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Abstract: We propose a new stability constraint for contractive receding horizon control
(RHC), which was inspired by a non-monotone line search rule for optimization algorithms.
Previously proposed stability constraints for contractive RHC can be seen as special cases of
our new constraint. The new stability constraint guarantees asymptotic stability, but it does not
ensure the monotone decrease of the state to zero. The non-monotone nature of our constraint
is less restrictive than previous contractive constraints, and in principle, should result in a larger
region of attraction (stability region). We present simulation results which show that this is in
fact the case. We also present several enhancements which result in a faster system response
and/or a larger stability region.
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1. INTRODUCTION

Receding Horizon Control (RHC) also known as a Mov-
ing Horizon or Model Predictive Control (MPC) systems
are a form of sample-data feedback system in which the
control to be applied over the sampling interval is com-
puted by solving a finite-horizon optimal control problem
(FHOCP). Stability is ensured by endowing the FHOCP
with set of appropriate properties. RHC is particularly
effective for controlling nonlinear systems and/or when
the input is bounded. In Mayne et al. (2000) we find an
excellent survey of various schemes used to ensure stability
of RHC system with input and state-space constraints. In
this paper, we are concerned with contractive RHC sys-
tems, in which stability is ensured by means of a terminal
inequality in the governing optimal control problem.

A contractive test for stability was first introduced in
Polak and Mayne (1981). It was subsequently applied to
contractive RHC in a series of three papers by Polak and
Yang (Polak and Yang (1993a,b); Yang and Polak (1993)),
in which stability was ensured by requiring that the system
states xk, at the sampling times tk, satisfy an inequality
of the form ‖xk+1‖

2 ≤ α‖xk‖
2, with α ∈ (0, 1). Since one

cannot be sure that such an inequality can be satisfied with
the horizon fixed in the optimal control problem, Polak
and Yang solved a free-time optimal control problem,
which resulted in an asynchronous sample-data system
with a rather large stability region. They showed that the
such an asynchronous sample-data RHC was robustly sta-
ble and was able to attenuate L∞ bounded disturbances.

The use of asynchronous sample-data RHC did not gain
favor in industry, where synchronicity was considered im-
portant. Because of this, de Oliveira Kothare and Morari
⋆ This work is supported by ARO SWARMS (W911NF-0510219)
and ARO Phase II STTR (W911NF-06-C-0192)

(2000) revisited the problem of RHC with a contractive
stability constraint, with the dynamics in discretized form.
They fixed the horizon in the optimal control problem
(in their case a discrete time optimal control problem)
and they showed that their algorithm renders the closed-
loop system exponentially stable. However, because they
coupled the contractive stability constraint with a fixed
horizon, the set of initial states for which the governing
optimal control problem is smaller than in the case of
Yang and Polak (1993), and hence the guaranteed region of
attraction of the origin is also smaller. Another variation
of contractive RHC was presented in Cheng and Krogh
(2001).

In this paper, we propose a new contractive stability con-
straint for RHC, which was inspired by the non-monotone
line search rule proposed in Grippo et al. (1986) for op-
timization algorithms. It can be seen that the contractive
stability constraints in de Oliveira Kothare and Morari
(2000) and Cheng and Krogh (2001) are special cases of
our new constraint. The new stability constraint guaran-
tees asymptotic stability. However, unlike the constraints
in Yang and Polak (1993) and de Oliveira Kothare and
Morari (2000), it does not enforce a monotone decrease of
the state to zero. The use of a non-monotone constraint
is less restrictive than the existing contractive constraint,
and in principle, should result in a larger region of attrac-
tion (stability region). We present simulation results which
show that this is in fact the case. We also present several
enhancements which result in a faster system response
and/or a larger stability region.

In Section 2 we present our new non-monotone asymptotic
stability condition, in Section 3 we state RHC algorithm,
in Section 4 we provide asymptotic stability result of our
RHC algorithm, in Section 5 we present numerical results,
and our concluding remarks are in Section 6.
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2. NON-MONOTONE ASYMPTOTIC STABILITY
CONDITION

Before we present the non-monotone asymptotic stability
concept, we need the following lemma.

Lemma 1. Suppose that the sequence {γk}
∞
k=0, γk ∈ R,

k ≥ 0, is such that

(i) γk ≥ 1 and γk ≥ γk+1 for all k ≥ 0;
(ii)

∏∞

k=0 γk < ∞.

