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Abstract: This paper considers a new tracking control problem for a class of nonlinear
stochastic descriptor systems, where the tracked target is a given joint probability density
function (JPDF). The controlled plants can be represented by multivariate discrete-time
descriptor systems with non-Gaussian disturbances and nonlinear output equations. The control
objective is to find crisp algorithms such that the conditional output JPDFs can follow the given
target JPDF. Rather than using statistic methods such as Bayesian estimation or Monte Carlo
methods, we establish a direct relationship between the JPDFs of the transformed tracking error
and the stochastic input. An optimization approach is applied to present recursive algorithms
such that the distances between the output distributions and the desired one are minimized.
Furthermore, a stabilization suboptimal control strategy is proposed by using of LMI-based
Lyapunov theory. Simulations are provided to demonstrate the effectiveness of the stochastic
tracking control algorithms.
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1. INTRODUCTION

The control problems for descriptor systems (or general-

ized systems, singular systems) have drawn considerable

attention of many researchers due to their extensive ap-

plications in engineering. Many new feasible control ap-

proaches based on Lyapunov theory have extensively been

presented for linear descriptor systems (see e. g. (Dai89,

GM03, HL99, Tak98, WM94) ). For stochastic descriptor

systems, most of the existing results focused on generalized

Kalman filtering theory, where linear plants with Gaussian

noises were concerned (see e. g. (NCF99, YLM96, ZXS99)).

It is shown that in the presence of descriptor (implicit)

dynamics, the Kalman filtering problem for linear descrip-

tor systems becomes much more complex than that for

conventional systems.

On the other hand, for the conventional stochastic sys-

tems without descriptor dynamics, stochastic processes

and stochastic control have been widely studied theo-

retically and applied in practice in the past decades.

However, in most existing works only linear stochastic

⋆ This work is supported by NSF of China (No. 60474013 and
60472065)

systems with Gaussian random variables were considered,

and the control performance objectives were confined to be

either expectation or variance of the stochastic output (see

e. g. (Astrom70, Mao02, Pap91, Pet00, UP01, Wang00)).

It has been shown that in many practical processes such

as paper and board making systems, the related stochastic

signals are non-Gaussian and/or the plants have strong

non-linearity (see e.g. (Wang00)). For these stochastic sys-

tems with non-Gaussian inputs or outputs, the expectation

and variance are not sufficient to characterize the statistics

of the concerned random vectors. Generally speaking, for

descriptor systems with non-Gaussian stochastic noises

and nonlinear dynamics, few control and filtering applica-

ble results have been obtained up to date.

For the past few years, new control strategies for the shape

of the output probability density functions (PDF) have

been developed for the conventional (non-descriptor) sto-

chastic systems, where the stochastic variables are not con-

fined to be only Gaussian and the control objective is the

shape of output (see e.g. (Kar96, Wang00, Wang02)). Up

to now, mainly there are two kinds of PDF control strate-

gies having been proposed for some conventional stochastic
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systems. One concentrated on tuning the dynamic weights

which correspond to the output PDFs after modeling the

dynamics between the control input and the output PDFs

using B-spline expansions (see e. g. (Wang00, Wang02)),

another attempted to establish the relationships between

the PDFs of the stochastic input and output, and made use

of various optimization approaches (see, e.g. (Wang03)).

However, most existing results on PDF control and min-

imum entropy control only considered single-input-single-

output (SISO) conventional systems. It is noted that mul-

tivariate stochastic processes are much more complicated

where in general some new methodologies involved in

conditional joint probability density functions (JPDFs)

should be discussed (see, e.g. (GW03)). Moveover, since

stability can not be guaranteed with most of the proposed

algorithms, stability analysis turns to be another obstacle

in applications of these approaches.

In this paper, new PDF tracking control strategies are de-

veloped for a group of multivariate time-varying descriptor

systems with non-Gaussian stochastic inputs. The control

objective is to find crisp recursive design procedures such

that the system outputs, which generally are non-Gaussian

random vectors, can follow a target vector corresponding

to a given joint distribution. After a new relationship is

presented between the JPDFs of the tracking errors and

inputs of the descriptor systems, the suboptimal control

strategies are constructed based on gradient algorithms.

