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Abstract: The H∞  filtering problem is studied for a class of network-based systems with random 
network-induced delays in discrete-time domain. The considered random delay between the sensor and the 
filter may be longer than one sampling period and is modeled as a Markov chain. The filtering error 
system is modeled as a Markovian switched time-delay system and by using a properly constructed 
Lyapunov function, sufficient conditions for the existence of the H∞  filters are presented in terms of 
linear matrix inequalities. Convex optimization problem is also formulated to design the desired H∞  
filter which guarantees the stochastic stability and an optimal H∞  disturbance attenuation level for the 
filtering error system. An illustrative example is finally given to prove the effectiveness of the proposed 
method. 
Keywords: H∞  filtering; Random delays; Markov chain; Network-based systems; Linear matrix 
inequality (LMI) 

 

1. INTRODUCTION 
 
In many modern complex and distributed control systems, 
remotely located sensors, controllers, filters and controlled 
plants are often connected through a sharing communication 
network. Systems with such architectures are called the 
network-based systems, which bring a lot of advantages 
such as low cost, simple maintenance, high reliability and so 
on (Zhang et.al., 2001). In spite of these advantages, the 
sharing networks make the analysis and synthesis of such 
network-based systems challenging. Recently, the 
network-based control system, which is known as the NCS, 
has attracted much research interests (Zhang et al., 2001; 
Zhang et al., 2005; Nilsson et al., 1998). On the other hand, 
signal estimation over networks is important in many 
applications such as remote sensing, space exploration, and 
sensor networks. Therefore, the network-based signal 
estimation is also a potential researching field which needs 
to be fully investigated (Hespanha et al., 2007; Yue et al., 
2006). 
 
It is well known that when signals are transmitted through 
the networks, they may encounter unavoidable time delays 
or even packet dropouts between the senders and the 
receivers. Moreover, the delays and packet dropouts in the 
networks are often random so that traditional signal 
estimation methods, such as the standard Kalman filter and 
so on, can not be applied directly. Thus the filtering problem 
for the network-based systems with delays and packet 
dropouts has been a challenging yet interesting research 
topic, and has attracted increasing attention. Some results on 
the network-based system with packet dropouts can be found 
in (Smith et al., 2003; Sinopoli et al., 2004; Wang et al., 
2003; Suh et al., 2007; Huang et al., 2007) and the 

references therein. As for the time-delay issue, much few 
results are available. In Wang et al., 2007, by modeling the 
network-induced delay as a Bernoulli process, the robust 
H∞  filtering problem was studied for a class of 
discrete-time network-based filtering system. However, the 
delay considered is assumed to be shorter than one sampling 
period. The filtering problem of network-based system with 
long time-varying delay was considered in Yue et al., 2006, 
however, the method presented is not suitable to investigate 
the random delays. To the best of the authors’ knowledge, 
the problem of network-based H∞  filtering with random 
long delays has not yet been investigated, which motivates 
the present research.  
 
In this paper, the H∞  filtering problem is studied for a 
class of network-based systems with random network- 
induced delays which may be longer than one sampling 
period of the filtering system. The delay is modelled as a 
Markov chain, and the overall filtering error system is 
finally described as a Markovian switched time-delay 
system which explicitly describes the dynamic of the 
filtering error system. By using the Lyapunov method and 
the LMI technique, sufficient conditions are derived to 
guarantee the stochastic stability and a prescribed H∞  
performance for the filtering error system. A convex 
optimization problem is also formulated to design the 
optimal H∞  filter. An illustrative example is finally 
provided to demonstrate the effectiveness of the proposed 
results. 
 

