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Abstract: In this paper, a Gaussian filter for nonlinear Bayesian estimation is introduced that is
based on a deterministic sample selection scheme. For an effective sample selection, a parametric
density function representation of the sample points is employed, which allows approximating the
cumulative distribution function of the prior Gaussian density. The computationally demanding
parts of the optimization problem formulated for approximation are carried out off-line for
obtaining an efficient filter, whose estimation quality can be altered by adjusting the number
of used sample points. The improved performance of the proposed Gaussian filter compared to
the well-known unscented Kalman filter is demonstrated by means of two examples.

1. INTRODUCTION

The Bayesian estimation framework generally allows re-
cursively processing the state of a nonlinear dynamic sys-
tem. However, the resulting probability density functions
representing the system state cannot be calculated analyt-
ically for arbitrary systems and noise types. Furthermore,
the type of density changes and the complexity increases
over time. A well-known exception exists for linear sys-
tems corrupted by Gaussian noise. Here, the Kalman filter
provides exact solutions (Kalman (1960)).

A large variety of estimators has been developed for calcu-
lating approximate solutions in case of nonlinear systems.
Particle filters for example employ Monte Carlo methods
in order to obtain a sample or particle representation of
the true density (Arulampalam et al. (2002)). Besides that,
estimators employing analytic density types like Gaussian
mixtures (Huber et al. (2007)) or Edgeworth series (Challa
et al. (2000)) often provide accurate results. However, their
computational complexity increases exponentially with the
dimension of the system state.

More practical algorithms like the extended Kalman fil-
ter (EKF) or the unscented Kalman filter (UKF) focus on
approximating mean and covariance of density functions.
While the EKF uses linearization to apply the Kalman
filter equations to nonlinear systems (Simon (2006)), the
UKF offers increased higher-order accuracy by using a
deterministic sampling approach (Julier and Uhlmann
(2004), Wan and van der Merwe (2000)), which is com-
parable to stochastic linearization (Lefebvre et al. (2002)).
Extensions of the UKF modify the selection of the sample
set to further improve the estimation accuracy (see e.g. Wu
et al. (2004), Tenne and Singh (2003)). However, adapting
parameters gets more involved or scaling is not guaranteed.

While the previously mentioned Kalman filter derivatives
only take the lower-order statistics of the state into ac-

count, the sample selection scheme of the Gaussian filter
proposed in this paper also considers the shape in terms
of the distribution function of the prior Gaussian density.
In recursive state estimation this incorporation of shape
information leads automatically to a more accurate con-
sideration of higher-order moments, especially in cases of
near Gaussian posterior densities. Together with a freely
adjustable number of sample points an improved estima-
tion accuracy is the consequence. To provide shape approx-
imation under the constraints of exactly capturing mean
and covariance, an optimization problem is formulated,
where the sample points are interpreted as analytic density
function. This is different from the unscented Kalman
filter or particle filters, where the sample points are not
chosen in order to explicitly incorporate shape information
and higher-order moments, respectively. The solution of
the optimization problem can be calculated off-line and is
extended to multivariate densities without suffering from
the exponential increase of complexity.

In the next section, the problem formulation is given.
The remainder of the paper is structured as follows:
Sec. 4 addresses the optimization problem and its solution,
while in Sec. 5 its multivariate extension is treated. The
Gaussian filter is derived in Sec. 6 and its performance is
demonstrated by means of simulations in Sec. 7. The paper
closes with conclusions and an outlook to future work.

2. PROBLEM FORMULATION

In this paper, nonlinear discrete-time dynamic systems
given in explicit form

xk+1 = ak(xk, uk,wk)

y
k

= hk(xk,vk)
(1)

are considered, where ak( · ) and hk( · ) are vector-valued
functions that are assumed to be known. Furthermore, xk

is the N -dimensional system state at time step k, uk is the
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known system input, y
k

is the measurement vector, and
wk, vk are white noise vectors acting upon the system.

Predicting the system state xk and the measurement y
k

by means of the nonlinear functions ak( · ) and hk( · ) can
generally be expressed as the nonlinear transformation

y = g(x) , (2)

where x and y are random vectors and g( · ) is an arbitrary
nonlinear function.