Furthermore, a recursive stabilization suboptimal control

law is proposed with which the stability of the closed

loop system can be guaranteed. Finally simulations are

provided to demonstrate the effectiveness of the proposed

approaches.

2. PROBLEM FORMULATION

2.1 Process Model and Its transformation

We firstly consider the time-varying descriptor system

described by

ΣD :

{
Exk+1 = Akxk + B1kuk + B2kwk

yk = h(xk, vk, r)
(1)

where xk ∈ Rn is the state sequence, yk ∈ Rl is the con-

trolled output sequence, uk ∈ Rp is the control sequence,

wk ∈ Rq and vk ∈ Rl are the stochastic disturbance

sequences, and r is the known reference input. E, Ak and

Bik (i = 1, 2) are known time-varying matrices, where

E satisfying rank(E) = r < n. It should be noted that

the concerned plants can be generalized to more exten-

sive nonlinear descriptor systems under some appropriate

assumptions (see also Remark 3 ).

Definition 1. For a discrete-time linear descriptor sys-

tem, a pair (E, A) is called regular if det(sE − A) is not

identically zero and impulse-free if the degree of det(sE −
A) is equal to rank(E).

Similarly to most existing papers on descriptor systems,

the following condition for admissibility is needed in this

paper (see e. g. (HL99, Tak98)).

Assumption 1. (E, A) in ΣD is regular and impulse-free

at every sample time.

On the other hand, the involved stochastic disturbances wk

and vk are supposed to be non-Gaussian but with known

JPDFs. The following assumption is also quite general for

the stochastic inputs, which have been shown to exist in

many practical processes such as paper making systems

(see e.g. (Wang00)).

Assumption 2. The random vectors wk, vk (k =

0, 1, 2, · · ·) (and its elements) are bounded, continuous,

independent mutually and with the known JPDFs γw(τ)

and γv(τ) defined on [a, b]q and [a, b]l, respectively.

The nonlinear function is required to satisfy the following

condition.

Assumption 3. h(·, ·, ·) are known Borel measurable

and smooth nonlinear functions of their augments, and

h(0, 0, 0) = 0.

At each sample time k, random output variable yk can be

characterized by its JPDF γyk
(τ) defined on [α, β]l. Gen-

erally, yk is non-Gaussian random vector even if wk and

vk are Gaussian ones due to the existence of nonlinearity.

For any ΣD satisfying Assumption A.1 , there exist invert-

ible matrices M and N such that

MT EN =

[
Ir 0
0 0

]
, MT B2k =

[
B̃21k

0

]
, (2)

where xk can be divided as xik ∈ Rni , i = 1, 2 with n1 +

n2 = n, correspondingly. Thus, we can get the following

result.

Lemma 1 If (E, A) is regular and impulse-free, then ΣD

can be transformed to be Σs
D, which is described by

Σs
D :

{
x1k+1 = A1kx1k + B11kuk + B21kwk

x2k = A2kx1k + B12kuk

yk = H(x1k, uk, wk, vk, r)
. (3)
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Proof. This proof is similar to Theorem 1 of (HL99) or

(Tak98).

2.2 Problem formulation and calculations of JPDFs

In this paper, the tracking problem is considered for the

multivariate stochastic descriptor systems described by

(1) or (3). Different from a reference vector in classical

tracking control theory, the tracked target is supposed to

be a reference JPDF, which is denoted by γd(τ).

The control objective is to construct uk such that the

conditional JPDFs γyk
(τ |xk, uk), which is also a function

of system output yk and reference input r, satisfying

γyk
(τ |xk, uk) → γd(τ), k → +∞.

Since the distance between γyk
(τ) and γd(τ) can be de-

noted by

δ(γyk
, γd) :=

β∫

α

· · ·
β∫

α

(γyk
(τ) − γd(τ))

2
dτ, (4)

the problem concerned in this paper can be formulated as

follows.

The JPDF Tracking Control Problem is to find control

strategies u = g(xk, r) such that

JN :=
N∑

k=0

[
Qkδ(γyk

, γd) +
1

2
uT

k Rkuk

]
(5)

is minimized, and preferably, the closed loop system is

stable, where Qk > 0 and Rk ≥ 0 are weighting matrices.