2. MODELLING OF THE FILTERING ERROR 
SYSTEM 
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Fig.1. structure of filtering system over networks 
 

The structure of the network-based filtering system under 
consideration is illustrated in Fig.1, where the plant is a 
discrete-time linear time-invariant system described as 
follows: 

( 1) ( ) ( )
( ) ( ) ( )

( ) ( )

x k Ax k Bw k
y k Cx k Dw k

z k Lx k

+ = +
= +

=
           (1)                                   

where ( ) nx k R∈  is the system state,  is the 
disturbance input belongs to ,  is the 
measured output, and 

( ) mw k R∈

2[0, )L ∞ ( ) py k R∈

( ) rz k R∈  is the signal to be 
estimated, A , , , , and  are matrices of 
appropriate dimensions. We consider the following full order 
linear dynamic filter: 

B C D L

( 1) ( ) (

( ) ( ) ( )
f f f f

f f f f

)x k A x k B y

z k C x k D y k

+ = +

= +

k
          (2) 

where ( ) n
fx k R∈  is the filter state,  is the filter 

input, and 

( ) py k R∈

( ) r
fz k R∈  is the estimated signal, fA , , 

, and  are filter parameters to be determined. 
fB

fC fD
 
We use ( )kρ  to denote the random delay in the network 
between the sensor and the filter, and it is assumed to be 
bounded, that is, 0 ( )k Nρ≤ ≤ , where  is a known 
integer. We model 

N
( )kρ  as a Markov chain that take values 

in ρΝ = {0,1, , }N  with known transition probability 
matrix [ ]ijρΛ = . The transition probability ijρ  is defined 
as follows: 

Ρr{ ( 1) ( ) }ij k j kρ ρ ρ= + = = i          (3)                                 

where 0ijρ ≥  and  for all 
0

1N
ijj

ρ
=

=∑ ,i j ρ∈Ν . Since 

the network-induced delay may be longer than one sampling 
period, various measured outputs may arrive at the filter side 
over one sampling period. We assume that the filter always 
uses the most recent measured output available at the filter 
side to update its input, and that if no measured output 
arrives at the filter over one sampling period, the filter input 
will hold at its previous value. By the above analyses and 
assumptions, it can be seen that the filter input  may 
take different values in {  at 
different sampling instants, which will result in 

( )y k

}( ), ( 1) , , ( )y k y k y k N− −
1N +  

different system dynamics of the filtering error system. For 
example, we have  when there is no 
network-induced delay, then by augmenting the state variable 
as 

( ) ( )y k y k=

( )x k = [ ( ) ( )]T T
f

Tx k x k  and the disturbance input as 

, defining 
, we obtain the following filtering error 

system, which is one subsystem of the overall filtering error 
system. 

( ) [ ( ) ( 1) ( )]T T Tw k w k w k w k N= − T−

⎤⎦

( ) ( ) ( )e k z k z k= −

  (4)       

0 0 0
( 1) ( ) ( )

0 0

( ) ( ) 0 0 ( )

f f f

f f f

A B
x k x k w k

B C A B D

e k L D C C x k D D w k

⎡ ⎤ ⎡ ⎤
+ = +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡= − − + −⎣ ⎦ ⎣

The above procedures can be applied to obtain the other  
subsystems of the filtering error system when 

N

( ) ( )y k y k i= − , 1,2, ,i N= . We call the subsystem (4) the 
-th subsystem, and the corresponding subsystem the  

subsystem when 
0 i th

( ) ( )y k y k i= − . 
 
It can be seen from the above analysis that over one sampling 
period many different situations may appear, and the filtering 
error system may reside in different subsystems during 
different sampling intervals. Moreover, during the sampling 
interval [ , ( 1) ),kT k T+  0,1,k = , the system dynamic of 
the filtering error system is actually determined by the states 
of the Markov chain ( )k iρ − , . Hence, a map 0,1, ,i = N

: ( ), ( 1), , ( ) ( )k k k N kχ ρ ρ ρ θ− − →  is introduced to 
describe the filtering error system in a clear way, where 

( )k Nρθ ∈  represents the number of the activated subsystem. 
If ( )k iρ − , 0,1, ,i N=  satisfy (5) shown as follows, 
then the filtering error system is in the ( )thkθ  subsystem.  

