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Abstract: Power systems are highly nonlinear systems that exhibit undesirable oscillations following disturbances. 

Power system stabilizers (PSS) are usually incorporated to provide auxiliary excitation signals to damp these 

oscillations. Our objective is to improve the PSS performance via the use of fuzzy logic and LMI techniques. A 

power system is viewed as a polytopic model that can be adequately represented by a Takagi-Sugeno fuzzy system. A 

power system stabilizer based on the parallel distributed control principle is suggested. Typically, speed 

measurements are used as feedback signals. Consequently, a fuzzy observer is included to estimate the unmeasured 

states. LMI conditions that guarantee the stability and robust pole clustering  of the closed loop system are derived. 

Simulation results of both single-machine and multi-machine models confirm the effectiveness of the proposed 

algorithm. 
�
Keywords: Intelligent control of power systems, modelling, operation and control of 

power systems, control system design 
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�
1. Introduction 

�
The main problem that encounters a PSS design is 

that power systems frequently experience changes in 

operating conditions due to continuous variations in 

generation and load patterns, as well as changes in 

transmission networks DeMello and Concordia 

(1969). Another problem is the non-linear nature of 

power systems (Saadat, 1999). These two problems 

can be well-treated through T-S fuzzy models 

because such models can approximate nonlinear time 

varying systems (Tanaka & Wang 2001, Kang, Lee 

& Pusan, 1998). Dynamic T-S fuzzy models are 

obtained by linearization of the nonlinear plant 

around different operating points. Once T-S fuzzy 

models are created, linear control techniques are used 

to design a local controller for each linear model 

under global stability and performance conditions. 

LMI techniques are extensively used in multi-

objective control design methods because many 

objectives can be expressed as convex constraints in 

LMI framework (Boyd, et al. 1994). Pole clustering, 

is used here to guarantee that all the system poles are 

placed in a pre-selected LMI region in the open left-

half of the s-plane such that adequate damping and 

better time response are achieved.  

Many researchers have addressed robust PSS 

designs using LMI techniques. Werner, Korba & 

Yang (2003) present the model uncertainty as a linear 

fractional transformation, and designed an output 

feedback PSS that guarantees stability for all 

admissible plants models, while minimizing a 

quadratic performance index for the nominal plant. In 

Rao & Sen (2000), robust pole clustering using a 

state feedback PSS design is studied. In Tsai et al. 

(2004), robust stability and selection of weighting 

functions that shape the open loop system are 

considered. Ramos et al. (2003) use a combination of 

an LMI technique and direct feedback linearization  

to achieve damping of a certain nominal plant model. 

In Befekadu & Erlich (2006), a robust decentralized 

PSS design problem is expressed as minimizing a 

linear objective function under LMI and bilinear 

matrix inequality constraints. The authors also 

reported the problem of designing a reduced-order 

decentralized H� dynamic output feedback PSS 

based on parameter continuation method in LMI 

framework. A dynamic output feedback design of a 

PSS is proposed in Hisham (2006) for a single-

machine infinite-bus system. 

In this paper, the problem of a multivariable 

fuzzy PSS based on output feedback is addressed. 
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The power system model is firstly formulated as a T-

S fuzzy model (IF-THEN rules). The changes that 

occur in a power system are well captured by active, 

reactive powers (P, Q) and tie line reactance (Xe). 

Therefore, these three variables appear in the premise 

parts of the IF-THEN rules. Parallel distributed 

control (PDC) offers a procedure to design a fuzzy 

stabilizer from a given T-S fuzzy model. The T-S 

model and the PDC are presented in Section 2. In 

Section 3, pole clustering is introduced to ensure that 

the controller can stabilize the system at different 

operating points. To cope with the practical case of 

speed feedback, a fuzzy observer is introduced in 

Section 4. Design validation based on nonlinear 

simulations of typical power systems are depicted in 

Section 5. Section 6 provides the conclusions. 

