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Abstract: In this work adaptive sliding mode controller is designed and implemented on a simulated high 
purity binary distillation column. The sliding mode controller design procedure is composed of 
approximate linearization and recursive backstepping approach. This makes the controller capable of 
eliminating the destabilizing effect of unknown structured plant parameter and uncertainty due to process 
model mismatch. Each of the first n-1 virtual control law is designed using zero order sliding mode 
controller to eliminate unmatched uncertainty. In the final step general sliding mode controller is used for 
eliminating the matched uncertainty of the process. The proposed control law also guarantees the exact 
output tracking in the presence of unknown unstructured process parameter. 

1. Introduction 

  Variable structure control (VSC) with sliding mode, 
commonly known as sliding mode control (SMC),  was first 
proposed in the early 1950’s in Russia by (Emel'yanov., S.V., 
1959) During the last decade, researchers showed significant 
interest in the design and implementation of sliding mode 
control strategies for a wide spectrum of system types 
including Non-linear, Multi–Input/Multi–Output systems 
(MIMO) and Stochastic Systems (DeCarlo and Matthews., 
1988;Edwards and Spurgeon., 1998; Utkin.,1992). The basic 
philosophy of Sliding mode control is to move the system 
states from any initial state on to a user-defined surface in the 
state space (switching surface) using high-speed switching 
control law and to maintain the states on that surface. This 
results in a system whose dynamics is governed only by the 
parameters that describe the sliding surface and is insensitive 
to parametric uncertainties and external disturbances. 

2. Process description 

Dual composition control of distillation column has been 
studied extensively by many researchers. The rigorous 
distillation column model is described in the work of (Choe 
and luyben, 1987, Skogetad, 1997) and is not included here. 
This distillation column, separating methanol water mixture, 
is simulated here and used as process for implementing the 
proposed controller. 

3. Representation of uncertainty 

For uncertain system, we can write the system as: 
( ) ( ) ( );      ( )x f x g x u x y h xψθ= + + + Δ =   (1.1)

Here sRθ ∈ are the unknown parameter vectors. 
: n nR R sψ ×→ are the known functions. ∆ : Rn Rn are the 

unknown vectors whose magnitude can be approximated by 
looking at the process uncertainty. Parameter independent 
diffeomorphism results in:  
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4. Sliding mode controller for uncertain system 

The design procedure is recursive (Zinober and Liu, 1996). 
At its ij-th step the respective subsystem is stabilized with 
respect to a Lyapunov function . The stabilizing function ijV
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ijα and a tuning function ijτ are obtained by the stabilization 

of Lyapunov function. The overall Lyapunov function can be 
viewed as 1

2

1 1 1 1

i ip p

i j i j i j
i j i j

V V c
γ γ

ξ
−

= = = =

= ≤ −∑ ∑ ∑ ∑ . 

Assume co-ordinate transformationξ as 

1 1

1 1

11 11 1

12 12 11

13 13 12

1( 1) 1( 1) 1( 2 )

1 1

21 21 2

22 22 21

( 1)p p p

r

r

p p p

z y
z
z

z

z

z y
z

z

γ γ γ

γ γ

γ γ γ

1

ξ
ξ α
ξ α

ξ

ξ

ξ
ξ α

ξ α

− −

−

= −
= −
= −

= −

=

= −
= −

= −

α −

  (1.3) 

Where { }1ry ypr are the reference trajectory. 

 
Step 1:  according to Eqn. (1.3) 
 11 11 1rz yξ = − and 12 12 11zξ α= −    

11 12 11 11
Tz z θ ψ= + + Δ    (1.4)  

Substituting the value of we get 11z

11 12 11 11 11 1
T

ryξ ξ α θ ψ= + + + Δ −   (1.5) 

consider the first Lyapunov function as  
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differentiating above we get 
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Parameter update law becomes 

 11θ̂ τ=     (1.10) 

using (1.8) and (1.9) we get 
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Now the choice of  

12α is 
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ˆ ( )T c signα ξ θ ψ ξ ρ ξ α=− − − − +   (1.15) 

If we substitute value of (1.15) in (1.13) the final form is 
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Step 3: 11, 1  1i j to γ= = −  
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The Lyapunov function becomes 
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Step 4: 11 ,i j γ= = :   
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Now we start designing sliding surface which appears in the 
final equation recursively. The control algorithm can be 
deduced easily by maintaining stable sliding surface. 
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Where is the sliding surface with respect to output . 1s 1y
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The sliding surface is chosen such that 
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Putting it in equation (1.19) we get 
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Equation (1.21) becomes 
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Step 5: 11  ,  1  1i to p j to γ= = −  