( ),0 ( )
0 ( ) , ( )
0 ( ) , ( )

m k m m k
k m m m k
k m N k m N

ρ θ
ρ θ
ρ θ

< − ≤ <
≤ − ≤ =
≤ − ≤ < ≤

          (5)         

The indications of (5) will be explained in detail as follows. 
When ( ) 0kρ = , it means that  arrives at the filter 
immediately at the sampling instant , in this case, no 
matter what values 

( )y k
k

( 1),k , ( )k Nρ ρ− −  take, by the 
assumption that the filter always uses the most recent 
measured output, it can be seen that the filter input is actually 
set to be ( ) ( )y k y k= . From the previous analysis it can be 
seen that the filtering error system is running at the -th 
mode. If 

0
( ) 0kρ > , it means that  can not arrive at the 

filter at the sampling instant , so the filter have to use the 
previous value of the measured output. Then if 

( )y k
k

( 1)k 1ρ − ≤ , 
it suggests that ( 1)y k −  is the newest measured output at 
the filter side so that  will be used and then the 
filtering error system is running in the first mode. Otherwise, 
if 

( 1y k − )

( ) 0kρ >  and ( 1)k 1ρ − > , both  and ( )y k ( 1)y k −  
will not be available at the filter at the sampling instant , 
then if 

k
( 2) 2kρ − ≤ , we can see that the filter will use 

( 2y k )−  and that the second subsystem is activating. The 
other situations can be carried out by following the above 
similar analysis procedures, and hence is omitted for 
conciseness. An example is given as follows to further help 
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understand the meanings expressed by (5). We take 3N = , 
( ) 1kρ = , ( 1) 2kρ − = , ( 2)k 1ρ − =  and ( 3)k 1ρ − =  as 

an example. By applying (5) we can obtain that ( ) 2kθ = , 
therefore, the second subsystem is activating at the time step 

. Next, at the sampling time k 1k + , if ( 1) 2kρ + = , then 
( 1)k 1θ + =  and the filtering error system is running at the 

first mode. 
 
By the above analyses, and taking all the possible situations 
into account, the overall filtering error system can be 
modeled as the following Markovian switched time-delay 
system with  modes: 1N +

( )0 ( )1 ( )

( )0 ( )1 ( )

( 1) ( ) ( ( )) ( )

( ) ( ) ( ( )) ( )
k k k

k k k

x k A x k A x k k B w

e k C x k C x k k D w k
θ θ θ

θ θ θ

θ

θ

+ = + − +

= + − +

k
  (6)                      

where ( )0

0
0k

f

A
A

Aθ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, ( )1

0 0
0k

f
A

B Cθ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

( )0k fC L Cθ ⎡ ⎤= −⎣ ⎦ , , ( )1 0k fC D Cθ ⎡ ⎤= −⎣ ⎦ ( )k Nρθ∀ ∈ , 

0

0 0
0 0f

B
B

B D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, , ,  1

0 0
0 0f

B
B

B D
⎡

= ⎢ ⎥
⎣ ⎦

⎤

⎡ ⎤= −⎣ ⎦

0 0
0 0N

f

B
B

B D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, ,  0 0 0fD D D⎡ ⎤= −⎣ ⎦

1 0 0fD D D⎡ ⎤= −⎣ ⎦ , ,  0 0N fD D D

and ( )kθ  can be obtained by (5). 
Remark1. A similar modelling method has been presented in 
Zhang et al., 2005 to study the control problem of 
networked-based system with random delays. However, the 
proposed model have not explicitly describes the dynamic of 
the closed-loop system. 
 
Before presenting the main objective of this paper, we first 
introduce the following useful definitions for the filtering 
error system (6). 

 
Definition1. The filtering error system (6) is said to be 
stochastically stable if with ( ) 0w k =  for all k , and 
for every initial state 

N≥ −
( )x i , ( )iρ , , the 

following inequality holds 
0, 1, ,i N= − −

2

0
( ) ( ), ( ), 0, 1, ,

k
E x k x i i i Nρ

∞

=

⎧ ⎫
∀ = − − < ∞⎨ ⎬

⎩ ⎭
∑   (7)                     

Definition2: For all non-zero  and a given 
constant 

2[0, )w L∈ ∞
0γ > , the filtering error system (6) is said to be 

stochastically stable with an H∞  disturbance attenuation 
level bound γ  if it is stochastically stable and under zero 
initial condition, that is ( ) ( ) 0x k w k= = , 1, 2,k = − −  

, and , the following inequality holds , N− (0) 0x =

2

0 0
( ) ( ) ( ) ( )T T

k k
E e k e k w k w kγ

∞ ∞

= =

⎧ ⎫
<⎨ ⎬

⎩ ⎭
∑ ∑        (8)                     

The objective of the paper is to design a filter of the form (2) 
such that the filtering error system (6) is stochastically stable 
with an H∞  disturbance attenuation level γ . 