 

2- T-S Model of a power system 

 

2-1 A brief review of T-S Models and PDC 

 

A dynamic T-S fuzzy model is described by IF-

THEN rules. The consequents of the rules represent 

local linear input-output relations of a nonlinear 

system. The main feature of T-S fuzzy model is to 

express the local dynamics of each fuzzy rule by a 

linear sub-model. The overall model of the system is 

obtained by fuzzy blending of these linear sub-

models. The ith rule of the T-S fuzzy model is written 

as follows. 

Model Rule i:  

IF  i
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Then given a pair )(z(t),u(t) , the resulting fuzzy 

system is inferred as the weighted average of the 

local models and has a form of the following. 
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where,  for , ..., r, i 21 , ¦
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/D . Note that 

for , ..., r, i 21 ,   , > @TrDDD �1 . 

The PDC offers a procedure to design a fuzzy 

controller from a given T-S fuzzy model (Tanaka & 

Wang, 2001). To realize a PDC, a controlled plant is 

first represented as T-S fuzzy model. In the PDC 

design, each control rule is designed from the 

corresponding rule of a T-S fuzzy model. The 

designed fuzzy controller shares the same fuzzy sets 

with the fuzzy model in the premise parts. For the 

fuzzy model described in (1), the following fuzzy 

controller is constructed via PDC. 

Model Rule i:  

IF  
i
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i (t) is M zND AND ... A(t) is Mz
11

 

THEN x(t)Fu(t)
i

 ,  , ..., r, i 21  

The fuzzy control rules have a linear controller in the 

consequent parts and the overall fuzzy controller is 

represented by 
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 D         (2) 

Although the fuzzy controller (2) is constructed using 

local models, the feedback gains must be determined 

using global design conditions to guarantee global 

stability and control objectives. Theorems that 

discuss sufficient conditions of global quadratic 

stability for T-S fuzzy models are given in Kang, et 

al. (1998). Let , ... , r, B,  iB
i

21  (which is the 

case in a PSS design). The fuzzy control system (1) 

is globally quadratically stable via the state feedback 

PDC (2) if there exists a common positive definite 

matrix 
P such that 

� � � � , ... , r, ,    iBFAPPBFA ii
T

ii 210  ���� 

 (3) 

 

2-2 A T-S model for a PSS design 

 

In this paper, the system under study comprises a 

single machine connected to an infinite bus through a 

tie line. The design model is represented by the 

fourth order linearized state-space model proposed 

by DeMello & Concordia (1969). The k-

parameters � �
621

 , ... , , kkk  of the model depends on 

the loading (P, Q) and the tie line reactance (Xe). 

These scheduling variables (P, Q, Xe) are assumed to 

vary independently over the following ranges: 

»¼
º

«¬
ª�
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PPP , »¼
º
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QQQ  and »¼
º

«¬
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eee
XXX . 

These ranges are selected to encompass almost all 

possible operating conditions and very weak to very 

strong transmission networks. Therefore, the state 

space realization takes the following general form: 
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where, 14u� Rx  is the state vector, u is PSS output 

and d is the disturbance that is represented here by 

variation in reference voltage signal � �
ref

V' . The 

measured output � �y  is the speed deviation � �Z' .  

> @TEE TKBB /00021    , > @0010 yC  

and 0 
y

D . EK and ET  are the exciter’s gain and 

time constant, respectively. 

The proposed T-S model for the PSS design is 

given by the following eight rules. 

Model Rule 1: 
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Model Rule 8: 
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where, 
821

, ... , A, AA  are calculated 
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The resulting fuzzy system is inferred as the 

weighted average of the local models and has the 

form 
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In this paper, �Z shaped membership functions are 

adopted and expressed in terms of P, Q and Xe as 

follows.  
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In a similar manner, membership functions for Q and 

Xe are defined. 

 

 

3- Performance requirements of the PSS design 
�

In power systems, a damping factor of at least 10% 

and a real part not greater than -0.5 guarantees that 

the low frequency oscillations, when excited, will die 

out in a reasonably short time (Rao & Sen , 2000). 

