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Abstract: Temperature control of tank reactors with exothermic reactions is an acknowledgedly
difficult task because of complex interacting phenomena, several nonlinearities and unstable
dynamics. Traditionally, simple control functions are implemented, implying poor control
performance and small operating windows. However, many advanced control schemes have
been published, though in many applications they rely on too simplistic process models.
Here, a control strategy using only a small number of linear controllers has successfully been
applied to a rigorous reactor model, including the cooling system dynamics. The methodology
is to first linearize the model in steady-state and relevant non-stationary points and let the
resulting models define uncertainties in the frequency plane. Then Quantitative Feedback Theory
(QFT) is used to ensure that robust feedback system specifications are fulfilled for all these
uncertainties.
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1. INTRODUCTION

An exothermic reaction is a highly nonlinear and normally
unstable process. Thus, efficient control is necessary and
also nontrivial. In the present paper, a system with a
temperature dependent first order, A → B, exothermic
reaction in an ideally stirred tank reactor operating contin-
uously (CSTR) is studied. Since the reaction is exothermic,
a cooler is used for temperature control of the reactor.
The cooling system is built up by tubes, located inside the
reactor vessel. In Olesen et al. (2008) a nonlinear model
of this process is formulated and linearized in a number
of operating points. The resulting linearized models have
large parameter variations. Further, some models are sta-
ble, while others have one or two unstable eigenvalues,
reflecting the local instability of the original nonlinear
model. Nevertheless, it would be desirable to have the
same control strategy for as many operating conditions
of the tank reactor system as possible.

Several different control strategies for similar tank reactor
models have been published. However, the models in many
of these publications are too simplistic, especially with
respect to the control input signal. In addition to that,
the suggested control strategies may in many cases be
too complex to implement in an existing tank reactor
process. As an example, in Henson and Seborg (1997) a
very simple model of a first order reaction in a CSTR,
where the control input is modelled as the temperature
of the cooling system, is studied. The model is controlled
by a nonlinear controller designed by input/output lin-
earization and a comparison is made with a linear con-
troller, based on model predictive control theory. In that
example, both controllers were able to control the model

from an unstable steady state point to a reference point
representing another unstable steady state as well as to a
stable point. However, the nonlinear controller performed
best, especially in bringing the model to operate in an open
loop unstable operating point. It should be noted that the
tank reactor model is only used as an application example.
The model is probably too simplistc if the nonlinear con-
trol strategy based on input/output linearization is to be
used on a true system or on a more complex model. The
same model is also used as an example by Morningred
et al. (1992) to test an adaptive controller in a discrete-
time nonlinear predictive control framework. Exactly the
same mathematical model is later also used in Zhang and
Guay (2005) but to represent a slightly more complex
reaction. There, the model is controlled by an adaptive
method, combining Lyapunov’s stability design, adaptive
backstepping and neural network approximation. The use
of the mean temperature of the cooling system as control
signal implies that the cooling system dynamics is ignored,
which can entirely alter the stability properties (see Russo
and Bequette (1996)).

A simplified model of a first order reaction in a CSTR is
also used by Lagerberg and Breitholtz (1997). They have
used a more sophisticated model of the cooling system and
discuss both coolant inlet temperature and coolant flow as
control signals. The model is controlled by gain scheduling
using a series of five linear state feedback controllers
based on linear quadratic optimization. The performance
for coolant inlet temperature as control signal is good.
However, if coolant flow is used as an input, the system
becomes unstable for large reference variations, due to the
additional nonlinearity arising from the use of coolant flow
as control signal.
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The tank reactor model used in the present work is based
on a complex general model described in Olesen et al.
(2008), where the coolant flow is the control signal. The
goal has not been to find an optimal nonlinear controller
for this system, but to investigate the possibilities to
find a simple control strategy, where a small number of
linear controllers are sufficient to control the nonlinear
system over a wide temperature interval. The method
used for this investigation is quantitative feedback theory
(QFT), a method for linear uncertain feedback systems.
Here, the nonlinear reactor model is presumed to have no
uncertainties, but the linearization in stationary and non-
stationary operating points gives a set of linear models
that is regarded as an uncertainty description.

