
A Continuous-time Fixed-lag Smoother

Converging in Finite Time

Bo Kyu Kwon ∗ Wook Hyun Kwon ∗

∗ The School of Electrical Engr. & Computer Science, Seoul National
University, Seoul, Korea. (Tel: 82-2-873-4704;

e-mail:{bkkwon,whkwon}@cisl.snu.ac.kr).

Abstract: In this paper, we propose a new fixed-lag smoother that estimates the fixed-delayed
state for a continuous-time stochastic system. The estimation error variance of the proposed
smoother is minimized under the constraint that the estimated state converges to the real state
exactly in finite time after noises or uncertainties disappear. For numerical computing, the
proposed smoother is represented in a differential form. In order to achieve the convergence
in finite time, any additional processes such as batch processing and sampling data through
discrete-time techniques are not required. A numerical example is presented to illustrate the
finite time convergence of the proposed smoother in comparison with the asymptotic convergence
of the conventional Kalman smoothers.

1. INTRODUCTION

Estimation problems for finding out unknown variables
have been widely dealt with in science and engineering
areas. Among estimation problems, it has been considered
important to find out a state in a dynamic system when
only the partial information on the state is available
Barnett [1975], Franklin [1980], Kailath [1985]. In case
that a small delay is tolerable, a smoother, as one of
state estimators, has been commonly used to estimate the
state at the delayed time by using outputs measured up
to the current time. These smoothers hold its decision
for a more correct estimation so that it has the better
performance than the filter without delay or lag. In this
paper, we propose a new smoother that has the finite time
convergence as an attractive feature.

When temporary uncertainties or abrupt large noises
break out and disappear in a little time, the large esti-
mation error happens transiently and can converge to zero
asymptotically with an exponential rate by suitably choos-
ing the estimator eigenvalues Kailath [1985]. Furthermore,
in case of discrete-time systems, the convergence can be
carried out in finite time by choosing the zero eigenvalues
of an estimator, i.e., called a deadbeat response. It is
known that the guaranteed convergence time is n times the
sampling time and can be adjusted by choosing the estima-
tor eigenvalues Franklin [1980], Isermann [1981]. However,
the deadbeat response for a continuous-time system does
not arise naturally without some special processing. For a
deadbeat estimator, batch processing was employed with
least square and least mean square criteria Medvedev
[1992], Han [2001]. In Urikura [1987], the sample and hold
scheme was applied to achieve the deadbeat response.
By using some special structures, deadbeat controls and
lag-free filters were proposed without batch processing
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and sampling data Engel [2002], Nobuyama [1991]. To
the best of the author’s knowledge, there is no result on
the continuous-time fixed-lag smoother which converges
in finite time without additional process such as batch
processing and sampling data.

In this paper, as a general version of the existing deadbeat
filter, we propose a new fixed-lag smoother that guarantees
the convergence in finite time. The proposed smoother is
obtained in such an optimal fashion that the estimation
error variance is minimized while keeping the deadbeat
property. If the lag size is set to zero, the smoother in this
paper reduces to the deadbeat filter that is an improved
version of Engel [2002] since external noises are concerned
and the optimization based design is employed.

This paper is organized as follows: In Section 2, an opti-
mal fixed-lag smoother which converges in finite time is
proposed for a continuous state space model. In Section 3,
via numerical example, the performance of the proposed
smoother with the finite time convergence is compared
with that of the Kalman smoother with the asymptotical
convergence. Finally, the conclusion is presented in Section
4.

2. A CONTINUOUS-TIME FIXED-LAG SMOOTHER
CONVERGING IN FINITE TIME

Let us consider the following linear continuous-time state
space model:

ẋ(t) = Ax(t) + Bu(t) + Gw(t), (1)

y(t) = Cx(t) + v(t), (2)

where x(t), y(t), u(t), v(t), and w(t) are the state, the
measurement, the input, the system noise, the measure-
ment noise, respectively. The covariances of w(t) and v(t)
are denoted by Q and R, respectively. The pair (A,C) of
the system (1)–(2) is assumed to be observable so that
stabilized observers can be constructed.
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Fig. 1. The structure of the proposed smoother

If we choose two matrices Mi (i = 1, 2) such that A −
MiC are Hurwitz and {A − MiC, Mi} are controllable,
two standard identity estimators for the system (1)-(2)
are obtained as

żi(t) = Fizi(t) + Miy(t) + Bu(t), i = 1, 2, (3)

where Fi = A − MiC Chen [1998]. Note that it is known
to guarantee that z(t) goes to x(t) as t → ∞.