These transient response specifications can be 

satisfied by clustering the closed loop poles in the 

admissible region shown in Fig. 1. This ensures a 

minimum decay rate 
RD and a minimum 

damping )2/cos(
min

T]  . This in turn bounds the 

maximum overshoot and the settling time of the 

closed loop system. To avoid very large controller 

gains, the real part of the poles should be larger than 

LD� . Region 1 guarantees an upper a bound on the 

settling time. Region 2 guarantees sufficient damping 

of the system. Region 3 prevents controller gains 

from being excessively large. The desired multi-

variable PSS design must guarantee that all system 

roots lie in the pre-described region shown in Fig. 1. 

Each of the above regions is an LMI region and their 

intersection is also an LMI region (Chilali & 

Gahinet, 1999 and Chilali & Gahinet, 1996). 
�

�
�
�
�
�
�
�
�

 

 

 

Fig. 1. A typical LMI Region. 

 

 

An LMI region is any subset D of the complex plane 

that can be well defined as given in Chilali & 

Gahinet (1999).. 
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where- and � are real matrices and - is a 

symmetric matrix. LMI constraints for different 

design objectives are listed below. For the analysis 

purpose, these inequalities will be written for a 

closed loop system that has the following state space 

realization:  

dBxAx clcl � 
x

            (7) 

 

The roots of system (7) lie inside an LMI region (6), 

if and only if there is a symmetric positive definite 

matrix
P such that: 

� � � � 0������  T
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T

cl AP�AP�P-  

 (8) 

where, � denotes the  Kronecker product. 
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4- A PSS design based on a fuzzy observer 

 

Typically, a PSS has the speed as a feedback signal. 

In such case, attention is oriented towards output 

feedback design methods such as an observer-based 

design. This section presents an algorithm for state 

estimation of T-S fuzzy models to implement a pole-

clustering observer-based stabilizer. the concept of 

PDC is utilized to construct a fuzzy observer as 

follows: 

Observer Rule i :   

IF  i
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If the fuzzy observer exists, the fuzzy state feedback 

regulator  
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Combining the fuzzy observer (9) and fuzzy 

regulator (10) and denoting )()()(
^

txtxte � , the 

augmented system is represented as follows 
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The closed loop system can be written as follows 
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For the case of power systems, C, B,  CB
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, ... ,r, i,j 21  then (13) can be rewritten as follows 
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The set of LMI conditions for pole-clustering based-

observer design that is obtained by a quadratic 

Lyapunov function. The roots of system (14) lie 

inside an LMI region (6), if and only if the following 

LMIs hold 

0  ,
21
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The feedback gains and the observer gains can then 

be obtained as 1

1

� PMF
ii

 and
ii

NPK 1

2

� , 

8,,1� i , where iM and iN are decision variables 

obtained from (16)-(17). 

The design steps can be summarized as follows 

i. Determine the ranges »¼
º

«¬
ª�

��

PPP , 

»¼
º

«¬
ª�

��

QQQ and »¼
º

«¬
ª�

��

eee
XXX  that 

encompass all practically operating conditions. 

ii.  Define the eight subsystems by calculating 

821
, ... , A, AA , B and C . 

iii. Define the membership functions according to 

their shapes and the ranges of Q ,P and
e

X . 

iv. Generate the T-S fuzzy system defined in (5). 

v. Define
LR

DD  ,  andT , then compute the LMI 

region matrices -  and% as shown in Chilali 

and Gahinet (1999). 

vi. To design a robust pole-placement observer-

based stabilizer, solve the optimization 

problem (15)-(17). 

The above steps are carried out off-line. The 

resulting gains of the controller and observer are used 

to implement the proposed fuzzy PSS on-line using 

(9)-(10). 

 

5- Design validation 

 

The proposed PSS algorithm is validated in this 

section based on two different nonlinear models. The 

first model is a single-machine infinite-bus model 

which is used to illustrate the design steps. The 

second model is a four-machine two-area system 

which is used as a bench mark problem in the 

literature. In applying our algorithm to the multi-

machine system, each machine is considered as a 

single machine connected to an infinite bus. The 

effect of the reset of the system is reflected on the 

calculation of the line reactance and the power 

delivered to the system. Consequently, a PSS is 

designed independently for each machine. This 

procedure is a considerable approximation that is 

made possible because fuzzy modelling allows 

imprecision.  