2. QUANTITATIVE FEEDBACK THEORY

QFT is a well established engineering design philosophy
for uncertain feedback problems, see Horowitz (1993)
and references therein. The method does not provide an
algorithm for design of a predefined control structure, but
it provides a framework for finding a suitable controller.

The first step in QFT is to define the plant uncertain-
ties. The uncertainties are used to determine a set of
linear plant transfer functions {Pi (s)}. One arbitrary cho-
sen transfer function is assigned as the nominal model,
Pnom (s). As the set of transfer functions has been deter-
mined, the value sets {Pi (jωk)} are calculated at wisely
chosen frequencies, ωk. These value sets are the templates,
describing the plant uncertainty at the specified frequen-
cies.

The second step is to define closed loop specifications in
the frequency domain, such as ‖S‖∞ < k, where S is the
sensitivity function.

The third step is a computation of Horowitz-Sidi bounds
from the templates, the nominal plant and the closed loop
specifications at the frequencies ωk. These bounds define
areas in a Nichols diagram, where the nominal open loop
transfer function, Lnom (s) = Pnom (s)Fy (s), cannot pass
if the closed loop specifications should hold for all open
loop transfer functions Li (s) = Pi (s)Fy (s) in the set.
Calculation of these bounds is very time consuming to
perform without computer aid. In this work the Qsyn
toolbox for Matlab has been used, Gutman (1996).

In the fourth step of QFT, the feedback controller Fy (s)
is designed. Classical loop shaping is used to design Fy
such that the nominal loop transfer does not violate the
Horowitz-Sidi bounds in the Nichols chart. After that, it is
necessary to check closed loop stability for all plant cases
and the Fy chosen.

Finally a pre-filter Fr can be designed to achieve desired
servo specifications.

3. THE NONLINEAR TANK REACTOR MODEL

The model used in this article describes an ideally stirred
tank reactor operating continuously. If the assumption of
ideal stirring would not apply, the reactor model could
be divided into compartments as in Olesen et al. (2005).
In the reactor a first order exothermic reaction A→B
is assumed to take place in a liquid solvent (denoted by

Fig. 1. Sketch of the tank reactor. Control signal is coolant
flow, Qc, disturbances are changes in continuous in-
flow parameters, Qin, Tin, cAin, cBin and variations
in inflow temperature of the coolant, Tcin. State vari-
ables are the concentrations, cA and cB in the reactor,
reactor temperature T and the mean temperature of
the cooling system, Tcm. The reactor temperature is
also the measured output signal.

subscript l). A cooler, built up by tubes situated inside the
reaction vessel, is used for the temperature control of the
reactor. Through these tubes cooling water is pumped.
Since the stirring of the reactor is assumed to be ideal,
it is also assumed to be sufficient to create good contact
between the reactor liquid and the tubes. The flow inside
the cooling tubes is assumed to be a dispersed plug flow.
All symbols used in this and the following sections are
defined in Section 7.

A complete state space representation of the resulting
model is given in Olesen et al. (2008). However, here
the simplifications are made that for each substance,
the heat capacity cp and the density ρ are considered
constant. These simplifications are motivated in Olesen
et al. (2008) and they significantly simplifies the nonlinear
simulations. Figure 1 shows a sketch of the tank reactor
and a presentation of signals, state variables and some
main parameters.

Mass balances for the reactant, the product and for the
liquid solvent give the first two state space equation in a
representation of the nonlinear tank reactor model:

dcA
dt
=

Qin

V
cAin − Qout

cA
V

− cAk0e
−

E
RT = f1 (1)

dcB
dt
=

Qin

V
cBin − Qout

cB
V
+ cAk0e

−
E
RT = f2 (2)

cl =
ρl
Ml

(

1−
cAMA

ρA
−

cBMB

ρB

)

(3)

A volume balance gives the outflow Qout as:

Qout =Qin + V cAk0e
−

E
RT

(

MB

ρB
−

MA

ρA

)

(4)

Using different specific heat capacities for all substances,
the heat balance can be written as:
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dT

dt
=

1

(cAcpA + cBcpB + clcpl)