If {ak}
∞
k=0 is a sequence in R, such that 0 ≤ ak+1 ≤ γkak

for all k ≥ 0, then there is an a∗ ≥ 0 such that ak → a∗ as
k → ∞.

Proof. First, since for all k we must have that ak ≤∏k−1
i=0 γia0 ≤

∏∞

i=0 γia0 < ∞. It follows that the sequence
{ak}

∞
k=0 is bounded and hence must have accumulation

points. Suppose it has two accumulation points: a∗ < a∗∗,
and that a∗∗ − a∗ = 4δ, δ > 0. Let β > 0 be such that

β(a∗∗ − 3δ) ≤ δ. (1)

Since
∏∞

k=0 γk < ∞, there exists a k1 such that for all
k ≥ k1,

∏∞

i=k γi ≤ 1 + β. Next, since a∗ and a∗∗ are
accumulation points, there exist indices k1 < k2 < k3 < k4

such that ak2
≥ a∗∗ − δ, ak3

≤ a∗ + δ, and ak4
≥ a∗∗ − δ.

Now, we must have that

ak4
≤ ak3

∞∏
k=k3

γk

≤ ak3
(1 + β)

≤ (a∗ + δ)(1 + β)
≤ (a∗∗ − 3δ)(1 + β)
≤ a∗∗ − 2δ.

(2)

But this contradicts the fact that ak4
≥ a∗∗ − δ, and

hence the sequence {ak}
∞
k=0 cannot have more than one

accumulation point, i.e., it must converge.

The following non-monotone stability condition was in-
spired by the non-monotone line search rule that was
proposed by Grippo et al. (1986).

Theorem 2. Suppose that we have a scalar sequence
{γk}

∞
k=0 such that γk+1 ≤ γk ∀k ≥ 0, γk → 1 as k → ∞,

and
∏∞

k=0 γk < ∞, and a vector sequence {xk}
∞
k=0 in R

n

such that

(i)

‖xk+1‖
2 ≤ max

0≤j≤m(k)
γk−j‖xk−j‖

2 − α‖xk‖
2, (3)

where 0 < α < 1, k ≥ 0, m(0) = 0, and

m(k)
△
= min[m(k − 1) + 1,M ], (4)

for some fixed M ∈ Z.
(ii)

‖xk+1 − xk‖
2 ≤ β‖xk‖

2, ∀k ≥ 0, (5)
for some ∞ > β ≥ 1.

then

(a) xk remains in a compact set {xk ∈ R
n| ‖xk‖

2 ≤
C‖x0‖

2} for all k ≥ 0, where C ∈ [1,∞).
(b) ‖xk‖ converges to zero as k → ∞

Proof. For each k ∈ Z, we define l(k) ∈ {k −m(k), . . . k}
to be an index (not necessarily unique) determined by the
relation

‖xl(k)‖
2 = max

0≤j≤m(k)
‖xk−j‖

2. (6)

Note that k − m(k) ≤ l(k) ≤ k by definition. It follows
from (4), the fact that m(k + 1) ≤ m(k) + 1, and

‖xl(k+1)‖
2 = max

0≤j≤m(k+1)
‖xk+1−j‖

2

≤ max
0≤j≤m(k)+1

‖xk+1−j‖
2

= max[‖xl(k)‖
2, ‖xk+1‖

2]

≤ max[‖xl(k)‖
2, γl(k)‖xl(k)‖

2]

= γl(k)‖xl(k)‖
2.

(7)

Therefore,
‖xl(k+1)‖

2 ≤ γl(k)‖xl(k)‖
2, (8)

and

‖xl(k+1)‖
2 ≤

k∏
j=0

γl(j)‖x0‖
2, ∀k ≥ 0. (9)

It now follows from (8) and Lemma 1, that the sequence
‖xk‖

2 converges as k → ∞.

After k = M − 1 steps, m(k) saturates and assumes
the value of M , by definition. Without loss of generality,
ignoring the first M − 1 steps, we obtain that

γk−M ≥ γl(k) (10)

and

∞ >
∞∏

k=0

γk ≥
∞∏

k=M

γk−M ≥
∞∏

k=M

γl(k), (11)

which implies that
∏∞

k=0 γl(k) < ∞.