Remark 1 The control target using the distance of JPDFs

is a new performance formulation existing in wide classes

of engineering problems, where the desired output governs

a known probabilistic distribution (see e. g. (Wang00)). It

is noted that the measure for the distance in performance

index JN can be further generalized to Lp−distance,

the Kullback-Leibler distance or entropy (Dev87, Pap91).

Thus, the entropy optimization problem can also be dealt

with similarly where δ(γyk
, γd) can be changed to entropy

of the tracking errors. Also, the proposed problem can

study the classical tracking problem for non-Gaussian

systems.

To simplify the controller design procedures, we introduce

the following assumption.

Assumption 4. It is supposed that the Jacobian Ξk :=∣∣∣det ∂H(xk,uk,wk,vk)
∂vk

∣∣∣ 6= 0.

Lemma 2 If Assumptions 1˜4 hold, then we have

γyk
(τ) =

b∫

a

γv(H−1(x1k, uk, σ, τ))γw(σ)

·
∣∣∣∣det

∂H(x1k, uk, σ, τ)

∂τ

∣∣∣∣
−1

dσ

where H−1(x1k, uk, σ, τ) satisfies

τ = H(x1k, uk, σ,H−1(x1k, uk, σ, τ)).

Proof. Based on Assumption 2 and Assumption 3,

yk (k = 0, 1, 2, · · ·) are also continuous random vectors,

then the proof can be given by using the total probability

lemma in (pap91).

3. RECURSIVE JPDF TRACKING CONTROL

STRATEGY

3.1 Design Based on Gradient Algorithms

In order to determine an optimal uk, some optimization

approaches can be applied to the JPDF control problem.

For simplicity of notations, we suppose Qk = 1 in (5) and

only consider the explicit linear control strategies.

To provide recursive procedures, we denote

uk = uk−1 + ∆uk, k = 1, 2, · · · , N, · · · ,+∞. (6)

Based on (4) and (2.2), as a conditional JPDF with respect

to the previous states xij , i = 1, 2; j = 0, 1, 2, · · · , k −
1, disturbance inputs wk, vk and control inputs uk, the

function δ(γyk
, γd) can be approximated via

δ(γyk
, γd) = δ0 + δ1∆uk + ∆uT

k δ2∆uk + o(∆u2
k) (7)

where δ0 := δ(γyk
, γd)|uk=uk−1

, δ1 :=
∂δ(γyk

,γd)

∂uk

∣∣∣
uk=uk−1

,

δ2 := 1
2

∂2δ(γyk
,γd)

∂u2

k

∣∣∣
uk=uk−1

.

Theorem 1. Under Assumptions 1∼4, the recursive subop-

timal JPDF control strategy to minimize the cost function

JN subject to descriptor system (3) is given by

∆u∗

k = −δ1 + Rkuk−1

2δ2 + 2Rk

(8)

where Rk satisfies δ2 + Rk > 0.

Proof. The optimal control strategy can be obtained via

∂
[
δ(γyk

, γd) + 1
2uT

k Rkuk

]

∂∆uk

= 0. (9)

Based on Bellman’s principle of optimality, the resulting

control law leads to the optimal one for the whole process.

From (6), it can be seen that

Rku2
k = Rku2

k−1 + 2Rkuk−1∆uk + Rk∆u2
k. (10)
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Substituting (7) and (10) into (9), we can obtain recursive

suboptimal control law (8) for k = 1, 2, · · · , N, · · · ,+∞.

It is noted that the above algorithm only results from a

necessary condition for optimization. To guarantee suf-

ficiency, the following second-order derivative should be

satisfied
∂2

[
δ(γyk

, γd) + 1
2uT

k Rkuk

]

∂∆u2
k

= 2 (δ2 + Rk) > 0 (11)

which can be guaranteed if Rk is selected sufficient large.

3.2 Stabilization Control Strategy

It is noted that the proposed JPDF tracking control strat-

egy resulting from the gradient approach leads to a non-

linear closed loop system. Generally stability analysis and

synthesis are relatively difficult for stochastic nonlinear

systems (see e. g. (Mao02, UP01, Wang02)), especially for

multi-variable cases. In this section, an improved subop-

timal optimization strategy will be proposed with which

the closed loop system can be guaranteed to be stable.