 
3. H∞  PERFORMANCE ANALYSIS AND FILTER 

DESIGN 
 
The following theorem gives sufficient conditions and H∞  
performance results for system (6). 
 
Theorem 1. For a given constant 0γ > , if there exist 
matrices   , , and scalars 

, for all , , , 
0 1( , , , )NP a a a 0> ( ) 0r sQ a >

0ib > 0a 1a Na ρ∈Ν , {1,2, , }r N∈ , 
s ρ∈Ν , and i∈  , such that the following 
matrix inequalities hold 

{0,1, , 1}N −

2

0 1

0
*

( , , , ) 0
* * 0
* * *

T T

T T

N
E

a a a

I

γ
⎡ ⎤Ω Φ Θ
⎢ ⎥− Λ Ψ⎢ ⎥Ξ = <
⎢ Π
⎢ ⎥

−⎢ ⎥⎣ ⎦

⎥
    (9)        

Then, the filtering error system (6) is stochastically stable 
and has an H∞  performance level γ , where  

1 0 0 1

2 1 1 1

( ) ( , , , ) 0
* ( ) ( )
* *
* * *
* * *

NQ a P a a a
Q a Q a

−⎡
⎢ −⎢
⎢Ω=
⎢
⎢
⎢⎣

)

  

1 1 1

0 0
0 0

( ) ( ) 0
* (

N N N N

N N

Q a Q a
Q a

− − −

⎤
⎥
⎥
⎥
⎥

− ⎥
⎥− ⎦

 

(0) (1) ( )
TT T T N⎡ ⎤Φ = Φ Φ Φ⎣ ⎦ ,  

( )0 0 ( )1 1 ( )1 ( )1k k k NC C C Cθ θ θ θε ε ε k⎡ ⎤Θ = +⎣ ⎦ , 

[ ]1 0 1 1 1 1( ) ( ) ( ) ( ) ( )Nj E j F j F j F jε ε εΦ = + , 

0

1 2
1 0( ) ( , , , )a j N kE j P j a a Aθρ −= 1 ( )0 , 

0

1 2
1 0 1( ) ( , , , )a j N kF j P j a a Aθρ −= 0,1, ,( )1 , j N=

i

, 

if ( )kθ = , then 1iε =  and 0jε = , , /j N iρ∀ ∈

(0) (1) ( )
TT T TG G G N⎡ ⎤Λ =  , , ( )kDθ⎡ ⎤Ψ = ⎣ ⎦⎦⎣

0

1 2
0 1 ( )( ) ( , , , )a j N kG j P j a a Bθρ −= 0,1, ,, N=

1

, j

0 1 0{ (0, , ), (1, , )N Ndiag P a a P a a− −Π = − −  
     0 1, , ( , , )}NP N a a −−  

0

1

1

0

0 0
0 0

(1 )
N

i
i

b I
b I

E

b I
−

=

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎢ ⎥⎦

∑

 

⎣
 
Proof: Choose the following Lyapunov function for system 
(6) 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4188



( ) ( ) ( ( ), ( 1), ( )) ( )TV k x k P k k k N x kρ ρ ρ= − −

1

( ) ( ( )) ( )
N

T
i

i

x k i Q k i x k iρ
=

+ − − −∑  

For notational convenience, we use  to denote ia ( )k iρ −  
for all , and  denote 

