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Abstract: Based on wavelet representation theory, this paper proposes a novel identification
algorithm with random missing data under the condition that the identified dynamic process
can be described as an output error (OE) model structure. This new algorithm mainly consists
of two stages: one is the wavelet reconstruction, the other the prediction for missing data using
the identified model. For the sake of its application, selection of the final iteration number and
the adopted wavelet category is also considered. Finally, numerical simulations are given to
verify the satisfactory effectiveness of the proposed algorithm.
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1. INTRODUCTION

The phenomenon of random missing data is widespread
in the process system, which may result from malfunction
of the corresponding actuators or/and measurement in-
struments. So how to identify the required process control
model in the presence of missing data is a paramount task.

Up to now, a large number of identification algorithms
have been proposed by many researchers, and Little [1987]
has given a good summary of statistics methods with miss-
ing data. In the past few years, identification with missing
data has gained much attention in control field where a
good few identification methods having promising appli-
cations are proposed, see Isaksson [1993], Pintelon et al.
[2000], Albertos et al. [1999], and Sanchis et al. [2002]. In
Isaksson [1993], expectation maximum (EM) algorithm is
derived to cope with ARX model identification with both
input and output data missing. As a matter of fact, it
is a recursive maximum likelihood estimation (MLE) but
with approximate 1/4 computational load compared with
that of MLE. Pintelon et al. [2000] propose an errors-in-
variables (EIV) model identification approach in frequency
domain, it can be applied to various model structures, and
is suitable to systems persistently excited by all forms of
signals. Besides the above merits, it can also be used for
unstable systems. The main drawback of this method lies
in its time-consuming computation when the number of
missing data is large, since it regards the missing data as
parameters to be identified. Albertos et al. [1999] and San-
chis et al. [2002] study a simple identification algorithm,
which is based on the prediction for missing data using the
identified model.

Wavelet analysis technique (Daubechies [1992]) is preva-
lent in the field of image processing, information compres-
sion and denoising. It has a fine feature of time-frequency
localization embodied by all sorts of mother wavelet and

scaling functions which can produce the orthonormal basis
functions for signals in space L2(R) (Mallat [1989]). In this
paper, the wavelet reconstruction technique is employed
to filter the data so that the statistical property of signals
are greatly improved, which is beneficial to the subsequent
identification and prediction for missing data.

The layout of this paper is as follows. Section 2 explains
why the mathematical model formulation focuses on OE
model structure while the novel identification algorithm
is proposed in section 3. Selection of the final iteration
number and the adopted wavelet category is analyzed in
section 4. We resort to section 5 to verify the effectiveness
of the proposed algorithm by some numerical simulations.
Finally, a conclusion is arrived at in section 6.

2. PROBLEM STATEMENT

According to the research results in Palavajjhala et al.
[1996], wavelet reconstruction is equivalent to a filtering
to y(k), u(k) and e(k) respectively. After the filtering is
performed at some specific level, the statistical properties
of the filtered signals will become more suitable for process
identification due to the further improved input or output
S/N ratio.

In order to make full use of the wavelet reconstruction
technique to obtain satisfactory prediction results for the
missing data, the OE model structure is considered, which
has the following parameterized form (Ljung [2002]):

y(k) =
B(q−1)

F (q−1)
u(k) + e(k) (1)

where q stands for the forward shift operator; k is short
for kTs, Ts being the sampling period of the system;
B(q−1) = b1q

−1 + b2q
−2 + · · ·+ bnb

q−nb and F (q−1) = 1+
f1q

−1+· · ·+fnf
q−nf ; y(k) represents the measured output;

u(k) is the reference input and e(k) a measurement white
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noise.

