other hand, the 
network measurements are subject to nonlinear disturbances. 
Therefore, estimating the neuron states through measured 
output is essential for further applications, and neuron states 
estimation becomes a significant research field of neural 
networks. The objective of this paper is to develop an efficient 
estimation algorithm to observe the neuron states from the 
available network outputs.  
 
Consider the full-order state estimator described by 
 

1

ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ( ( )))
r

k k
k

u t Au t Wg u t B g u t t Vτ
=

= − + + − +∑  

ˆ ˆ[ ( ) ( ) ( , ( ))]K y t Cu t f t u t+ − −                              (7) 
 
where  is the estimation of the neuron state, and ˆ( )u t

n mK R ×∈  is the estimator gain matrix to be designed. Define 
the error state as 
 

                                (8) 
 
then it follows from (1), (5), and (7) that 
 

ˆ( ) ( ) ( )e t u t u t= −

ˆ( ) ( ) ( ) [ ( ( )) ( ( ))]e t A KC e t W g u t g u t= − − + −  

1

ˆ[ ( ( ( ))) ( ( ( )))]
r

k k k
k

B g u t t g u t tτ τ
=

+ − − −∑  

ˆ[ ( , ( )) ( , ( ))]K f t u t f t u t− −                             (9) 
 
Our task is to design a state estimator for the delayed neural 
network described by (1) and (5), such that the error system (9) 
is globally robustly stable, for the nonlinear activation 
function ( )g ⋅ , the nonlinear disturbance , the time-
varying delays  and all admissible uncertainties. 

3. MAIN RESULTS 

The following lemma, known as Schur Complement Lemma, 
will be used in establishing our main results. 
Lemma 1. (Wang et.al., 2005) Given constant matrices 

, where  and , then 
 

 
if and only if 

, or 
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We first derive a condition for the stability of the error system 
(9).  
 
Theorem 1. For a given matrix , if there exist scalars 

, , , r  and a matrix 
such that the following quadratic matrix inequality holds 
 

K
1 0ε > 2 0kε > 3 0ε > 1, 2, ,k = 0P >  

1
1( ) ( )T TA KC P P A KC PWW Pε −− − + − − +  

1
1 2

1

r
T T

k k k
k

G G PB B Pε ε −

=

+ +∑  

1
3 3 2

1

(1 ) 0
r

T T T
k k

k
PKK P F F G Gε ε ε η−

=

+ + + −∑ 1− <        (10) 

 
Then the error system (9) is globally asymptotically stable. 
 
Proof: Define 
 

                                      (11) 
                       (12) 

                 (13) 
 
Then from (4) and (6), we have immediately that 
 

   (14) 

(15) 
 
Choose the following Lyapunov function for system (9) 
 

      (16) 

 
where  
 

                      (17) 
 
It follows from (9) and (10) that 
 

)]

 
By Lemma 2.4 in Xie (1996),  is equivalent to that 
there exist positive scalars  such 
that the following inequality holds 
 

τ−

)]

<                              (18) 

 
Therefore, condition (10) guarantees that , thus 
we can conclude from Lyapunov stability theory that (10) 
ensures that the error system (9) is asymptotically stable. This 
completes the proof of Theorem 1. 
 
Since the matrix inequality (10) contains the parameter 
uncertainties, it is difficult to check the truth of the inequality 
(10). From Theorem 1, an easily verifiable LMI-based 
condition for the stability of the error system (9) is presented 
in the following theorem. 
 
Theorem 2. For a given matrix , if there exist scalars 

, , , , , , 
r  and a matrix  such that the following 

linear matrix inequality holds 
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Then the error system (9) is globally asymptotically stable, 
where  
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Proof: By Lemma 1, it follows that inequality (10) is 
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Then the error system (9) with the estimator gain RPK 1−=  
is globally asymptotically stable. 
 
Proof: Denoting PKR =  in (19), the inequality (22) is 
equivalent to the inequality (19). Hence, it follows from 
Theorem 2 that the error system (9) with the estimator gain 
given by (24) is globally asymptotically stable. This 
completes the proof of Theorem 3. 
 
Remark 1. (22) is an LMI in the variables , , 

, = , 
1 0ε > 3 0ε >

4 0ε > , 6 0ε > 2 0iε > , 5 0iε > , 1, 2, ,i r P , and 
Therefore, the robust estimation problem for a class of ne  
networks with multiple time-varying delays and parameter 
uncertainties is reduced to the feasibility problem of an LMI. 
The latter can be effectively solved by corresponding LMI 
Control Toolbox in MATLAB. Furthermore, if the LMI (22) 
is feasible, then a robust state estimator can be constructed in 
terms of the feasible solution to this LMI. 

4. NUMERICAL EXAMPLE 

In this section, a numerical example is presented to illustrate 
the usefulness of the proposed results. 
 
Example. Consider the system (1) with 
 

 
By using the LMI toolbox in MATLAB, it follows that the 
LMI (22) is feasible and we obtain the following estimator 
gain matrix 
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Fig. 1. States and state estimations of nominal system 
 

1u  2u

  
1u  with different system parameters  with different system parameters 

Fig. 2. System states with different system parameters 
 

  2u

  
1̂u  with different system parameters with different system parameters 

Fig. 3. Estimated states with different system parameters 
 

   2û  

 
1e  with different system parameters  with different system parameters 

Fig. 4. Errors with different system parameters 
 
shown in Fig. 1. The simulation results illustrate that, with the 
obtained estimator gain

  2e

 K , error states ,  converge to 
zero, and the stable point of the network is 

. Next, we illustrate the robust stability 
stem. Fig. 2, Fig. 3, and Fig. 4 show, 

onse of the system state, the estimated 
 under different system parameters. 

 in each figure. The solid curves 
’ responses under nominal parameters, 

pict the signals’ responses under the 
meters (  for example), 

while the dash curves show th onses under the 
maximal system parameters  for example). 
We learn from Fig, 2 and Fig. 3 that the stable points of the 
system states and the estimated states vary as the system 
parameters vary. However, it can be seen from Fig. 4 that no 
matter what the variations are, all the responses of the error 

1e 2e
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respectively, the resp
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signals converge to zero under the designed estimator, which 
implies that the error dynamic system is robustly stable in the 
presence of the uncertain parameters. 

5. CONCLUSIONS 

The robust state estimation problem was investigated in this 
paper for a class of neural networks with multiple time-
varying delays and parameter uncertainties. We removed the 
traditional monotonicity and smoothness assumptions on the 
activation function, and extended the previous work to multi-
delayed neural networks with norm-bounded parameter 
uncertainties. A linear matrix inequality (LMI) approach has 
been developed to solve the addressed problem, and a 
constructive design procedure of the robust estimator was 
presented in terms of the feasible solutions to a certain LMI. 
The effectiveness of the proposed results was finally 
illustrated by a numerical example. 
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