Similarly from above argument we get. 
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So the Lyapunov function becomes 
1

1 1

1
2

( 1) 1 ( 1) ( 1) ( 2)
1 1

p

i ir r i i
i r

V c
γ

γ γξ τ ξ ξ
−

− −
= =

= − + +∑∑ 1 1iγ γ− − (1.24) 

Step 6: ,  pi p j γ= =  

( )
( 1)

2
( 1)

1

( 1)
1

1
2

1 1

1

( 1) ( 1) ( 1) ( 2)
1 1 1 1

( 1)

1
2

ˆ ˆ

p p

p p

i

i
p

i r i i i

i

p

p p i
i

p

p p i i
i

p

ij ij
i j

p p p
T Tp

i l l i i i ij ij i j i j ij i j
i l i j

i

V V s

V V ss

c

V
f g u k

k

γ γ

γ γ

γ

γ
γ

γ γ γ γ γ

γ

ξ

θψ α ξ α θψ α

−

−
=

−
=

−

= =

−

− − −
= = = =

+

= +

= +

− +

⎛ ⎞= ⎛ ⎞
+ + +Δ − + + +Δ + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+

∑

∑

∑∑

∑ ∑ ∑∑
i

ir

− s
y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

(1.25) 

Now  

( )

( )

1( 2 ) ( 1) ( 1) ( 1)
( 1)

( 1) ( 1) ( 2 )

1
( 1)

,( 1)
1 1

( 1)

1
( 1)

( 1)

ˆ

( )

ˆ

ˆ

p p p

p

p p p

m
p

m
p

m

p

p

T
p p p p

p
p p p

p
p T

m n mn mn
m n mn

p
p T

m m mn mn
m n mn

p
p

l l

c

sign

z
z

f g u
z

γ γ γ γ
γ

γ γ γ

γ
γ

γ
γ

γ
γ

γ

ξ θ ψ ξ
α

ρ ξ α

α
θ ψ

α
θ ψ

α
α

η

− − − −

−
− − −

−
−

+
= =

−

= =
−

−

⎛ ⎞− − −
⎜ ⎟=
⎜ ⎟− +⎝ ⎠

∂
+ + Δ +

∂

∂
+ + Δ +

∂
=

∂
+

∂

∑ ∑

∑ ∑

( )
1

( 1)
1

1

( 1)
1 1

( ) ( ) ( , )

ˆ
p

l

p p p

n m
T

l l l

p
j

p

p p p il il i
i l

u x u

k s

γ

γ

γ γ γ

θ φ

α
τ

θ

τ τ ψ ψ

−

=

−

−

−
= =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Τ ⋅ + ϒ ⋅ +⎜ ⎟
⎜ ⎟
⎜ ∂ ⎟

+⎜ ⎟
∂⎝ ⎠

⎛ ⎞
= + Γ +⎜ ⎟

⎝ ⎠

∑

∑ ∑

(1.26) 

We know for stable sliding surface   should be less 

than zero. So keeping it mind we can deduce control law such 
that 
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And the parameter update law is 
1
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The above control law turns the Final Lyapunov function to 
our goal 

1
2
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ij ij
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5. Sliding mode controller for Distillation Column 

The sliding control law for the distillation column is derived 
based on the theory proposed in section 5.  Assumptions of 
constant hold-ups and ideal VLE simplify the system model 
considerably.  This will evidently create considerable 
mismatch in process and the system model used in the 
controller.  
The system model can be written as 
Bottom and reboiler 
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2 2

b b
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d M x
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= − − b
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Feed Tray 
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The possible sources of uncertainty of the process are 

a. For considering 1( )ac oV Vθ= + where is 

nominal vapor flow rate. 
oV

b. Relative Volatility 2( o )α α θ= +  as we 

consider linear vapor-liquid equilibrium 

0y xα= here. 
c. Feed flow rate 3( )oF F θ= + . 
d. Liquid fraction in feed 4( )

oF Fq q θ= + . 
e. Feed composition( )Fz . 

f. Feed Temperature ( ) nfT
The constant parameters , , ,

oo o F oF q Vα are the nominal 

values of feed flow rate, liquid vapor equilibrium relation, 
vapor flow rate, liquid fraction in feed and feed composition 
respectively. 
The parameter independent diffeomorphism  
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is used because the overall relative degree of the system is 
( ) ( )1 2 2 1 3m γ γ= + = + =  

 for output   [ ] [ ] [ ]1 2 11 21r r nt by y z z x x= = . 

   
By applying recursive law derived in section 4,  the final 
control law becomes 
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(1.38) 

here ε is the design parameter. 
 