With (2), the random vector x is nonlinearly mapped to
the random vector y. Generally, calculating the density
function or the statistics of y cannot be carried out
in closed form. To avoid numerical solutions and thus
for performing an efficient estimation of y, the exact
density has to be approximated in an adequate manner.
Furthermore, the number of parameters characterizing
the approximation should be at a constant level and the
user should be able to adjust the quality as well as the
computational demand of the approximation.

Instead of directly processing the true density function
f̃x(x) of x or its moments, which is computationally de-
manding, imprecise or even impossible in cases where the
nonlinear transformation is not given in an analytic form,
the goal is now to efficiently determine an accurate sam-
ple representation of f̃x(x). Sample points can be easily
propagated through the nonlinear transformation (2) and
in turn allow efficiently approximating the true density
function of y by a Gaussian density fy(y) = N (y− ŷ,Cy).
Therefore, only the two moments mean ŷ and covariance
matrix Cy need to be calculated, which can be done with
polynomial complexity with respect to the dimension of
y. Furthermore, given only these two moments, a Gaus-
sian density is the Kullback-Leibler divergence minimizing
or entropy maximizing density for approximating f̃y(y)
(Catlin (1989)).

3. DETERMINISTIC SAMPLING

The achievable accuracy of the Gaussian approximation
for y strongly depends on the strategy of determining
the sample representation of x. The unscented Kalman
filter (UKF, see Julier and Uhlmann (2004)) for instance
uses a minimal fixed-size set consisting of 2N + 1 sample
points with corresponding weights that exactly captures
the mean x̂ and the covariance matrix Cx of x. For any
nonlinear transformation, the propagated sample points
capture the posterior mean and covariance matrix accu-
rately up to the second order of the corresponding Taylor
series expansion.

For further improving the accuracy, the set of sample
points used for the Gaussian filter proposed in this paper is
not restricted to a fixed size. Increasing the number of sam-
ple points generates several advantages. Since more sample
points are propagated, more information of the nonlinear
transformation is captured. This leads to improved and
more robust estimates. Furthermore, the Gaussian filter is
well applicable to a larger number of nonlinear transfor-
mations.

To gain these advantages, as much information about
x as possible has to be incorporated when determining

the sample points. While the UKF only considers mean
and covariance, the sample selection scheme derived in
the following section is based on directly approximating
the distribution function of the prior Gaussian. This is
motivated by the fact that an accurate approximation
of the distribution function automatically approximates
higher-order moments. These moments in turn have an
impact on higher-order terms of the Taylor series of the
nonlinear function, which leads to improved estimation
results.

For an accurate approximation, the key idea is now to
reformulate the approximation problem corresponding to
determining the sample points as an optimization problem
by minimizing a certain distance measure G( · ) between
the Gaussian and a convenient analytic sample representa-
tion under the constraints that mean x̂ and covariance Cx

of x are captured exactly. This is different from the UKF
or particle filters, where no distance measure is employed.

4. ONE-DIMENSIONAL APPROXIMATION

At first, only one-dimensional transformations y = g(x)
are considered, where the random variable x is character-
ized by mean x̂ and variance σ2

x. Without loss of generality,
it can be assumed that x̂ = 0 and σ2

x = 1, which leads to a

standard Gaussian density f̃x(x) = N (x, 1). This restric-
tion is justified, since every Gaussian can be transformed
into a standard Gaussian density.

4.1 Dirac Mixture

To provide an approximation in both density and moments
of x, an analytic and parametric form for representing
the samples in terms of a so-called Dirac mixture density
function

fx(x, η) =

L
∑

i=1

ωi · δ(x − µi) , (3)

is employed, which is a weighted sum of L Dirac delta
functions δ(x − µi) located at sample positions µi. The
parameter vector η comprises the weighting coefficients ωi

and the sample positions µi.

To reduce the number of parameters of fx(x, η) to be
adjusted for approximation, in this paper equal weighting
coefficients ωi are assumed, i.e., ωi = 1/L. Assuming that
the positions µi of the Dirac delta functions are sorted,
i.e.,

µ1 < µ2 < . . . < µL ,

capturing the mean x̂ can easily be guaranteed by placing
the Dirac delta functions symmetrically around x̂, i.e.,

µL+1−i = 2x̂ − µi = −µi

for i = 1, 2, . . . , L̄ with L̄ := ⌈L−1
2 ⌉. This further reduces

the length of η. If L is odd, the center Dirac delta
function is fixed at the mean x̂, i.e., we set µL̄+1 = x̂ = 0.
Finally, the parameter vector η is given by

η = [µ1, µ2, . . . , µL̄]T .

