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Abstract: In this paper, we propose a generalized multi-scale modeling framework for a continuous 
alcoholic fermentation using Saccharomyces cerevisiae. Based on the developed multi-scale modeling 
framework, a multi-scale control (MSC) strategy using PID-type controllers is then designed and 
compared with that of a single-scale control (SCC) strategy. Results indicate that MSC strategy could 
greatly improve the closed-loop performance. Also, with the right choice of control strategy by embedding 
micro-scale controller, this study shows that more complex controller algorithms might not be necessary. 

 

1. INTRODUCTION 

Rapid progress in the fields of biotechnology such as 
biochemistry, molecular biology, and metabolic engineering 
has led to a tremendous growth of knowledge concerning 
many biological systems of interest. One particular example is 
the cell factory systems for the production of metabolites, e.g. 
ethanol, lysine and hosts of fine chemicals. Unfortunately, the 
realization of this improved knowledge at the process system 
engineering level with the aims to improve product yield and 
productivity has not yet matched this fast growing knowledge. 
One of the key obstacles towards the widespread applications 
of this multidisciplinary pool of information is the current 
difficulty of integrating this knowledge, which is often 
characterized by multiple time and length scales. These scales 
are ranging from nano-scale at the omic level, to micro-scale 
at the cellular level and further up to macro-scale resolution at 
the plantwide level (Zhang et al., 2006). 

Today, with the increasing challenges to meet stringent 
product quality in ever competitive market environments, we 
also need for a more rigorous modeling framework that could 
help us to develop deeper understanding about the system of 
interest. Interestingly, recent advances in the multi-scale 
modeling have provided an avenue for unifying this multi-
scale information within a coherent framework, which not 
only allows for rigorous analysis but also sets up a direction 
for further research and development (Pablo, 2005; Kitano, 
2002). Recent report in Ingram et al. (2004) provided an 
excellent review on the progress and classifications of multi-
scale modeling. Moreover, with respect to the complex 
bioprocessing systems, the combined modeling technique and 
statistical tools can complement purely empirical procedures, 
accelerate and simplify process development, and open access 
to a better process understanding (Brass et al., 1997).  

In the last three decades, the macro-scale approach of Moser 
(Starzak et al., 1994) has been extensively used by the process 
system engineering communities to describe microbial growth 
in the fermentation processes largely due to its simplicity. 
This normally led to unstructured type of kinetics models 

where the parameters, i.e. specific growth and product 
formation rates, linking the microbial metabolism with the 
bioreactors (macro-scale) conditions such as pH, temperature 
and substrate concentration are identified. In this approach, 
the living cell is treated as black box i.e. the intermediate 
reactions steps occurring within the cell are ignored. In view 
of the complex biological system at the micro-scale level 
which is generally characterized by numerous enzymatic 
reactions, the validity of such macro-scale model as a tool for 
bioreactor optimization and control analysis is particularly 
poor outside the region of its identification. Recent studies 
indicated that many of the process improvements which could 
not even be perceived from the macro-scale point of view, 
could be realized through a detailed analysis using the so-
called metabolically structured model (micro-scale approach), 
i.e. minimization of glycerol in ethanol fermentation (Bideaux 
et al, 2006), optimal feeding strategy of lysine fermentation 
(Takiguchi et al., 1997), and strategy to maximize pentose 
fermentation in Z. mobilis (Altintas et al., 2006). 

The search for strategies to improve bioprocessing yield and 
productivity could be broadly classified into two categories; 
(1) strain improvements via genetic modifications in a fixed 
extracellular environments, and (2) optimization and control 
of extracellular environments for a given strain (Galazzo and 
Bailey, 1990). With respect to the former approach, the 
metabolically structured model has been recognised as a vital 
tool to metabolic engineering in order to successfully improve 
the cellular functions of microbial strains of interest 
(Hatzimanikatis et al., 1998). Meanwhile the second approach 
is frequently adopted by the process engineering, in which 
case very often macro-scale models with regards to the 
bioprocess of interest are used as a tool for analysis in the 
bioreactor design, optimization and control.  

While for decades the advanced control methods have been 
effectively employed for industrial chemical processing, the 
adoptions of these control techniques in biotechnological 
processes are still relatively rare (Komives and Parker, 2003). 
The vast majority of control strategies development for 
bioreactors still relies on the macro-scale models, and as such 
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the complex interactions between the extracellular 
environments with the thousands of intracellular enzymes and 
metabolites are generally ignored. Credible studies have 
shown that these multi-scale interactions could have profound 
impacts on the biological systems (e.g. Satroutdinov et al., 
1992; Verduyn et al., 1992; Washburne et al, 1996). Only 
recently that some attempts have been reported on the use of 
multi-scale models which capture these interactions to 
improve bioreactor control performances e.g. (Soni and 
Parker, 2004; Teixeira et al., 2007). 