For this purpose, under Assumption 1, we can also trans-

form the state equation of system (1) to be (see also

e.g.(LC99)

Exk+1 = Akxk + B1kuk + B2kwk , (12)

where xk :=
[
xT

1k xT
2k

]T
and

E : =

[
I 0
0 0

]
, Ak :=

[
A1k 0
0 −I

]
,

B1k :=

[
B11k

B12k

]
, B2k :=

[
B21k

B22k

]
,

which leads to

E∆xk+1 = Ak∆xk + B1k∆uk + B2k∆wk , (13)

where

∆xk = xk − xk−1,∆uk = uk − uk−1,∆wk = wk − wk−1.

Equation (12) is also called Weierstrass form of ΣD.

To consider the stabilization problem, we introduce the

following concept.

Definition 2 If there exists a gain matrix Ck together

with feedback law uk = Ckx1k such that Exk+1 =

Akxk+B1kuk is stable, regular and impulse-free, the triple

(E, Ak, B1k) denoted in (12) is called generalized stabi-

lizable and uk = Ckx1k is called generalized stabilization

control law.

The following assumption is necessary for stabilization

problems, which corresponds to the stabilizable condition.

Assumption 5. The triple (E, Ak, B1k) in (12) is sup-

posed to be generalized stabilizable.

Lemma 3. Under Assumption 5, uk = Ckx1k is the

generalized stabilization control law of (12) if and only if

there exists a symmetric matrix P and a gain matrix Ck

satisfying

ÃT
k PÃk < ET PE (14)

and ET PE ≥ 0, where

Ãk := Ak + B1kCk, Ck := [ Ck 0 ]

which is compatible to xk.

Proof. It can be given by connecting Definition 1 with

Theorem 2 of (HL99).

Lemma 4. For the transformed system (12) satisfying

Assumption 5, at each sample time k, both of the following

statements hold: (i) linear matrix inequality (LMI)
[

−Q QAT
1k + ST

1 BT
11k

A1kQ + B11kS1 −Q

]
< 0 (15)

is solvable for definite positive matrix Q̇ and invertible

matrix S1. (ii) For given matrices Γk1 and Γk2,[
−Q PT

k

Pk −Q

]
< 0 (16)

where Pk = A1kQ + B11kS1 + B11kS2Γk2 is solvable for

definite positive matrices Q̇ and S2, and invertible matrix

S1. In both cases, ∆uk = S1Q
−1∆x1k is the generalized

stabilization control law.

Proof. See (HL99).

3.3 Stabilization JPDF Tracking Control Strategy

At this stage, the tracking control strategy can be con-

structed by

∆uk = C1k∆x1k + ∆u∗

k (17)

where C1k is the generalized stabilization control law given

by Lemma 4 , and ∆u∗

k is the part for JPDF tracking

control to be further determined.

Noting that δ(γyk
, γd) is also a function of ∆x1k, uk−1 and

∆uk, we consider the expansion

δ(γyk
, γd) = αk0 + αk1∆uk + αk2∆x1k +

1

2
∆uT

k Γk1∆uk

+ ∆xT
1kΓk2∆uk +

1

2
∆xT

1kΓk3∆x1k + o(∆u2
k,∆x1k) (18)

where
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αk0 = δ(γyk
, γd)|k−1 , Γk1 =

∂2δ(γyk
, γd)

∂u2
k

∣∣∣∣
k−1

,

αk1 =
∂δ(γyk

, γd)

∂uk

∣∣∣∣
k−1

, Γk2 =
∂2δ(γyk

, γd)

∂x1k∂uk

∣∣∣∣
k−1

, (19)

αk2 =
∂δ(γyk

, γd)

∂x1k

∣∣∣∣
k−1

, Γk3 =
∂2δ(γyk

, γd)

∂x2
1k

∣∣∣∣
k−1

are functions with respect to sample value τ.

For flexibility of design, in the following, Rk will be

determined at every sample step to guarantee stability of

the closed loop systems.

Theorem 2. For the transformed system (12) satisfying

Assumptions 1˜5, at each sample time k, if we select

Rk = −S−1
2 I − Γk1 ≥ 0 (20)

where S2 is calculated via (16), then the closed loop

descriptor system is stable, and

∆u∗

k = − (Γk1 + Rk)
−1 (

ΓT
k2∆x1k + αT

k1 + Rkuk−1

)
(21)

together with (17) forms the stabilization JPDF tracking

control strategy, where C1k can be calculated by Lemma

4.