4.2 Distance Measure

Typical measures quantifying the distance between den-
sities, like the Kullback-Leibler divergence (Kullback and
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Leibler (1951)) or the squared integral measure (Izenman
(1991)), cannot be applied directly due to the used Dirac
delta functions in (3). Thus, the corresponding cumulative
distribution functions are employed instead. The distribu-
tion function of the true density f̃x(x) can be written as

F̃x(x) =

∫ x

−∞

f̃x(t) dt =
1

2

(

1 + erf

(

x − x̂√
2σx

))

,

where erf( · ) is the error function, while the distribution
function corresponding to the Dirac mixture fx(x, η) is
given by

Fx(x, η) =

L
∑

i=1

ωi · H(x − µi) ,

where H( · ) is the Heaviside step function

H(x − µ) =







1 , x > µ
1
2 , x = µ

0 , otherwise

at position µ.

As distance measure we employ

G(η, λ)=
1

2

∫

R

(

F̃x(x) − Fx(x, η)
)2

dx + λ
( 1

L

L
∑

i=1

µ2
i − σ2

x

)

.

(4)

The first term in (4) is the so-called Cramér-von Mises
distance (Boos (1981), Schrempf et al. (2006)) quantifying
the divergence between the distribution functions and λ
in the second term is a Lagrange multiplier. By utilizing
the Lagrange multiplier approach, exactly capturing the
variance σ2

x is guaranteed if L ≥ 2, while exactly capturing
the mean is guaranteed by the symmetric positioning of
the sample points.

4.3 Solution

To minimize the distance measure with respect to η and λ,
the necessary conditions for a minimum ∂G(η, λ)/∂η = 0
and ∂G(η, λ)/∂λ = 0 have to be satisfied. Utilizing the
sifting property of the Dirac delta function, the partial
derivative of G( · ) with respect to sample position µi yields

∂G(η, λ)

∂µi

=
1

L

(

F̃x(µi) − Fx(µi, η) + 2λµi

−
(

F̃x(−µi) − Fx(−µi, η)
)

)

,

(5)

for i = 1, . . . , L̄. With the identities

Fx(µi, η) = 2i−1
2L

,

F̃x(−µi) = 1 − F̃x(µi) ,

Fx(−µi, η) = 1 − Fx(µi, η) ,

and by setting (5) equal zero we obtain

F̃x(µi) −
2i − 1

2L
+ λµi = 0 , (6)

The partial derivative of G( · ) with respect to λ yields

L̄
∑

i=1

µ2
i − L

2 σ2
x = 0 . (7)

The resulting system of nonlinear equations comprising (6)
and (7) is square, i.e., the number of equations equals the

number of unknowns. For determining a root, an iterative
root finding algorithms can be applied, where we use
the trust-region dogleg method (Powell (1970)). As initial
solution we choose

µi =
√

2 erf−1
(

2i−1−L
L

)

, i = 1, . . . , L̄ ,

λ = 0 ,

which is the optimal solution of minimizing G( · ) with-
out considering the variance constraint (Schrempf et al.
(2006)).

4.4 Off-line Approximation

The resulting sample positions µi that minimize (4) are
valid for a standard Gaussian density. For arbitrary Gaus-
sians it is beneficial to split the approximation task into
an off-line and an on-line part, instead of solving a similar
optimization problem on-line. In doing so, the sample
approximation derived at the last paragraphs is performed
off-line for a desired number of samples (see Tab. 1 for sev-
eral approximations). Then, for on-line estimation, these
samples have to be scaled and shifted according to

x̂ + σx ·µi ,

where x̂ and σx are now arbitrary means and standard
deviations, respectively. This transformation leads to an
on-line approximation of any Gaussian density without
impairing the approximation quality. Furthermore, the
on-line performance for state estimation is drastically
increased.

Table 1. Sample Positions for several numbers
of samples.