One of the key research gaps in the current approach of using 
multi-scale model is the lack of emphasis on the multi-scale 
control structure analysis. More often, the model is used to 
develop the advanced controller techniques such as that of 
nonlinear model-based controllers. The basic tenet of this 
approach is that the control performance of complex 
biological system could somehow be improved through the 
adoption of advanced controller algorithms. But very often, 
the applications of these controller algorithms are sill facing 
various obstacles due to, for example the unresolved issue of 
nonconvex optimization in nonlinear predictive control.  In 
the case of macro-scale system, it has been recognised that 
control structure selection could have far greater impact on 
the closed-loop performances than the choice of controller 
algorithms (Morari et al., 1980; Hovd and Skogestad, 1993). 
As for the multi-scale system, our recent works based on the 
idealized multi-scale model does indicate that judicial choice 
of multi-scale control structure can significantly contribute the 
overall closed-loop performance (Nandong et al., 2007). 
Additionally, with the right choice of control structure the use 
of complicated controller algorithms could be avoided i.e. just 
simple PID-type controllers could perform satisfactorily well. 

With respect to some of the research gaps in the current multi-
scale modeling and applications, the objectives of this paper 
are two-folds. The first objective is to propose a generalized 
multi-scale framework for bioprocessing system. Secondly, 
using a multi-scale model of alcoholic fermentation process, a 
multi-scale control strategy is proposed. The performance of 
this control system would then be compared with the 
traditional macro-scale controllers. Additionally, some of the 
issues and opportunities pertaining to the multi-scale 
strategies would also be highlighted. 

2. FRAMEWORK OF MULTI-SCALE MODELING  

The overall goal of multi-scale modelling is to capture neither 
too much nor too little information about the processes. 
Hence, a trade-off between simplicity of the resulting model 
and the amount of embedded process information is required. 
Fig. 1 shows the generalized framework of multi-scale 
modeling for bioprocesses, starting from the macro-scale 
down to the micro-scale level. 

In this proposed framework, the ultimate objective is to 
predict or analyze the bioreactor performances using multi-
scale information. The performance indicators of bioreactor 
could be divided into two categories; (1) steady-state 
performance in terms of product yield, conversion and 
productivity, and (2) dynamic controllability i.e. how easy to 
control the system at desired conditions (Fararooy et al., 

1993). In the chemical process industries, dynamic 
controllability is one of the key issues that determine plant 
profitability. 

The mixing and process inputs are two major factors that 
determine bioreactors conditions and in turn affect the 
bioreactor performance. Subsequently, there are two ways to 
predict the impact of bioreactor conditions on bioreactor 
performance. The common practice is via the use of 
unstructured kinetics in conjunction with the bioreactor model 
i.e. macro-scale approach. For the second method, the detailed 
interactions between the bioreactor conditions and 
intracellular reactions are generally considered. In this case, at 
the meso-scale level, the effect of mixing and hence transport 
phenomena plays a very important role. Due to the deviation 
from ideal mixing behaviour, concentration and temperature 
gradients normally occur and lead to the formation of various 
zones inside the bioreactor. This effect is particularly 
important to industrial scale process where transport 
limitation is regarded as one of the major phenomena leading 
to process yield reduction (Vrábel et al., 2001). This number 
of zones depends on the degree of mixing where for the ideal 
case it would then reduce to a single zone. Consequently, each 
zone would have different physiological impacts upon the 
microbial activity. For example, in a zone where substrate is 
rich, an overflow metabolism (or Crabtree effect) can occur 
where in the case of S. cerevisiae, ethanol is produced even 
under aerobic conditions (Merico et al., 2007). 

  

Depending on the overall goal of the bioprocess, the cellular 
performances could be measured in terms of one or 
combination of factors such as growth rate, metabolite 
production rate, cell viability and selectivity for the case of 
multiple branched reactions. Finally, the multi-scale 
information could be integrated within a suitable model to 
predict or analyze the bioreactor performance at the macro-
scale level. 

2.1 Multi-scale Modelling of Continuous Alcoholic 
Fermentation - Example 

The modelling of the continuous alcoholic fermentation 
assumes the following: 

Fig. 1. Generalized framework of multi-scale modelling 
for bioprocessing system 
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1. Homogeneous population and well mixing in bioreactor 
i.e. single zone in bioreactor. 

2. For the cellular metabolism, only the reactions in the 
cytoplasm is considered i.e. focus on the ethanol 
fermentation under limited oxygen supply. 

3. Concentrations of intracellular ATP, ADP, AMP and 
NADH are considered as micro-scale inputs to the model.  

4. Fresh glucose concentrations (So), inlet flowrate of fresh 
feed (Fo) and outlet flowrate (F) are macro-scale inputs 
available for manipulation. 

5. Reactions in cells follow the kinetics models of Rizzi et 
al (1996).  Fig. 2 shows the simplified metabolic pathway 
reactions leading to the key product (ethanol) and by-
product (glycerol). Interested readers could refer to Rizzi 
et al. (1997) for the detailed descriptions shown in Fig. 2. 