, then 
0,1, ,i = N

ρ −{ }( ) ( ), , ( ), ( ), , ( )k x k x k N k k Nϕ ρ= −

{ }( ) ( )E V k kϕΔ  

{ }( 1) ( ) ( )E V k k V kϕ= + −

0 1 1{ ( 1) ( ( 1), , , , )) ( 1)}T
NE x k P k a a a x kρ −= + + +  

1 0 0 1( )( ( ) ( , , , )) ( )T
Nx k Q a P a a a x k+ −  

 2 1 1 1( 1)( ( ) ( )) ( 1)Tx k Q a Q a x k+ − − − +

1 1 1( 1)( ( ) ( )) (T
N N N Nx k N Q a Q a x k N− − −+ − + − − +1)  

( )( ( )) ( )T
N Nx k N Q a x k N+ − − −  

0 ( )0 ( )1 ( )
0

0 1 ( )0 ( )1 ( )

( ( ) ( ( )) ( ))

( , , , )( ( ) ( ( )) ( ))

N
T

a j k k k
j

N k k k

A x k A x k k B w k

P j a a A x k A x k k B w k

θ θ θ

θ θ θ

ρ θ

θ
=

−

= + − +

⋅ + −

∑
+

)

  

1

1
1

( )( ( ) ( )) (
N

T
s s s s

s

x k s Q a Q a x k s
−

+
=

+ − − −∑  

1 0 0 1( )( ( ) ( , , , )) ( )T
Nx k Q a P a a a x k+ −  

( )( ( )) ( )T
N Nx k N Q a x k N+ − − −   

Define 
( ) ( ) ( 1) ( )

TT T Tk x k x k x k Nη ⎡ ⎤= −⎣ ⎦− , 

( ) ( ) ( ) ( )
TT T Tk x k x k N w kξ ⎡ ⎤= −⎣ ⎦ , 

0

1 2
( )0 0 ( )1 1 ( )1 ( )1( ) a j k k k N kj A A A Aθ θ θ θρ ε ε ε⎡ ⎤Ζ = +⎣ ⎦ , 

if ( )k iθ = , then 1iε = , and 0jε =  for all . /j N iρ∈
then it follows that 
{ }( ) ( )E V k kϕΔ  

0

0

1 2
0 ( )

1 2
0 1 ( )

( )
( ) ( ) ( )

( , , , ) ( ) ( )

TN
T T

T
j a j k

N a j k

Z j
k k k

B

P j a a Z j B k

θ

θ

η η ξ
ρ

ρ ξ

=

−

⎡ ⎤
= Ω + ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⋅ ⎣ ⎦

∑
 

When  for all , we have  ( ) 0w k = k ≥ −N

{ }( ) ( )E V k kϕΔ  

    0 1
0

( ) ( ) ( , , ) ( ) ( )
N

T T
N

j
k Z j P j a a Z jη η−

=

⎛ ⎞
= Ω +⎜ ⎟

⎝ ⎠
∑ k

η

Denote  0 1 0 1
0

( , , ) ( ) ( , , ) ( )
N

T
N N

j
L a a a Z j P j a a Z j−

=

= Ω +∑
and by Schur complement, (9) implies that 

, which further indicates that 0 1( , , ) 0NL a a a <

{ } min 0 1( ) ( ( , , )) ( ) ( )T
NE V k L a a a k kλ ηΔ ≤ − −          

2( ) ( ) ( )T k k kβη η β η≤ − = − 2( )x kβ≤ −  
where 

{ }min 0 1min ( ( , , , )) , 0N iL a a a a N i Nρ ρβ λ= − ∀ ∈ ∀ ∈ >  

By the above inequality, it can seen that for any integer 
 1T ≥

{ ( 1)} { (0)}E V T E V+ − 2

0

( )
T

k

E x kβ
=

⎧ ⎫
≤ − ⎨ ⎬

⎩ ⎭
∑  

Then it follows from the above inequality that 
2

0

( )
T

k

E x k
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ( )1 { (0)} { ( 1)}E V E V T

β
≤ − +

0

 