L µ1 µ2 µ3

3 -1.2247 – –
5 -1.4795 -0.5578 –
7 -1.6346 -0.8275 -0.3788

5. EXTENSION TO MULTIDIMENSIONAL CASE

In the following, vector-valued nonlinear transformations
as in (2) are considered, i.e., the multivariate random
vector x ∈ RN with mean vector x̂ and covariance matrix
Cx is mapped to the random vector y. The goal is to

approximate the Gaussian density f̃x(x) = N (x − x̂,Cx)
by utilizing the approximation approach proposed before.

5.1 Reduction to One-Dimensional Case

One way to do so, is to directly extend the optimization
problem to multivariate Gaussians. Although this exten-
sion would work, it suffers from a computational load
increasing with the dimension of x, where multidimen-
sional integrals have to be evaluated numerically. Instead,
a more efficient but suboptimal way is to reduce the N -
dimensional optimization problem to N one-dimensional
optimization problems.

For a multivariate standard Gaussian f̃x(x) = N (x, I)
with zero mean and covariance matrix I, where I is
the identity matrix, the univariate marginal density of
dimension i is given by

N (xi, 1) =

∫

R

· · ·
∫

R

N (x, I) dx1 · · ·dxi−1 dxi+1 · · ·dxN .
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Rotation (3)Scaling (2)

Sample points

Determine
sample points (1)Current covariance Cx

on-lineoff-line

Covariance ellipses

Fig. 1. For applying the one-dimensional Dirac mixture approximation to the multivariate Gaussian illustrated on the
left by its covariance ellipses, at first the sample points for each dimension have to be determined (1). Performing
the scaling (2) and rotation (3) operations completes the approximation.

Thus, we can apply the approach described in Sec. 4
dimension by dimension to each univariate Gaussian.

5.2 Calculating the Sample Points

This procedure corresponds to placing the samples points
along the principal axis of N (x, I) (see Fig. 1). To ap-

proximate any arbitrary Gaussian f̃x(x) = N (x − x̂,Cx),
the resulting sample points are scaled and rotated by
employing the eigenvalue decomposition

Cx = VDV
T ,

where V is the orthogonal matrix of eigenvectors and D is
a diagonal matrix of eigenvalues of Cx. Thus, calculating
the multivariate samples µ

i,j
by means of the component

samples µi,j is carried out as

µ
i,j

= x̂ + V

√
D ·µi,j · ej ,

ωi,j = 1
N ·L ,

(8)

where index i, j indicates the i-th sample used for di-
mension j, where L samples are used for each dimen-
sion. Hence, i = 1, . . . , L and j = 1, . . . , N . ωi,j

are the corresponding weighting coefficients and ej =

[0, . . . , 0, 1, 0, 0, . . . , 0]T is the canonical unit vector, where
only element j is one. In case of L being odd, the mean
vector x̂ = µ

L̄+1,j
appears N times in (8). To avoid

overestimating the mean, the weights have to be adapted
according to

ωi,j = 1
1+N · (L−1) ·

{

1
N

, i = L̄ + 1

1 , otherwise
.

Altogether, in analogy to the scalar case approximating a
multivariate standard Gaussian is performed off-line, while
scaling and rotation are on-line operations. The Dirac
mixture used for approximation can be written as

fx(x, η) =
∑

i,j

ωi,j · δ(x − µ
i,j

) .

For improved readability, from now on the index i, j is
substituted by l, where l = 1, 2, . . . , L ·N .

6. NONLINEAR ESTIMATOR

The sample points (8) are now propagated through the
nonlinear transformation (2) according to

µy

l
= g(µ

l
) , ∀l .

With the resulting sample points µy

l
and the sample

weights ωl, the mean and covariance matrix representing
y are determined as

ŷ =
∑

l

ωl ·µy

l
,

Cy =
1

L

∑

l

(

µy

l
− ŷ

)

·
(

µy

l
− ŷ

)T

. (9)

It is important to note that (9) does not exactly correspond
to the sample covariance as the factor 1/L is used instead
of the sample weights ωl. This provides an unbiased
estimate of Cy for the employed sample representation.

For applying the proposed deterministic sampling ap-
proach to recursive nonlinear estimation for systems char-
acterized according to (1), the system state has to be aug-
mented with the noise variables. The resulting augmented
system state is denoted by Xk = [xT

k ,wT
k ,vT

k ]T. The
sample points µ

l
are now determined for the augmented

system state.