If we set

C =
∞∏

k=0

γk, (12)

then we conclude from (9) combined with (6), that

‖xl(k+1)‖
2 ≤ C‖x0‖

2, ∀k ≥ 0. (13)

From (3),

‖xk+1‖
2 ≤ γl(k)‖xl(k)‖

2 − α‖xk‖
2, (14)

and, by design,

‖xl(k)‖
2 ≤ γl(l(k)−1)‖xl(l(k)−1)‖

2 − α‖xl(k)−1‖
2. (15)

Since γl(l(k)−1) → 1 as k → ∞,

0 = lim
k→∞

(‖xl(k)‖
2 − γl(l(k)−1)‖xl(l(k)−1)‖

2)

≤ − lim
k→∞

α‖xl(k)−1‖
2,

(16)

which implies ‖xl(k)−1‖
2 → 0 as k → ∞. It now follows

from (5) that

‖xl(k) − xl(k)−1‖
2 ≤ β‖xl(k)−1‖

2, (17)

and hence that ‖xl(k)‖
2 → 0 as k → ∞.

Finally, since

‖xk‖
2 ≤ ‖xl(k)‖

2 = max
0≤j≤m(k)

‖xk−j‖
2, (18)

‖xk‖
2 → 0 as k → ∞.

Remark 3. Note that the conclusions of Theorem 2 remain
valid even if (3) is violated a finite number of times.

Remark 4. Note that setting γk = 1 for all k, results
in ‖x1‖ ≤ ‖x0‖. Using a monotone decreasing sequence
{γk}

∞
k=0 results in a useful relaxation. In particular, if the
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xk are sampled state vectors of a non-minimum phase
linear dynamic system, enforcing the condition (3) with
γk = 1 may result in infeasibility due to undershoot.

Note that, if we set M = 0 and γk = 1, then (3) becomes

‖xk+1‖
2 ≤ (1 − α)‖xk‖

2, (19)

which is identical with the contractive constraint in Yang
and Polak (1993) and de Oliveira Kothare and Morari
(2000). In Cheng and Krogh (2001), a similar stability
constraint was applied to linear time invariant systems
with a RHC control law.

3. RECEDING HORIZON CONTROL ALGORITHM

3.1 Preliminaries

We define the set of admissible controls by

U , {u ∈ Lm
∞[0,∞)|u(t) ∈ U , ∀t ∈ [0,∞)} (20)

with U , {u ∈ R
m|‖u‖∞ ≤ cu}. For any control u(·) ∈

U , let x(t;xk, u) ∈ R
n be the solution of the following

ordinary differential equation

ẋ(t) = f(x(t), u(t))

x(t) ∈ R
n, u(t) ∈ U, t ∈ [0,∞)

(21)

at time t with the initial condition x(0;xk, u) = xk. We
assume (i) that f(x, u) is continuously differentiable in
both arguments, which ensures that the solution x(t;x0, u)
is unique and differentiable in u, and (ii) that 0 = f(0, 0).
Let 0 < ∆ < ∞ be the sampling interval of the RHC
scheme. We define tk = k∆, k = 0, 1, 2, . . ..

3.2 RHC Algorithm

Now we are ready to define the finite-horizon optimal
control problem (FHOCP) for our receding horizon control
algorithm. We assume that this optimal control problem
is defined on a fixed horizon, of length N∆, where N ≥ 1
is an integer. This problem has a cost function J(u) whose
exact structure is not important at this point, since it does
not impact our stability result.

Problem 5. We assume that we are given a set of vectors
xk, xk−1, . . . , xk−m(k) in R

n. The optimal control problem
to be solved is:

min
u∈U

J(u), t ∈ [0, N∆] (22)

subject to the system dynamics (21) with initial condition
x(0) = xk, and the inequality constraints

‖x(tk+1;xk, u)‖2 ≤ max
0≤j≤m(k)

γk−j‖xk−j‖
2 − α‖xk‖

2 (23)

‖x(t;xk, u) − xk‖
2 ≤ β‖xk‖

2, t ∈ [tk, tk+1],
(24)

where α ∈ (0, 1), k ≥ 0, m(·) are as defined in (4), and
∞ > β ≥ 1.

Remark 6. There is no objection to including in Problem 5
additional state-space constraints, but we did not do this
for the sake of simplicity.

Note that (24) implies (5). Although this functional
constraint adds many inequality constraints in the dis-
cretized FHOCP, these are rarely active, since β can be
set to a large number. The external active-set strategy
in Polak et al. (2007) can be used to exclude inactive

inequality constraints during optimization so that the
computational burden induced by (24) is minimized. In
de Oliveira Kothare and Morari (2000), (24) was regarded
as an assumption, and not included in the FHOCP formu-
lation for RHC algorithm.