[

Qin

V
{cAincpA (Tin − T )

+ cBincpB (Tin − T ) + clincpl (Tin − T )}

+ cAk0e
−

E
RT (cpA − cpB) + (−∆Hr) cAk0e

−
E
RT

]

−
hcAc

V
(T − Tcm) = f3 (5)

A conventional model, found in for example Lagerberg and
Breitholtz (1997), is used for the cooling system where the
mean temperature of the cooling water (Tcm) is used as a
state variable:

dTcm
dt

=
hcAc

Vcρccpc
(T − Tcm)

+
Qc

Vc

(

1− e
−

hcAc
Qcρccpc

)

(Tcin − T ) = f4 (6)

The model has two major nonlinearities: The Arrhenius
factor in the reaction rate in (1) and (2) and the exponen-
tial term in (6), since Qc is the control signal. However,
if Qc is constant and Tcin used as control signal, the
exponential term would become a constant and the model
would only have one major nonlinearity. Clearly, this is
also the case if Tcm is directly used as the control input.

4. LINEARIZED TANK REACTOR MODEL

The most straightforward approach to achieve a linear
control strategy is to linearize the nonlinear model in
steadystate operating points. The steadystate operating
points of the tank reactor model are given by Equations
(1), (2), (5) and (6) set to zero. These four equations
then give the steadystate values of four parameters, given
values of all other parameters. Here, fixed values of Qin,
cAin, cBin and Tcin are used and the values of Qc, cA, cB
and Tcm are calculated for different values of the reactor
temperature (T ). Hence, the steadystate points are given
by the value of the measured output. It should be noted
that Qout is a function of the state variables. Partial
derivatives of Qout have to be taken into account during
the linearization, see Olesen et al. (2008) for details. A first
order Taylor expansion at the stationary operating points
gives the linear model

dx

dt
=Ax+B∆Qc +Nv (7)

y =∆T = Cx (8)

where

x =







∆cA
∆cB
∆T
∆Tcm






and v =











∆cAin
∆cBin
∆Qin

∆Tin
∆Tcin











However, during transients the true nonlinear system will
not operate near the steadystate operating points. Hence,
linearized models, representing the nonlinear system at
non-steadystate operating points are needed to more fully
describe the nonlinear system. Therefore, the nonlinear
model has also been linearized in non-steadystate oper-
ating points. These non-stationary operating points used

for linearization were determined from simulations of the
responses of the nonlinear model to variations in the in-
put signal Qc. Linearization in such points results in lin-
earized models with additional constant terms, originating
from the non-zero time derivatives of the state variables.
Treating these constant terms as input disturbances, the
linearized model can be written:

dx

dt
=Ax+B∆Qc +N











∆cAin
∆cBin
∆Qin

∆Tin
∆Tcin











+
d

dt







cA
cB
T
Tcm







x=0

=Ax+Bu+Nv + ϕ (9)

y =∆T = Cx (10)

All linearized models, both for steadystate operating
points and for non-steadystate operating points, were
found observable and stabilizable (see Rugh (1996)).

The stability of the open loop linearized systems depends
on the operating point used for the linearization. For
some operating points all eigenvalues are stable but a
slight change of operating point will give the linearized
models one or two unstable eigenvalues. The stability of
the linearized models also reflects the local stability of the
nonlinear model (see Kahlil (1996)).

5. QFT ANALYSIS

Since QFT requires linear control strategies, the nonlinear
system described in Section 3 must somehow be trans-
lated into a linear system. Horowitz (1993) presented a
method based on equivalent linear models for performing
QFT design on nonlinear systems. However, finding these
equivalent linear models requires knowledge of which input
sequence that will give a desired output sequence. This is
not trivial, since the nonlinear model is unstable. However,
linearized models, describing the tank reactor process near
operating points are provided in (9) and (10) and in more
detail in Olesen et al. (2008). The models linearized in
steadystate operating points, i.e. the models described by
Equations (7) to (8), were used as a first attempt to
approximate the nonlinear model. Models linearized at
temperatures between 300 K and 450 K at steadystate
operating points are displayed in a Nichols chart in Figure
2, where the nominal model is chosen at 350 K and is
indicated by a thicker curve.