In the following, the equations of the Gaussian filter for
nonlinear state estimation based on the novel approxi-
mation scheme are presented 1 . Initially, the augmented
system state at time step k = 0 is given by X0 with mean
and covariance matrix 2

X̂0 = [(x̂e
k)T, 0T, 0T]T , C

X
0 =

[

C
e
0 0 0

0 C
w
0 0

0 0 C
v
0

]

.

For the time step k = 1, 2, . . . do:

(1) Determine sample points with weights:
{

µ
l
, ωl

}

(2) Prediction step:

µp

l
= ak(µx

l
, uk, µw

l
)

x̂p
k =

∑

l

ωl ·µp

l

C
p
k =

1

L

∑

l

(

µp

l
− x̂p

k

)

·
(

µp

l
− x̂p

k

)T

µy

l
= hk(µp

l
, µv

l
)

ŷp

k
=

∑

l

ωl ·µy

l

1 in analogy to (Wan and van der Merwe (2000))
2 Superscripts p and e indicate predicted and filtered (estimated)
system states.
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(3) Measurement update step:

C
y
k =

1

L

∑

l

(

µy

l
− ŷp

k

)

·
(

µy

l
− ŷp

k

)T

C
xy
k =

1

L

∑

l

(

µp

l
− x̂p

k

)

·
(

µy

l
− ŷp

k

)T

Kk = C
xy
k (Cy

k)
−1

x̂e
k = x̂p

k + Kk

(

ŷ
k
− ŷp

k

)

C
e
k = C

p
k − KkC

y
kK

T
k ,

where the samples points of the augmented state are
µ

l
= [(µx

l
)T, (µw

l
)T, (µv

l
)T]T and ŷ

k
is the measurement

vector at time step k.

For the measurement update step it is assumed that the
predicted system state x

p
k and the measurement y

k
are

jointly Gaussian. Thus, the Kalman filter equations can
be applied (last three equations), even in cases where the
measurement function hk( · ) is not given in analytic form.

It is important to note that the Gaussian filter described
above has the same structure as the UKF. Furthermore,
the computational complexity for calculating an estimate
is comparable to the UKF for small L, since the main
effort is spent for solving the optimization problem, which
can be carried out off-line. Performing the eigenvalue
decomposition of C

X
k for on-line scaling and rotation has

the same complexity as the matrix square root required
for the UKF.

7. SIMULATION RESULTS

The proposed extension to the UKF is applied to two
different estimation problems.

7.1 Example I: Scalar Transformation

First, we consider the scalar transformation

y = |x| ,

where x is Gaussian with mean x̂ = 0.5 and variance
σ2

x = 1, i.e., f̃x(x) = N (x − 0.5, 1). The resulting random
variable y is non-Gaussian and the odd moments are non-
zero. A Monte Carlo (MC) simulation with 10 million
samples is performed to determine the moments of y. The
results are shown in Tab. 2 together with the estimates of
the UKF 3 and the proposed estimator (denoted as GF).
For the GF, L ∈ {3, 7, 15} sample points are used. It
is obvious that the results of UKF and GF coincide for
L = 3, while the moment estimates of the GF converge
to the MC results when increasing the number of sample
points. Especially the moments of order three and higher
can be approached, which is not possible for the UKF. The
only parameter to be adjusted for an increased estimation
quality is the number of sample points L, while the UKF
provides three parameters, whose tuning has to be carried
out very carefully.

The quality of approximating higher-order moments with
the GF can be increased, if information about higher-
order moments is explicitly considered when calculating

3 The parameters of the UKF are set to α = 1, β = 0 and κ = 0.5.

Table 2. Moments of the random variable y.