The FHOCP defined above is used to define the RHC
algorithm below. Note that this is a “theoretical” version,
since it does not take into account computing time or
the discrepancies between the model state and the actual
state. For a more realistic approach, see Yang and Polak
(1993).

Algorithm 1. Receding Horizon Control

Data: x0, the state of the system (21) at t = 0.
Set k = 0.
loop

if t = tk then
Solve Problem 5, with initial state xk, and using the
preceding states xk−1, . . . , xk−m(k), for the optimal
control û(t), t ∈ [0, N∆].
Apply the control u(t) = û(t − tk) for t ∈ [tk, tk+1]
to the dynamical system (21).
Set xk+1 = x(tk+1;xk, u) and set k = k + 1.

end if
end loop

4. NON-MONOTONE ASYMPTOTIC STABILITY

With bounded input constraints, it is not possible to
stabilize an unstable system globally. Even for stable
systems, when the state is very large, it may not be
possible to satisfy the constraint (23). Hence we need the
following assumption.

Assumption 7. We assume that there exists a r ∈ (0,∞)

such that for all x ∈ Br , {x ∈ R
n| ‖x‖2 ≤ r2}, Problem 5

has feasible solutions.

We are now ready to state our main result.

Theorem 8. Suppose that Assumption 7 is satisfied and
consider the sample-data dynamical system resulting from
the use of the RHC scheme defined by Algorithm 1. Let
Ωf , {x ∈ R

n|C‖x‖2 ≤ r2} with C defined in (12). Then
(i) for any x0 ∈ Ωf , the trajectory defined by Algorithm 1
is well defined, and (ii) the resulting RHC feedback system
is asymptotically stable on the set Ωf .

Proof. (i) It follows from Theorem 2(a), by induction,
that for every x0 ∈ Ωf , and any k = 1, 2, . . ., xk,
determined by Algorithm 1 is in Br and hence that the
trajectory defined by Algorithm 1 is well defined.

(ii) To prove that our sample-data dynamical system is
asymptotically stable on the set Ωf , we must show that
(a) it is stable, and (b) that the trajectory of the closed-
loop system converges to the origin for any x0 ∈ Ωf .

(a) Let δ > 0 be given. It follows from the constraint (24)
that for all k ≥ 0 and t ∈ [tk, tk+1],

‖x(t;xk, u)‖2 ≤ (1 + β)‖xk‖
2 (25)

because

‖x(t;xk, u)‖2 − ‖xk‖
2 ≤ ‖x(t;xk, u) − xk‖

2. (26)

Hence, from Theorem 2(i) and the above inequality, we
conclude that
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‖x(t;xk, u)‖2 ≤ (1 + β)‖xk‖
2 ≤ (1 + β)C‖x0‖

2, (27)

for all k ≥ 0 and t ∈ [tk, tk+1].

Now, to show that the closed-loop system is stable, we
must to show that for any δ > 0, there exists an ǫ such
that ‖x0‖

2 < ǫ implies that ‖x(t;x0, u)‖2 < δ for all t ≥ 0.

For any given δ, let ǫ = min{r, δ/(C(1 + β))}, ‖x0‖
2 < ǫ.

Then we must have that

‖x(t;xk, u)‖2 ≤ (1 + β)C‖x0‖
2

< δ.
(28)

(b) By Theorem 2(ii), for any x0 ∈ Ωf , xk defined
by Algorithm 1 for k = 1, 2, 3, . . ., satisfies ‖xk‖ → 0
as k → ∞. Therefore, because of the constraint (24),
‖x(t;xk, u[tk,t])‖ → 0 as t → ∞, which completes our
proof.

Remark 9. It is possible to consider three generalizations
of Problem 5 aimed at either increasing the stability region
or the speed of response of the system to disturbances.

(i) In inequality (23), replace the constant value of α by
adaptively defined value of α:

α(xk) = min[α0, exp(−αe‖xk‖
2)] (29)

with α0 ∈ (0, 1) and αe > 0, which makes α small
when the state is large, making (23) easier to satisfy.

(ii) Incorporate α in the cost function so that (22) be-
comes replaced with

min
u∈U

J(u) − pα, 0 < α < 1, (30)

with p > 0 large, which should result in a faster
system response.

(iii) Fix α and γk in FHOCP and resolve FHOCP to find
the smallest value of M which result in a feasible
solution. Again, this should result in speeded up
system response.