6. Results & Discussion 

The proposed adaptive sliding mode (ASM) controller is 
implemented on a simulated high purity distillation column 
and the performance of the controller is observed. The 
controller is further evaluated by forcing structured and 
unstructured uncertainty in the system. The sliding gains 
considered here depend on the choice of ρ . The nominal 
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values of the adaptive parameters which are used in this study 
are 

004320, 6, .73, 1, 395
oo F FF z q nfTα= = = = = . 

Fig. 1 shows that the set point tracking performance for the 
set point changes in distillate compositions by adaptive 
design. The composition set points are changed at every 20 
hour interval. Adaptive Sliding mode (ASM) tracked the set 
points efficiently.  

6.1. Effect of uncertain feed flow rate 

Disturbances in feed flow rate is considered as a deviation of 
a parameter value from its nominal value in the model used 
by the controller and therefore is an uncertainty to the system. 
Although disturbance in feed rate is expected to be having a 
small / limited magnitude of deviation with randomness, a 
fairly large (+22%) step change in feed, not uncommon as a 
load change, is considered here for severity. The effect of 
measured disturbance on controller performance is studied by 
implementing step increases in feed flow rate at time 50 hour. 
The sliding mode controller immediately estimated the 
uncertainty in terms of increased feed flow rate by around 
930 units and accordingly took corrective action.  It is evident 
from figure 2 that the product compositions stayed at their 
respective setpoints indicating a very good disturbance 
rejection capability by the controller.  

6.2. Effect of uncertain feed composition 

The effect of unmeasured disturbance on controller 
performance is being studied by implementing periodic 
change in feed composition. The amount of variation has 
given by setting the periodic signal at amplitude of +25% 
from its nominal value and a frequency of .1 hour. Feed 
compositions are generally considered as unstructured 
uncertainty as it never appears in the controller equation. 
Since the feed condition is liquid; the bottom composition 
was affected immediately by this periodic change. As evident 
from figure 3, the ASM controller shows good disturbance 
rejection capability in spite of no feedback information on 
feed composition.  

6.3. Effect of uncertain parameters 

Robustness in the parameter (α ) can be achieved by 
changing the operating pressure in the column. The pressure 
set point is changed at 30 hours in the pressure controller (PI) 
which manipulates coolant flow rate.  The main aspect of this 
can be viewed by estimation of α   by the adaptive sliding 
mode controller. Figure 4 shows that the ASM controller 
performs a rapid adaptation of   by increasing its value by 
nearly 50% for maintaining close loop stability.  

6.4. Effect of uncertain feed liquid fraction 

In Figure 5, the adaptive sliding mode controller shows the 
performance against the uncertainty in feed liquid fraction. 
This effect is studied by implementing periodic change in 
feed liquid fraction (qF ) with an amplitude of +18% from its 
nominal value and a frequency of .1 hour. Since the feed 
condition is liquid (qF =1), the bottom composition was 
affected immediately by this variation. Figure 5 shows the 
estimated parameter value for tackling the above uncertainty. 

The estimated value is not exactly the same as periodic 
variation in qF and therefore, the algorithm can not be used as 
an exact estimator of process parameter. However, its main 
objective of maintaining overall closed loop stability with 
desired performance is always achieved by this adaptation.  

6.5. Effect of uncertain feed temperature 

The effect of periodic disturbance in feed temperature on 
controller performance is depicted in figure 6. Feed 
temperature variation is also a case of unstructured 
uncertainty as this information is not known to the ASM 
controller. The variation in feed temperature is implemented 
by introducing a periodic wave signal having amplitude of 
30% from its nominal value and a frequency of .1 hour. 
Robustness of the ASM controller did not allow the 
compositions to move away from their setpoints in spite of 
this uncertainty. However, the manipulated variables become 
wavy in nature because of the rapid adjustments made by the 
controller to tackle the feed temperature variation.  

7.  Conclusions 

A systematic design of adaptive sliding mode controller for 
MIMO system has been presented. The controller algorithm 
can be applied for a wide class of nonlinear MIMO system. 
Finally the controller algorithm is applied to a high purity 
Distillation Column. This column is simulated using a 
rigorous model. ASM controller designed based on the 
simplified model showed excellent performances for both 
servo and regulatory situations in presence of structured and 
unstructured uncertainty.  
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Fig. 1. servo performance of ASM algorithm. 
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Fig. 2. Comparisons between ASM controller under 
 (22%) feed flow rate change. 
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Fig. 3. comparisons under the cyclic change in feed compositions. 
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Fig. 4. Comparisons under the change of relative volatility. 
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Fig.5. comparisons under periodic disturbance in feed liquid fraction. 
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Fig. 6. comparisons under periodic change in feed Temperature. 
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