Since ( 1)V T + ≥  and  0 1{ (0)} (0) ( , , , )T
NE V a a aη= ϒ

(0)η⋅ , we obtain 

2

0

( )
T

k

E x k
=

⎧ ⎫
⎨ ⎬
⎩ ⎭
∑  

1 (0) ( (0), ( 1), , ( )) (0)T Nη ρ ρ ρ η
β

≤ ϒ − − < ∞

N

 

where 
( (0), ( 1), , ( )) diag{ ( (0), ( 1), , ( )),N Pρ ρ ρ ρ ρ ρϒ − − = − −

1 1 2 2( ), ( ), , ( ) }N NQ a Q a Q a . Setting T  to infinite we 
conclude by Definition1 that system (6) is stochastically 
stable.  
On the other hand, consider the following performance 
function: 

{ }2

0
{ ( ) ( )} ( ) ( ))

M
T T

k
E e k e k w k w kγ

=

−∑  

Since ( ) 0w k = , 1, 2, ,k N= − − − , we obtain that 

{ }2

0
{ ( ) ( )} ( ) ( ))

M
T T

k
E e k e k w k w kγ

=

−∑  

{ }2

0
{ ( ) ( )} ( ) ( ) { ( )}

M
T T

k
E e k e k w k w k E V kγ

=

= − +∑ Δ

}

 

0
{ ( )

M

k
E V k

=

− Δ∑  

[ ]
0

0
( )

0 0

TM
T

T
k

kξ
=

⎧ Ω⎡ ⎤Θ ⎡ ⎤⎪≤ Θ Ψ +⎨⎢ ⎥ ⎢ ⎥Ψ⎪ ⎣ ⎦⎣ ⎦⎩
∑   

}
0

0

0 11 2
0 ( )

1 2
( )

0

( )
( , , , )

( ) ( ) { ( )}

TN

NT
j a j k

M

a j k
k

Z j
P j a a

B

Z j B k E V k

θ

θ

ρ

ρ ξ

−
=

=

⎡ ⎤
+ ⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤⋅ −⎣ ⎦

∑

∑ Δ

 

2 2
0 1

0 0

( ) ( ) ( 1) ( 1)
M M

T T

k k

b w k w k b w k w kγ γ
= =

⎧
− + −⎨
⎩
∑ ∑ −   

1
2

0 0

(1 ) ( ) ( )
M N

T
i

k i

b w k N w k Nγ
−

= =

⎫
+ − − − ⎬

⎭
∑ ∑  

[ ] 2
0

0
( )

0

TM
T

T
k

k
E

ξ
γ=

⎧ Ω⎡ ⎤Θ ⎡ ⎤⎪= Θ Ψ +⎨⎢ ⎥ ⎢ ⎥−Ψ⎪ ⎣ ⎦⎣ ⎦⎩
∑  

0

0 11 2
0 ( )

( )
( , , , )

TN

NT
j a j k

Z j
P j a a

B θρ −
=

⎡ ⎤
+ ⎢ ⎥

⎢ ⎥⎣ ⎦
∑   

}0

1 2
( )

0
( ) ( ) { ( )}

M

a j k
k

Z j B k E V kθρ ξ
=

⎡ ⎤⋅ −⎣ ⎦ ∑ Δ      (10) 

                                                      
By Schur complement, (9) implies that 

[ ]0 1 2

0
( , , , )

0

T

N TW a a a
Eγ

Ω⎡ ⎤Θ ⎡ ⎤
= Θ Ψ +⎢ ⎥ ⎢ ⎥−Ψ ⎣ ⎦⎣ ⎦
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0

0

0 1 ( )
0 ( )

( )
( , , , ) ( ) 0

TN

N a j kT
j a j k

Z j
P j a a Z j B

B θ
θ

ρ
ρ −

=

⎡ ⎤
⎡ ⎤+ <⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

∑   

Since , then under 

zero initial condition, we have that . These 

together with (10) gives  

0
{ ( )} { ( 1)} { (0)}

M

k
E V k E V M E V

=

Δ = + −∑

0
{ ( )} 0

M

k
E V k

=

Δ ≥∑

{
0

{ ( ) ( )}
M

T

k
E e k e k

=
∑

}2 ( ) ( )Tw k w kγ−
0

( ) ( )
M

T

k
k W kξ ξ

=

≤ ∑ . Thus (9) guarantees that 

. Setting { }2

0
{ ( ) ( )} ( ) ( )) 0

M
T T

k
E e k e k w k w kγ

=

−∑ < M  to 

infinite we conclude by Definition 2 that system (6) is 
stochastically stable with an H∞  disturbance attenuation 
level bound γ . This proof is completed. 
 