Proof. Equation(21) can be obtained by substituting (18)

into (9) and removing the second-order terms. Substituting

(21) into (13) yields the closed loop system described by
{

∆x1k+1 = D1k∆x1k + B21k∆wk − p1k

∆x2k = D2k∆x1k + B22k∆wk − p2k
(22)

where

D1k = A1k + B11kCk − B11k (Γk1 + Rk)
−1

ΓT
k2,

D2k = A2k + B21kCk − B21k (Γk1 + Rk)
−1

ΓT
k2

and pik = Bi1k (Γk1 + Rk)
−1

(αT
k1 + Rkuk−1), i = 1, 2, can

be regarded as an additive bounded inputs. Simalarly to

proof of Lemma 4, it can be claimed that stability of

descriptor system (22) depends on

A1k + B11kCk − B11k (Γk1 + Rk)
−1

ΓT
k2

= A1k + B11kCk + B11kS2Γ
T
k2

whoes stability has been guaranteed based on Lemma 4.

Remark 2. The recursive suboptimal stabilization JPDF

tracking control algorithms can be summarized as follows:

• Initialize x0 and u0;

• At the sample time k, compute Ck and S2k by using

(16);

• Formulate γyk
(τ) using Lemma 2 and δ(γyk

, γd) using

(4);

• Calculate ∆u∗

k and uk using equation (21) and (6);

• Increase k by 1 to the next step.

Remark 3. In practice, generally nonlinearity also exists

in many descriptor systems. In this paper, besides the

above linear plants (1) or (3), the following nonlinear

descriptor systems{
x1k+1 = f1k(x1k) + g11(x1k)wk + g21(x1k)uk

x2k = f2k(x1k) + g21(x1k)wk + g22(x1k)uk
(23)

with a linear controlled output

yk = Hk(x1k, wk, uk, vk, r) (24)

can also be studied similarly, where xk, xik (i = 1, 2), wk,

uk, vk, yk and r are defined as above.

4. A NUMERAL EXAMPLE

In this section we give an example to demonstrate how to

compute the JPDF tracking control laws. The considered

descriptor system is given by



[
1 0 0
0 1 0
0 0 0

][
x11k+1

x12k+1

x2k+1

]
=

[
0.95 0 0
1 −0.90 0
1 −1 −1

][
x11k

x12k

x2k

]

+

[
0
1
−1

]
uk +

[
0

−0.50
0

]
wk,

yk =
1

1 + x3
11k

uk + x12k − 2x2k +
√

vk.

This system has been transferred to be a Weierstrass

form. Random variables wk and vk (k = 0, 1, 2, · · ·) are

assumed to be mutually independent with known PDFs.

The asymmetric PDF of vk is defined by

γv(x) =





−6(x − 0.25)√
x

x ∈ [0, 0.25],

0 else.
(25)

while the PDF of wk is given by

γw(x) =

{
−48(x2 − x +

3

16
) x ∈ [0.25, 0.75],

0 else.
(26)

In simulations, the initial conditions are set to be u0 =

0, y0 = −0.4. For every sample time k, the sequence of

the suboptimal control input is demonstrated in Figure 1.

To illustrate the effectiveness of the proposed method, the

practical output JPDFs under control at several different

sample times as well as the tracked target JPDF are given

in Figure 2 for comparisons. Figure 3 displays the outputs

and the tracking errors where it can be seen that the

tracking errors decrease to a small value in a short time.

These simulation results show that satisfactory dynamical

tracking performance can be obtained using the proposed

approach.
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5. CONCLUSION

In this paper, a new JPDF tracking control problem is

considered for multivariate descriptor systems with non-

Gaussian random inputs. Optimization approach is ap-

plied to present recursive algorithms such that the dis-

tances between the output distributions and the desired

one are minimized. Furthermore, a stabilization subopti-

mal control strategy can be given by using of LMI-based

Lyapunov theory. Simulation shows that the proposed

approach can achieve satisfactory performance for non-

Gaussian descriptor systems.
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