By means of carefully choosing the wavelet decomposition
level, the variance of filtered e(k) will be reduced more
greatly than that of the filtered undisturbed signal s(k) =
B(q−1)/F (q−1)u(k). Therefore, by this way, the maximal
output S/N ratio can be gained to improve the accuracy
of identified model. Besides, the OE model has a fine
feature of global and local identifiability and consistent
convergence under the quite mild conditions. As a result,
the identified OE model will ensure a high precision of the
subsequent prediction for missing data. So in this paper,
the OE model frame is adopted to formulate the process
dynamic model.

3. IDENTIFICATION ALGORITHM

When the data are lost randomly, the wavelet reconstruc-
tion on its own is determined not to predict the missing
data reasonably. This is due to the reason that it can
not provide any further information about the identified
process. Therefore, this reconstruction technique should
be combined with other prediction methods.

The simplest way to predict the random missing data
may be to make full use of the identified model. So the
prediction equation can be written as:

x̂(t) = f̂(Y t−1, U t−1) (2)

where x̂(t) is the prediction for input or output missing
data x(t), and Y t−1, U t−1 represent the output and input

data not greater than instant t − 1 respectively. f̂(·, ·) is
the identified model.

However, as was stated in Albertos et al. [1999], the
main drawback of this means is the lack of robustness to
noise and external disturbances, which makes this simple
method hard to use. In this section, the wavelet recon-
struction technique is combined with this model based
prediction strategy to improve the prediction ability for
the missing data.

The novel identification algorithm coping with missing
output data includes the following analysis stages:

3.1 Initial interpolation for missing data

For the purpose of wavelet reconstruction at the later
stage, the missing data should be at first filled in by means
of interpolation.

3.2 Reconstruction of whole data

To realize data reconstruction with the specified resolu-
tion, a level q should be properly chosen to approximate
the whole data including sampled data as well as the
interpolated or predicted ones for missing data. Therefore
we have the following decomposition expression:

ŷ(k) =

lq∑

j=1

φq,j(tk)aqj + v(k) (3)

where φq,j(tk) = 2−q/2b
−1/2

0
ψ(2−qb−1

0
(tk − j2qb0)) is the

wavelet basis function at level q where ψ(·) is any mother
wavelet; j denotes a nonnegative integer; b0 > 0 is an
arbitrary chosen constant; v(k) is the approximation error
by wavelet representation; ŷ(k) represents the output data
sampled or predicted at instant tk.

So the reconstructed output data using wavelet are ˆ̂y(k) =∑lq
j=1

φq,j(tk)âqj . Similarly, the input data reconstructed

by wavelet have the same reconstructing process as ˆ̂y(k),

which are ˆ̂u(k) =
∑lq

j=1
φq,j(tk)b̂qj .

3.3 Identification of model parameters

According to the filtered data by wavelet, the identified
model takes an OE model structure:

ˆ̂y(k) =
B(q−1)

F (q−1)
ˆ̂u(k) + e(k) (4)

where e(k) is a white noise while ˆ̂y(k) and ˆ̂u(k) are the
reconstructed data by wavelet in subsection 3.2.

3.4 Prediction for random missing data

In terms of (4), the best prediction for missing output data
will be:

y̌(k) =
B̂(q−1)

F̂ (q−1)
ˆ̂u(k) (5)

where B̂(q−1) and F̂ (q−1) are respectively the numerator
polynomial and the denominator polynomial of the iden-
tified process model in subsection 3.3.

To improve the precision of the predicted output data
and parameter identification results afterwards, the above
subsection 3.2, 3.3, and 3.4 can be iterated several times.

As far as the implementation of the above algorithm is
concerned, it can be decomposed as the following steps:

Step 1: Linear interpolation for the missing data

Step 2: Reconstruct the whole data with the wavelet basis
functions at level q by means of least square fitting:

Âq = [ΓT Γ]−1ΓT Ŷ N (6)

where Âq = [âq1, âq2, · · · , âqlq ]
T ,Γ = [Γq1,Γq2, · · · ,Γqlq ]

Γqs = [φq,s(t1), φq,s(t2), · · · , φq,s(tN )]T (s = 1, · · · , lq) and

Ŷ N = [ŷ(1), ŷ(2), · · · , ŷ(N)]T . Therefore the reconstructed
output data can be obtained by:

ˆ̂y(k) = ekΓÂq (7)

where ek is a unit row vector whose kth element is 1 and
the other elements are 0s. Likely, ˆ̂u(k) is reconstructed in

the same way as ˆ̂y(k).
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Step 3: Recursive identification of the parameterized
process model (c.f. Ljung et al. [1983]):

Initialize θ̂(0), R(0) and then iterate the following equa-
tions:

y̌(k) = hT (k)θ̂(k − 1) (8)

ỹ(k) = ˆ̂y(k) − y̌(k) (9)

R(k) = R(k − 1) +
1

k
[ψ(k)ψT (k) − R(k − 1)] (10)

K(k) =
1

k
R−1(k)ψ(k) (11)

θ̂(k) = θ̂(k − 1) + K(k)ỹ(k) (12)

where θ̂(k) = [b̂1(k), · · · , b̂nb
(k), f̂1(k), · · · , f̂nf

(k)]T ,

h(k) = [ˆ̂u(k − 1), · · · , ˆ̂u(k − nb),−u∗(k − 1), · · · ,−u∗(k −

nf )]T , u∗(k) = hT (k)θ̂(k), ψ(k) = [uf (k − 1), · · · , uf (k −

nb),−u∗

f (k − 1), · · · ,−u∗

f (k − nf )]T , uf (k) = ˆ̂u(k) −

f̂1(k)uf (k−1)−· · ·−f̂nf
(k)uf (k−nf ) and u∗

f (k) = u∗(k)−

f̂1(k)u∗

f (k − 1) − · · · − f̂nf
(k)u∗

f (k − nf ).

The final precision of estimated parameters in this step is
determined by the data length N used for model identifi-
cation.

Step 4: The missing output data are therefore predicted

according to the final identified parameters θ̂(N):

y̌(k) = hT (k)θ̂(N) (13)

Step 5: Substitute ŷ(k) in step 2 with y̌(k) in step 4 and
iterate step 2, 3, 4, and 5 several times. It should be noted
that the different wavelet basis functions may be employed
in step 2 of each iteration.

Remark : Wavelet reconstruction with basis functions in
this algorithm acts as a low pass filter. However, the
adopted wavelet reconstruction technique outperforms the
low pass filter since no extra gain and phase are added
to the identified process model. By elaborately selecting
the specific wavelet, the aforementioned algorithm has
a good property of robustness to noise and shows an
effective prediction ability, which will be explained by the
simulations and comparisons in section 5.

4. SELECTION OF ITERATION STEP AND
WAVELET CATEGORY

For the purpose of its application, the algorithm presented
in section 3 should be further studied on how to determine
the proper iteration number and wavelet category in each
iteration. Therefore, in this section, these two aspects will
be discussed accordingly.

4.1 Determination of the appropriate wavelet category in
each iteration

As was stated in Palavajjhala et al. [1996], the input or
output S/N ratio had been used as a performance criterion

to design the prefilter using wavelet transform in order to
improve the accuracy of identified model. The research re-
sults there show that the S/N ratio can be a good indicator
for selection of wavelet category. Since the newly proposed
algorithm assumes that the output data are missing, the
S/N ratio of predicted output data is much important than
that of input data. Therefore, it is naturally chosen as a
criterion to determine the wavelet category employed in
the iteration.

Since the wavelet reconstruction technique is employed to
filter the whole data in step 2, the output S/N ratio of
these data should be computed before the wavelet analy-
sis. Nevertheless, the predicted data in each iteration are
related to many factors, which make it difficult to obtain
the ratio. Considering its computation, it is therefore as-
sumed that the output S/N ratio does not change greatly
before and after the prediction for missing data. Under
this assumption, the ratio can be calculated conveniently
by the recursive identification results in step 3.