Augmenting parameters of two observers as

F
△
=

[

F1 0
0 F2

]

, M
△
=

[

M1

M2

]

,

D
△
=

[

B
B

]

, L
△
=

[

I
I

]

, z(t)
△
=

[

z1(t)
z2(t)

]

, (4)

we have

ż(t) = Fz(t) + My(t) + Du(t). (5)

Here, the state x(t − h) delayed from the current time t
by h is estimated from z(·) generated from (5). For this
purpose, the smoother is given as the following form:

x̂(t − h|t) = K1[z(t − h) − e−Fhz(t)]

+ K2[z(t − h) − eF (T−h)z(t − T )], (6)

where T is a positive number greater than h, and K1 and
K2 are the gain matrices to be determined later on. It is
noted that we use z(·) at three time points, t, t − h, and
t− T for estimating the state x(t− h) at the current time
t. The structure of the smoother (6) is depicted in Fig. 1.

By using the relationship Fi = A − MiC, the following
dynamic equation can be obtained

d

dt
{z(t) − Lx(t)}

= Fz(t) + M{Cx(t) + v(t)} + Du(t)

−L{Ax(t) + Bu(t) + Gw(t)}

= F{z(t) − Lx(t)} + Mv(t) − LGw(t), (7)

From (7), we can represent z(t) − Lx(t) in terms of z(t −
h) − Lx(t − h) and noises on the horizon [t − h, t],

z(t) − Lx(t) = eFh{z(t − h) − Lx(t − h)} + Ξ(t), (8)

where the noise term Ξ(t) is given as

Ξ(t) =

∫ h

0

eF (h−τ)η(t − h + τ)dτ (9)

with η(t) = Mv(t)−LGw(t). Solving for z(t−h)−Lx(t−h)
yields

z(t − h) − Lx(t − h) = e−Fh{z(t) − Lx(t) − Ξ(t)}.(10)

Taking similar steps, we also have the following relation-
ship.

z(t − h) − Lx(t − h)

= eF (T−h){z(t − T ) − Lx(t − T )} + Γ(t) (11)

where Γ(t) is given as

Γ(t) =

∫ T−h

0

eF (T−h−τ)η(t − T + τ)dτ. (12)

By using (10) and (11), the estimated state (6) can be
rewritten as

x̂(t − h) = [K1L + K2L]x(t − h) − K1e
−FhLx(t)

−K2e
F (T−h)Lx(t − T ) − K1e

−FhΞ(t)

+ K2Γ(t). (13)

In order to make the estimated state x̂(t − h) track down
the real state x(t−h) exactly when noises or disturbances
disappear on the horizon [t− T, t], K1L + K2L, K1e

−Fh,
and K2e

F (T−h) are set to an identity matrix, a zero
matrix, and a zero matrix, respectively. By incorporating
the constraints on K1 and K2, the estimation error x̂(t −
h) − x(t − h) is represented only in terms of noises,

e(t − h|t)
△
= x̂(t − h|t) − x(t − h)

=−K1e
−FhΞ(t) + K2Γ(t). (14)

Then, the covariance matrix of the estimation error is
obtained as

E[e(t − h)eT (t − h)] = K1W1K
T
1 + K2W2K

T
2 ,

where W1 and W2 are given as

W1 =

∫ h

0

e−FτΩe−F T τdτ,

W2 =

∫ T−h

0

eF (T−h−τ)ΩeF T (T−h−τ)dτ,

with Ω = MRMT + LGQGT LT .

The object is now to determine gain matrices K1 and
K2 that minimize E[e(t − h)eT (t − h)] while meeting the
constraints on K1 and K2. The optimization problem to
solve can be stated as follows:

min
K1,K2

K1W1K
T
1 + K2W2K

T
2 . (15)

subject to K1L + K2L = I, K1e
−FhL = 0, and

K2e
F (T−h)L = 0.