Moments
1 2 3 4 5

MC 0.8955 1.2500 2.2064 4.5616 10.6191
UKF 0.9832 1.2500 1.8788 3.0625 5.1646
GF(3) 0.9832 1.2500 1.8788 3.0625 5.1646
GF(7) 0.9177 1.2500 2.0523 3.7419 7.2679
GF(15) 0.9032 1.2500 2.1266 4.0948 8.5405

GF*(7) 0.8708 1.2500 2.2498 4.5625 9.8338
GF*(15) 0.8845 1.2500 2.2270 4.5625 10.2094

the sample points. By introducing further Lagrange multi-
pliers in (4) for explicitly capturing higher-order moments
of x, the corresponding approximation quality drastically
increases. For the last two rows in Tab. 2, indicated by
GF*, we use one additional multiplier for capturing the
forth moment of x, which is 3 for the considered Gaussian.
With L = 7 and L = 15 for instance, this approximation
yields better estimates of the moments of y compared to
the GF without the additional multiplier.

7.2 Example II: Vehicle Localization

The second example is from the field of vehicle localization,
where a vehicle with bicycle kinematics is localized using
dead-reckoning and absolute measurements of the posi-
tions of the vehicle. Dead-reckoning employs the kinematic
model

xk+1 :=

[

ak+1

bk+1

φk+1

]

= xk + (sk + ws
k) ·

[

cos(φk)
sin(φk)

tan(αk + wα
k )

]

,

which is often also employed for modeling cars. The
measurement model is given by

y
k

=

[

|ak|
|bk|

]

+ vk ,

where the system state xk comprises the position [ak, bk]T

and the orientation φk of the bicycle. The noise wk =
[ws

k,wα
k ]T and vk are zero-mean white Gaussian with

covariance matrix C
w
k = diag(0.1, 0.01) and C

v
k =

diag(0.1, 0.5), respectively.

For simulation purposes, constant inputs sk = 5, which is
the velocity, and αk = 0.05, which is the steering angle,
are used. The initial system state x0 has the mean x̂0 =
[0, 0, 0]T and covariance matrix C

x
0 = diag(0.1, 0.1, 0.01).

With this configuration 100 Monte Carlo simulation runs
are performed. Each run consists of 50 alternating pre-
diction and measurement update steps. We compare the
performance of the GF with L = 5 sample points per
dimension and the UKF with α = 1, β = 0, κ = 0.

Table 3. Average rmse over 100 simulations.

rmsea rmseb rmseφ

UKF 0.643 1.307 0.587
GF(5) 0.410 0.817 0.521

In Tab. 3 the average root mean square error (rmse) over
all runs is listed separately for each element of the state
vector. The GF significantly outperforms the estimation
results of the UKF, while the computation time is almost
identical (GF needs 0.1259 s per run on average, UKF
needs 0.1219 s). For instance in 90 out of the 100 runs

the GF provides better estimates of position b̂k than the
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Fig. 2. Example simulation run. The true trajectory of the

vehicle in [âk, b̂k]T (green, solid) is depicted together
with the estimates of the GF (black, dashed) and the
unscented Kalman filter (red, dotted).

UKF. One reason why the results of the UKF are inferior
is illustrated in Fig. 2. Here, the UKF provides imprecise

estimates if one of the position coordinates [âk, b̂k] is close
to zero, e.g., at the most right loop of the trajectory.
At those positions, the measurement model has distinct
nonlinearities, which cannot be considered accurately by
the UKF, while the GF provides a more sophisticated
sample representation comprising a larger sample set that
offers higher-order accuracy and thus, it behaves more
robust at these positions.

8. CONCLUSIONS AND FUTURE WORK

In this paper, the idea of the unscented transform is
extended by interpreting the sample points as analytic
density function, namely a Dirac mixture. Through this,
the sample points are used for directly approximating the
distribution function of the prior Gaussian, where com-
putationally demanding parts of the approximation are
carried out off-line. In contrast to the unscented Kalman
filter, the number of sample points is adjustable, which
allows altering the approximation quality. No further tun-
ing parameters are required, which eases the use of the
proposed filter.

Altogether, higher-order information of the Gaussian den-
sity is implicitly incorporated and nonlinearities of the
state transformation are captured more accurate. This
consequently leads to improved estimation results, espe-
cially with respect to mean and covariance. Based on
the proposed deterministic sample calculation scheme a
Gaussian filter has been presented. Its structure and com-
putational complexity is comparable to the UKF, whereas
its superior estimation accuracy has been demonstrated
by means of simulations.

The proposed sample calculation scheme is extendable into
many ways, e.g., non-equal weighting coefficients and non-
Gaussian densities can be considered.
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