Remark 2. In theorem 1, sufficient conditions for the 
stochastic stability and H∞  performance results of the 
filtering error system (6) are presented in terms of nonlinear 
matrix inequalities, and in order to obtain the desired filter 
we have to transform them into LMIs. 

 
Theorem 2: If there exists matrices , , 

, , , ,  and scalars ,
0 1

0
Na a aP > ( ) 0r sQ a >

R U V fC fD 0ic > 0δ >  for all 

0 1, , , ,Na a a ρ∈Ν , , {1, }r N∈ s ρ∈Ν , and 
, such that the following LMIs hold {0,1, , 1}i N∈ −

0
*

0
* * 0
* * *

T T

T TE

I

⎡ ⎤Ω Φ Θ
⎢ ⎥− Λ Ψ⎢ <
⎢ Π
⎢ ⎥

−⎢ ⎥⎣ ⎦

⎥
⎥

⎥

         (11)                     

                           0 1 0
*

Na a aP R

R
⎡ ⎤

>⎢
⎣ ⎦

            (12)    

Then, system (6) is stochastically stable and has an H∞  

performance γ δ= . Moreover, the parameters of the filter 
are given by 1

fA R U−= , , , . The 

detailed expressions of 

1
fB R V−= fC fD

Ω , Φ , Θ , E , Λ , Ψ , and Π  
are given in the Appendix. 
Proof:  By introducing new variables , , 

0 1 Na a aP 0sraQ

1sraQ , , for allic 0 1, , , ,Na a a ρ∈Ν , s Nρ∈ , r∈  

,  , and , , , then  

letting ,

{1,2, , }N {0,1, , 1}i N∈ −

⎣ ⎦
i ic b

R U V

0 1
0 1( , , , ) Na a a

N

P R
P a a a

R R
⎡ ⎤

= ⎢ ⎥ δ= , ( )r sQ a =   

, and , in (9), we obtain 

(11), which is a set of LMIs. The proof is completed. 

0

1 1

s s

s s

ra ra

ra ra

Q Q

Q Q
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

1
fRA U= fRB V=

 
Remark 3. Note that (11) and (12) are LMIs over the scalar 
δ . This implies that δ  can be included as an optimization 

variable to obtain the reduction of the disturbance attenuation 
level. So the minimum of the H∞  disturbance attenuation 
level for system (1) can be obtained by minimizing δ  
subject to (11) and (12). 
 

4. ILLUSTRATIVE EXAMPLES 
 
Considering the linear time-invariant system (1) with 

0 0.3
0.2 0.4

A
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
,

0
1

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, , ,
1
0

T

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

1D =
1
2

T

L
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (13) 

Assume that 2N = , choose the probability transfer 
matrix as follow 

 
0.4 0.3 0.3
0.5 0.3 0.2
0.6 0.2 0.2

⎡ ⎤
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥⎣ ⎦

            (14) 

By applying Theorem 2 and the corresponding convex 
optimization problem we obtain the minimum H∞  
disturbance attenuation level bound , associated 
with this minimum bound are the following filter matrices: 

* 3.3224γ =

-0.0894 0.0587
-0.2843 0.1793fA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  
0.0330
0.0600fB
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

[ ]0.0652 -0.0918fC = , [ ]0.0042fD =  
 

5. CONCLUSIONS 
 
The H∞  filtering problem was studied in this paper for a 
class of discrete-time network-based system with long 
random delays. A new modeling method was presented to 
describe the overall filtering error system as a Markovian 
switched system. Sufficient conditions were derived to 
guarantee the stochastic stability and an H∞  performance 
level for the filtering error system, and design procedures 
were also presented to design the optimal H∞  filter. The 
effectiveness of the proposed method was finally illustrated 
by a numerical example. 
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⎢
⎢
⎢
⎢
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*
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