Let α and β be K1L and K2L, respectively. By using the
constraints, K1 and K2 can be expressed as

K1 = [ α 0 ]
[

L e−FhL
]−1

, (16)

K2 = [ β 0 ]
[

L eF (T−h)L
]−1

, (17)

where the inverses of matrix blocks are checked later on.
If we define two vectors W̃1 and W̃2 as
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W̃1 = N1W1N
T
1 ,

W̃2 = N2W2N
T
2 ,

with matrices N1 and N2 given by

N1 =
[

e−F1heF2h − e−F1heF2h + I
]

,

N2 =
[

e−F1(T−h)eF2(T−h) − e−F1(T−h)eF2(T−h) + I
]

,

the optimization problem (15) can be represented in terms
of α and β

min
α,β

αW̃1α
T + βW̃2, (18)

subject to α + β = I.

Using a technique of completing the square, we can obtain
optimal α and β as

α = (W̃1 + W̃2)
−1(W̃2 + W̃T

2 ), (19)

β = I − (W̃1 + W̃2)
−1(W̃2 + W̃T

2 ). (20)

Substituting the above α and β into (16) and (17), we have
optimal K1 and K2.

From now on, we check the inversions of
[

L e−FhL
]

and
[

L eF (T−h)L
]

in (16) and (17). To begin with, we
compute the determinants of two block matrices:

det(
[

L e−FhL
]

) = (−1)n det(I − e−F1heF2h)

× det(e−F2h), (21)

det(
[

L eF (T−h)L
]

) = (−1)n det(eF1(T−h))

× det(I − e−F1(T−h)eF2(T−h)).(22)

It was shown in Engel [2002] that if M is chosen such that

Re λj(F2) < σ < Re λj(F2), j = 1, 2, · · · , n (23)

for some σ < 0, then
[

L eFrL
]

for almost all positive r.
According to this result, the inverses of block matrices in
(17) are guaranteed.

We can see that, from (5) and (6), the proposed smoother
has the following batch form

x̂(t − h|t) =−K1

∫ h

0

e−FτY(t − h + τ)dτ

+ K2

∫ T−h

0

eT−h−τY(t − T + τ)dτ, (24)

where K1 and K2 are given in (16) and (17), and Y(τ) =
My(τ) + Du(τ).

If the fixed-lag size h in this paper is set to zero, the
proposed smoother reduces to the finite convergence filter
to estimate the current state x(t). This filter would be an
improved version of Engel [2002] since external noises are
concerned and the optimization based design is employed.

3. NUMERICAL EXAMPLE

In this section, we give a numerical example to illustrate
the finite time convergence of the proposed smoother.

Consider a state space model:
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Fig. 2. Estimation errors of proposed smoother and
Kalman smoother

ẋ(t) =

[

−8.68 + δ(t) 0.37
−0.27 −0.80 + δ(t)

]

x(t)

+

[

0.27
5

]

w(t), (25)

y(t) = [ 1 + 0.01δ(t) 1 + 0.01δ(t) ] x(t) + v(t), (26)

where δ(t) is an uncertain model parameter. The system
noise covariance Q is 0.02 and the measurement noise
covariance R is 0.02. T and the fixed-lag size h are taken
as T = 0.1 sec andh = 0.03sec, respectively. δ(t) for
temporary uncertainties is given as

δ(t) =

{

0.1, 0.5 ≤ t < 0.7,
0, otherwise.

(27)

The proposed smoother is compared with a general
Kalman smoother and we will check their convergence
property when noises and disturbances do not exist. The
estimation errors of the proposed smoother and fixed-lag
Kalman smoother are compared in Fig. 2. We can see that
the estimation error of the proposed smoother converge
to zero in finite time while that of the fixed-lag Kalman
smoother converges to zero asymptotically. As designed
in advance, the proposed smoother has the finite time
convergence when noises and disturbances do not exist.

4. CONCLUSION

In this paper, a new smoother was proposed to guarantee
the finite time convergence for a continuous-time state
space model. The proposed smoother was obtained so as
to achieve the minimum variance of the estimation error
under the constraint of the finite time convergence. We
employed a new structure of a smoother instead of batch
process with high computation load and sampling data
through discretization in order to obtain the finite time
convergence. In addition, since stochastic systems with
noises are considered, the smoother in the paper could be
more widely utilized than existing deadbeat estimators for
deterministic systems without noises.
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