As seen from Figure 2, the templates will grow large for
low frequencies. However, using a controller with integral
action, the amplitude of the sensitivity function will be
low anyway for these low frequencies. For frequencies,
where the amplitude of the sensitivity function may have
resonance peaks, the templates are much smaller. An
investigation of the corresponding Horowitz-Sidi bounds
showed that one single linear controller could be used
to control all the models linearized in the stationary
operating points. However, when applied to the nonlinear
system the control failed even after only small deviations
from the equilibrium points. Therefore, in order to describe
more of the nonlinear system, models linearized in a
number of non-steady-state points were included in the
set as well. The new operating points were selected from
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Fig. 2. The models linearized in steadystate operating
points

simulations of the nonlinear model. The first non-steady-
state points originate from open loop simulations of small
steps in the control signal. In the next set of simulations
a first attempt of QFT based controllers were used and
new operating points were added as points where the
controllers could no longer stabilize the system. Models
linearized in new operating points were iteratively added
to the set of linear models accordingly. In Figure 3 the
complex representations of all these new linearized models
are plotted in the same Nichols chart as the previous ones,
illustrating how the templates become larger. In fact, the
resulting Horowitz-Sidi bounds are found to be very hard
to fulfill. The closed loop specifications can therefore not
be chosen too hard. The closed loop criterion to be fulfilled
was chosen as:

‖S‖∞ < 6 dB (11)

Even if a linear controller could be designed to fulfill all
bounds, the performance would likely not be acceptable.
However, if the models are grouped into a few temperature
intervals, one higher performing linear controller can be
determined for each interval. Five overlapping intervals
were found to be satisfactory. In the following subsection,
the procedure for finding a suitable controller for low
temperatures is described in detail. The remaining four
controllers have been developed in the same manner.
The issue here is to investigate if a small number of
linear controllers can be used. The QFT analysis shows
that it is possible to find these controllers. The interval
for each controller is decided before the QFT method
is used to find an appropriate controller. Hence, in a
true system the intervals can be chosen such that the
most likely operating region will fall entirely within the
interval of one single controller. The number of overlapping
intervals can also be decided upon when using this method
on a true system. Smaller intervals will give a larger
number of controllers, each one of them more optimal
for control of the nonlinear system within the interval.
When implementing the overlapping controllers found
from the QFT procedure, the controller switching should
be performed by some standard method applying bumpless
transfer and for example hysterisis to avoid sliding mode.

Fig. 3. Models linearized in operating points and in a
number of other points

Fig. 4. Low temperature linearized models.

5.1 QFT for Low Temperatures

As an example of the QFT based design, the temperature
interval 300K to 330K is chosen. First, the size and
shape of the templates are investigated. Figure 4 shows
the complex representations of the linearized models in
a Nichols chart. The nominal model chosen is the model
linearized in the steadystate operating point where T =
300.

None of the linear open loop models is allowed inside
the 6 dB curve of the Nichols chart at any frequency. A
selection of the resulting Horowitz-Sidi bounds for the
nominal model to stay outside is shown in Figure 5. In
Figure 5, where the Nichols diagram of the nominal model
is shown as a thick, solid curve to the left. As a first
attempt, a controller suitable for control of all models
linearized in the stationary operating points is used:

Fy1 = −0.0008
(s+ 0.06) (s+ 0.0008)

s (s+ 0.3) (s+ 0.04)
= −0.0008Fy (12)

The Nichols diagram of the nominal open loop model in
series with Fy1 is shown in Figure 5 as the solid thick
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Fig. 5. A selection of Horowitz-Sidi bounds for frequencies
0.0002 (dotted), 0.0005 (solid), 0.002 (dashed) and
2 (thin solid). The nominal model (left, thick) and
nominal model in series with a preliminary controller
Fy1 (right, thick)

curve to the right. As can be seen from the figure, the
open loop models using the controller Fy1 will violate the
Horowitz-Sidi bounds. One way of solving that problem
is to lower the high frequency gain of the controller. Yet
another possibility is to increase the gain, use a lead filter
to get a phase lift at ω = 5 · 10−4 and a filter for loop-
shaping at high frequencies. An example of that kind of
controller is:

Fy2 = −75Fy
(s+ 0.6) (s+ 0.2) (s+ 0.015)

(

s+ 10−4
)

(s+ 1.5) (s+ 0.025) (s+ 0.01)
(13)

Stability The criterion (11) is not sufficient to guaranty
stability of all closed loop models. Hence, a stability
criterion must be used in addition to (11). Since most
linearized models are unstable, the simplified Nyquist
theorem cannot be used to verify stability of the closed
loop models. Thus, the characteristic equations 1+Li (s) =
0 have been calculated for all plant cases to sort out cases
where roots of the characteristic equation have positive
real part. Adding the stability criterion to the closed
loop specifications shows that lowering the high frequency
gain will result in unstable closed loops for a group of
linear open loop unstable models within the set of models
investigated. Therefore, the above procedure using loop
shaping and a lead filter was used, which resulted in the
controller (14). With this controller the nominal open loop
model stays well outside all Horowitz-Sidi bounds as shown
in Figure 6.

Simulations of the nonlinear tank reactor model in closed
loop with this controller shows that as long as the cooling
system has not reached its physical limitations, the con-
troller performs very well in reducing the impact of input
disturbances. The servo problem has not been the issue
here, though the controller is found to be able to follow
step reference changes up to 20 K.

Fig. 6. A selection of Horowitz-Sidi bounds and the nom-
inal model in series with a better controller Fy2

6. CONCLUSIONS

Quantitative feedback theory (QFT), a theory for linear
uncertain systems, has been used for designing temper-
ature control of an ideally stirred tank reactor operated
continuously with an exothermic reaction. This system
is highly nonlinear and locally unstable. Linearizing the
model in a number of operating points gives a set of linear
models that is regarded as an uncertainty description.
The QFT method shows that if the reactor is operated
very close to the stationary linearization points one rather
simple linear controller can be used for the whole operating
window. However, control of the nonlinear model some-
times requires operation outside a stationary point which
this first controller cannot handle. Models linearized in
relevant non-stationary operating conditions were there-
fore added to the uncertainty description to improve the
robustness. Further, the operating window was divided
into a low number of temperature intervals, each having a
designated controller. In this paper five linear controllers
have been found where each one of them performs very
well in simulations with the nonlinear model. The QFT
method provides a framework for finding a linear control
structure, that is intuitive to use. However, there are no
optimal solutions provided by the method and the design
can be improved indefinitely. The controller design of this
example can be improved further using the method of
finding equivalent linear models, described in Horowitz
(1993), now that suitable input signals are provided by
the controllers designed here.
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7. LIST OF SYMBOLS

A The reactant
Ac Area of cooling system

(

m2
)

B The product
cλ Concentration of substance λ = A, B, l (mol)
cλin Feed concentration of substance λ

(

mol/m3
)

cp,λ Heat capacity of substance λ (J/ (mol · K))
cpc Heat capacity of cooling liquid (J/ (mol · K))
E Activation energy (J/mol)
hc Heat transfer coefficient from cooling system to

reacting liquid
(

W/
(

K · m2
))

k0 Reaction rate coefficient
(

s−1
)

l Liquid solvent
Mλ Molar mass of component λ (kg/mol)
Qin Feed flow to the reactor vessel

(

m3/s
)

Qout Outlet flow from the reactor vessel
(

m3/s
)

Qc Feed flow to the cooling system
(

m3/s
)

r Reaction rate
(

mol/
(

m3 · s
))

R The ideal gas constant (J/ (mol · K))
t Time (s)
T Temperature in the reactor (K)
Tcm Mean temperature in the cooling system (K)
Tcin Inflow temperature to the cooling system (K)
V Volume of the reactor vessel

(

m3
)

Vc Volume of the cooling system
(

m3
)

∆Hr Heat of reaction (J/mol)
ρλ Density of component λ

(

kg/m3
)

ρc Density of the cooling liquid
(

kg/m3
)
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