 

5-1 The single-machine infinite bus model 

 

The study in this section will be carried on a single 

machine infinite-bus system whose data are given in 

Soliman et al. (2000). P, Q (at the generator 

terminals) and
e

X  are assumed to vary independently 

over the following ranges provided that all points 

included have a steady state load flow 

solution: > @0.1  4.0�P , > @5.0  2.0��Q  and > @.40  2.0�
e

X . 

These ranges encompass the practical operating 

conditions and very weak to very strong transmission 
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networks. Fig. 2 shows the system open loop poles 

for 1000 plants as P, Q and 
e

X vary over the 

specified ranges. It is noted that, most of the plants in 

this poly-tope do not have adequate damping and 

some plants are unstable. It is required to design a 

stabilizer that shifts these poles to the open left half 

plane and guarantee a certain response speed. The 

design is carried out for an LMI region bounded by 

25 ,5.0 � � 
RL

DD  and $168 T . 

The optimization problem defined by (15)-(17) is 

solved to calculate the observer gains and feedback 

gains. Fig. 3 shows the efficacy of the observer-

based design in clustering the system roots in the 

pre-defined LMI region. The time response of the 

rotor angle following a 10% step change in the 

reference voltage is shown in Fig. 4. The results are 

based on a fourth-order nonlinear model simulation 

of the power system. 

 

5-2 A four-machine two-area system 

 

Fig. 5 shows the multi-machine system which is used 

in the simulation study. The test system consists of 

two fully symmetrical areas linked together by two 

230 KV lines of 220 Km length. It is specifically 

designed in Kundur (1994) to study low frequency 

electromechanical oscillations in large 

interconnected power systems. Each area is equipped 

with two identical round rotor generators rated 20 

KV/900 MVA. The synchronous machines have 

identical parameters except for the inertias which are 

H = 6.5s in area 1 and H = 6.175s in area 2. Thermal 

plants having identical speed regulators are further 

assumed at all locations, in addition to fast static 

exciter with a gain of 200. The load is represented as 

constant impedance and spilt between the areas. Each 

generator is equipped with a PSS. 

$�three phase to ground fault is applied for 100 

msecs. at the terminals of G4 in Fig. 5. A PSS 

designed as proposed here is compared to the 

conventional stabilizer (Kundur, 1994) at two 

possible tie-line power values of 400 MW and 600 

MW. The results are depicted in Figs. 6-7. It is clear 

that the conventional stabilizer fails to maintain 

stability at 600 MW tie-line power. 
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Fig. 2. The pole distribution of the open loop for 

different operating points 
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Fig. 3. Poles of the closed loop systems for different 

operating points. 
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Fig. 4. Rotor angle response due to 10% step change 

in Vref at P=1.25,Q=-0.5 and Xe=0.2 with full 

recovery after 100 ms 

 
 Fig. 5. A schematic diagram of the 4-machine 2-

area system 
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Fig. 6. Relative speed between machines 1 and 3 

when fault occurs at 400 MW tie-line power 
(The solid line represents the proposed controller and the dashed 

line represents the conventional one) 
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Fig. 7. Relative speed between machines 1 and 3 

when fault occurs at 600 MW tie-line power 
( The solid line represents the proposed controller and the dashed 

line represents the conventional one) 

 

6. Conclusions 

 
A design of a power system stabilizer that can cope 

with a wide range of loading conditions and external 

disturbances has been the objective of the power 

industry. This paper has provided a step towards this 

goal. One of the contributions here  has been to show 

that a nonlinear model of a power system can be 

systematically represented in the form of a T-S fuzzy 

system. This has allowed us to use an approximate 

design model of the power system to develop a 

stabilizer that cope with different operating 

conditions and disturbances. A fuzzy observer has 

been designed to estimate the system states assuming 

speed measurements only. LMI conditions have been 

derived to facilitate the design of the observer and 

the controller gains such that the closed loop poles 

lie in a pre-defined design region. The combined 

design of the fuzzy stabilizer and the observer in the 

PSS framework has been another contribution in the 

present work. Simulation results of different power 

systems have confirmed the capability of the 

proposed algorithm. 
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