The approximate output S/N ratio calculated by means of
the above method can be the feasible criterion for selecting
the wavelet category for data reconstruction, which will be
demonstrated in the subsequent simulation study.

4.2 Determination of the final iteration number

Compared with the selection of wavelet category, the
choice for final iteration number of this algorithm is much
easier. Generally, the most often used criterion for stopping
the iteration in model identification is relevant to the
accuracy of identified parameters. Hence

‖θ̂i(N) − θ̂i−1(N)‖2 < ǫ (14)

can be taken as a feasible stop criterion, where ǫ is a small
positive value specified by the user and i the ith iteration
of this algorithm.

5. SIMULATION STUDY

In this section, simulations will be given for verification
of the presented algorithm and the specified selection in
section 4.

In our simulation, a two order time-invariant attitude
model of small satellites, linearized at a specific operating
point, is considered:

G(z) =
0.03259z + 0.031

z2 − 1.85z + 0.8607
. (15)

The exciting reference input is a four-period PRBS with
total data length 248, whose amplitude is 10. In these
simulations, the input and output data are both sampled
with a period Ts, being 0.125s, which is a half of the clock
time Tc of the PRBS. For the purpose of identification, the
first period of PRBS is discarded and the others are left.

In the course of simulation, the following two main points
should be taken into account:
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5.1 Ill effect caused by the initially chosen wavelet category
and initial linear interpolation for missing data

Since wavelet reconstruction (step 2) is prior to model
parameter identification (step 3) in the initial iteration, the
arbitrarily selected wavelet category will in no doubt have
ill effect on the subsequent model identification and pre-
diction for missing data (step 4). Moreover the much more
important influence is the initial estimation errors caused
by the guessed linear interpolation for missing data in step
1. Consequently, a transient process will be shown in the
predicted data, which is unsuitable for identification of
time invariant model. The predicted data in this transient
process should not be used for identification and therefore
should be excluded according to the priori settling time of
the identified process.

5.2 Selection of the level for wavelet reconstruction

In terms of the sampling period Ts, the predicted out-
put signal is concentrated on the frequency interval [0,
ωs], where ωs = π/Ts = 25.133rad/s. According to the
priori crossover frequency ωc of the dynamic process, the
cutoff frequency of the low pass filter realized by wavelet
reconstruction should be greater than ωc. Therefore the
resolution of wavelet reconstruction is selected as q = 1,
which corresponds to a filtering frequency band between 0
and ωs/2 = 12.566rad/s.

Before the simulations, some notations are defined for con-
venience: WBOEP stands for the wavelet based OE model
prediction while OEP for the OE model prediction. More-
over, the prediction methods and iteration procedures in
both algorithms are mainly the same, except that whether
there is the participation of the wavelet reconstruction or
not. In all these simulations, the Daubechies (including
haar wavelet) wavelets are adopted.

Simulation1: In this simulation, suppose that there are
approximately 80% missing in output data and that the
undisturbed output data are corrupted by a white noise
e(k) with zero mean and variance 0.1.

After the implementation of the algorithm, the changes of
prediction errors with the increasing iteration number are
shown in Fig. 1. The data before the time instant 18.625s
are predicted errors while the remaining data belongs to
the wavelet reconstruction errors. As can be seen from
this graph, the prediction errors undergo a process from
the large error at the beginning of the iteration to the
small one at the end of iteration. This changing process
of decreasing prediction errors suggests the feasibility of
the means of computing the output S/N ratio mentioned
in section 4. Also, the large prediction errors influenced
by the initial linear interpolation and the initially cho-
sen wavelet category are illustrated in this figure. Con-
sequently, the data ranging from 0 to 4.5s are thrown
away to improve the accuracy of model identification and
prediction afterwards. The predicted data using these two
different algorithms are compared in Fig. 2 and Fig. 3.
Fig. 2 makes a comparison of the whole data including the
predicted data as well as the sampled data while Fig. 3
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Fig. 1. Evolution of prediction errors with iteration num-
ber