5. NUMERICAL EXAMPLE

In order to test our RHC algorithm, we use the nonlinear
oscillator example in Mayne and Michalska (1990) with a
small modification, which causes the zero-input response
to become an ellipse (rather than a circle) in the phase
plane:

ẋ1 = −4x2 + u[µ + (1 − µ)x1]

ẋ2 = x1 + u[µ − 4(1 − µ)x2].
(31)

We define our performance index as

J(u) =
1

2

∫ N∆

0

‖x(τ ;xk, u)‖2 + ‖u(τ)‖2
2dτ, (32)

with µ = 0.5. We chose the sampling interval ∆ = 1, the
horizon length also to be ∆ (N = 1), and the control input
is constrained by |u| ≤ 0.5. We defined γk as

γk = exp(γ0(0.8)k−1). (33)

In order to solve Problem 5, the dynamics were discretized
using Euler’s method using a discretization interval of
1/32, and SNOPT, by Murray et al. (2002), was used as a
solver. See Polak (1997) Chapter 4 for a detailed treatment
of discrete time optimal control problems.

To obtain a meaningful comparison, we first set α = 0.3,
γk = 1, and M = 5, and computed a value for α to be
used with M = 0 by least squares curve fitting to ensure
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Fig. 1. Comparison of bounds computed by ‖xk+1‖
2 =

max0≤j≤m(k) ‖xk−j‖
2 − α‖xk‖

2. The jagged curve
corresponds to the case where α = 0.3 and M = 5,
and the smooth curve corresponds to the case where
α = 0.05 and M = 0.

that both cases have similar rates of convergence. The
resulting value of α was approximately 0.05. Fig. 1 shows
the resulting bounds.

Fig. 2 shows the response of the RHC closed-loop system
with plant dynamics (31) for two parameter sets in Algo-
rithm 1. We see that they have a similar convergence rate
when started from a point where Problem 5 has feasible
solutions for both cases.

In order to investigate the effectiveness of our new con-
straint (23) in enlarging the set of initial states from which
our system converges to the origin without violating the
feasibility constraint in Problem 5, we performed a series of
simulations with initial states in a mesh in the phase plane.
An initial state was tagged as ‘feasible’ if the resulting
trajectory satisfied ‖xk‖

2 ≤ 10−1 for some k without
producing an infeasibility error from solver. Otherwise, it
was tagged as ‘infeasible’. Fig. 3 shows the result with
α = 0.05, γ0 = 0, and M = 0, and Fig. 4 with α = 0.3,
γ0 = 2, and M = 5. Note that, in Fig. 5, a denser grid
was used for identifying more accurately the feasible, i.e.,
stability, region for the case of M = 0.

The results show that our new constraint enlarges the
stability region dramatically. The stability region shown
Fig. 5 is highly non-convex, and the ball satisfying As-
sumption 7, which was also used in de Oliveira Kothare
and Morari (2000), is very small. Therefore, enforcing the
contractive constraint at the end of the fixed horizon,
without any relaxation, makes the RHC algorithm very
conservative, and thus impractical.

Fig. 7 shows the behavior of our algorithm with the
enhancements described in Remark 9. α0 = 0.5 and
αe = 0.5 are used for the scheme (29), and p = ‖xk‖

2

is used for the scheme (30). As expected, the “optimal”
selection of α given by (30) results in the fastest system,
without adding to the burden of solving Problem 5. The
“adaptive” definition of α (29) is effective, but requires
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Fig. 2. Convergence rate comparison of closed-loop system
under RHC control. The solid line corresponds to
the case α = 0.3 and M = 5, and the dashed line
corresponds to the case α = 0.05 and M = 0.
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Fig. 3. The case α = 0.05, M = 0, and γ0 = 0. Initial
states resulting in feasible trajectories for Problem 5
are marked with ‘o’, those resulting in infeasible
trajectories for Problem 5 are marked with ‘x’.

parameter tuning, and hence is less desirable than the
“optimal” selection of α .

6. CONCLUSION

We have introduced a new stability constraint for contrac-
tive receding horizon control, as well as some enhance-
ments. Our numerical results show that the replacement
of the “classical” contractive stability constraint by the
new ones results in a very considerable enlargement of the
stability region.
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Fig. 4. The case α = 0.3, M = 5, and γ0 = 2. Initial
states resulting in feasible trajectories for Problem 5
are marked with ‘o’, those resulting in infeasible
trajectories for Problem 5 are marked with ‘x’.
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Fig. 5. The case α = 0.05, M = 0, and γ0 = 0 on a finer
mesh (201 × 201). For better visibility, initial states
resulting in infeasible trajectories for Problem 5 are
not marked here.
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