gives a locally magnified graph of the predicted data in Fig.
2. The same effect due to the initial linear interpolation is
also illustrated in Fig. 2. It is shown from Fig. 3 that the
WBOEP data are much more close to the real data than
that of OEP data. With these predicted data, the process
models are identified respectively. Fig. 4 and Fig. 6 sepa-
rately show the amplitude-frequency and phase-frequency
comparisons between the identified models by employing
different algorithms. Fig. 5 and Fig. 7 respectively are the
locally magnified graphs of Fig. 4 and Fig6. Besides the
performance comparison in frequency domain, Fig. 8 gives
the step response comparison of these identified models.
The changes of selected wavelet categories in iterations
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Fig. 2. Comparison between WBOEP data (dashed line),
OEP data (dashdot line) and real sampled data (solid
line)

15 15.5 16 16.5 17 17.5 18

−20

−15

−10

−5

Time(s)

A
tt

it
u

d
e 

an
g

le
(d

eg
)

Fig. 3. A locally magnified graph of Fig. 2
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Fig. 4. Amplitude-frequency comparison between identi-
fied models with WBOEP data (dashed line), with
OEP data (dashdot line) and real attitude model
(solid line)
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Fig. 5. A locally magnified graph of Fig. 4
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Fig. 6. Phase-frequency comparison between identified
models with WBOEP data (dashed line), with OEP
data (dashdot line) and real attitude model (solid
line)

are shown in Fig. 9. As can be seen from this figure, from
iteration number 1 to 3, db3 wavelet is employed while
from iteration number 4 to 5, db9 wavelet is adopted. db8
wavelet is utilized in the remaining iterations until the
termination of the algorithm.

Conclusion 1: The proposed algorithm is superior to
the one employing OE model prediction without wavelet
reconstruction in the absence of approximate 80% data.

Simulation 2: In order to see if this newly presented
algorithm is preferable to its counterpart all the time,
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Fig. 7. A locally magnified graph of Fig. 6
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Fig. 8. Step response comparison between identified mod-
els with WBOEP data (dashed line), with OEP data
(dashdot line) and real attitude model (solid line)
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Fig. 9. Selected wavelet categories in iterations

the amount of output missing data is varied. By sufficient
simulations and comparisons, the following conclusions can
arrived at.

Conclusion 2: When a small number of output data are
lost, the final iteration number will decline providing ǫ
remains the same. Meanwhile, these two algorithms give
the corresponding identified models with approximate ac-
curacy (Fig. 10). However, conversely, when there are a
large number of missing data, the proposed algorithm will
outperform its counterpart by yielding an identified model
with higher accuracy (Fig. 11).
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Simulation 3: By varying the variance of output noise,
the simulations are made to see whether the novel algo-
rithm is robust in the presence of 80% missing data. After
these simulations, the following results can be obtained.

Conclusion 3: By elaborately selecting wavelet basis
functions, the good prediction and identification results
will be obtained, which suggest this proposed algorithm
has the robustness to the noise with a small variance,
ranging from 0 to 1 (Fig. 12 and Fig. 13).
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Fig. 10. Step response comparison of identified models in
the presence of 25% missing data (with 2 iterations)
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Fig. 11. Step response comparison of identified models in
the presence of 75% missing data (with 13 iterations)
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Fig. 12. Step response comparison of identified models with
output noise variance 0.05
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Fig. 13. Step response comparison of identified models with
output noise variance 1

6. CONCLUSIONS

In this paper, a novel OE model identification algorithm
is proposed to cope with the random missing data. The
wavelet reconstruction technique is employed to improve
the prediction ability for the missing data. Moreover,
for the implementation of this algorithm, the selection
of wavelet category in each iteration, the final iteration
number, and other concerned parameters is also involved.
Through plenty of simulations and comparisons, the con-
clusion can be therefore drawn that our proposal is supe-
rior to the algorithm without wavelet reconstruction when
a certain number of data are missing.
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