 

The macro-scale mass balances for the extracellular product 
components which are ethanol (EtOH), glycerol (Gly) and 
acetate (Ace) and extracellular glucose (GlcE) are as reported 
by Rizzi et al (1996): 

   15 EtOH
V
FCr

dt
dEtOH x −=

ρ
 (1) 

   7 Gly
V
FCr

dt
dGly x −=

ρ
 (2) 

   16 Ace
V
FC

r
dt

dAce x −=
ρ

 (3) 

( )    10 ρ
xCrGlcES

V
F

dt
dGlcE

−−=  (4) 

The V, F, Cx, S0 and ρ are the hold-up volume, outlet flowrate, 
cell concentration, inlet glucose concentration and cellular 
specific volume respectively.  

Moreover, the biomass mass balance is expressed as: 

   xx
x C

V
FC

dt
dC

αμ −=  (5) 

Where the dynamic of bioreactor hold-up liquid level (L): 

FF
dt
dLA o −=  (6) 

Where A is cross-sectional area of the bioreactor and F could 
be expressed as a function of L and valve coefficient (kv):   

LkF v=  (7) 

Where it is assumed that the specific growth rate is given by: 

   1133

max
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛+
=

x

x

C
C-

ρ
rrμ  (8) 

The specific growth rate due other reaction pathways in the 
mitochondria is assumed negligible.  The coefficient α in (5) 
is the cell washout factor i.e. the fraction of the biomass 
leaving the bioreactor. This normally leads to the high density 
of biomass in the bioreactor, which in turn tends to create less 
favourable conditions for growth. Hence, it is necessary to 
consider the inhibition effect of biomass on the specific 
growth rate. This biomass inhibition is assumed to take a 
linear form i.e. a ratio of Cx to the maximum achievable 
biomass concentration Cxmax. 

As for the micro-scale mass balances of intracellular 
metabolites (ci), 9 components (Glc, G6P, F6P, FBP, DHAP, 
GAP, PEP, PYR and ALD) in the cytoplasm are considered:  

( )    ik
i crf

dt
dc

μ−=  i = 1, 2…9 and k = 1, 2…17  (9) 

And the function f (rk) describes the reaction step rk that 
involved in each metabolite production or consumption. The 
reaction rates (rk) are obtained from Rizzi et al (1996). The 
macro-scale system or bioreactor is described by (1)-(6) and 
that of the micro-scale system is represented by (9). The 
specific growth rate (8) could be treated as the interface 
parameter linking micro- and macro-scale systems. The 
outputs of the micro-scale system are the reaction rates (rk) 
which become the parameters to bioreactor model (1)-(6). In 
total there are 15 ODEs which represent the overall multi-
scale system of fermentation process in this study. To avoid 
numerical computational problems, all the micro- and macro-
scale ODEs are scaled appropriately such that, the order of 
intracellular metabolites is approximately similar to the order 
of extracellular output variables. 

2.2 Multi-scale Input-Output Structure 

Fig 3 displays the proposed multi-scale control structure in 
this case-study. There are three macro-scale outputs to be 
controlled; (1) ethanol concentration EtOH (2) extracellular 
glucose concentration GlcE, and (3) liquid level L. The 
manipulated-controlled variables pairings are (1) Fo-EtOH, 

 
Fig. 2. Simplified metabolic pathways reactions of 
S. cerevisiae 
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(2) So-GlcE, and (3) kv-L. The valve coefficient (kv) is used to 
adjust the outlet flowrate (F).  The notation R is a vector of 
intracellular rates (rk) which is considered output from the 
micro-scale point of view but is considered as parameters to 
macro-scale system.  And the X is a vector of macro-scale 
conditions that have direct influence on the micro-scale 
system, e.g. extracellular glucose GlcE. To implement multi-
scale control (MSC) strategy, the macro-scale Fo-EtOH 
controller is augmented with the micro-scale NADH-EtOH 
controller. The main assumption on the implementation of this 
strategy is that the co-factor NADH could be manipulated as 
input variable. So, for the single-scale control (SCC) strategy, 
the NADH-EtOH configuration is removed. 

 

3. RESULTS 

Table 1 shows the tuning values for the macro-scale controller 
configurations. In this case only PI-type controllers are 
employed. Note that, when the NADH-EtOH micro-scale 
controller is implemented for the case of MSC strategy, all of 
the tuning values of the macro-scale controllers are kept the 
same. 

 

As for the micro-scale NADH-EtOH configuration, P-only 
controller is employed for simplicity. No attempt is made in 
this case study to optimize the controller tuning values. The 
reason for this is that our key objective is to compare the 
closed-loop performance between SCC strategy and MSC 
strategy i.e. to investigate the potential benefit of the latter 
strategy based on the developed multi-scale model. 

To assess the comparative performances between SCC 
strategy and MSC strategy, the control system are subject to 
two different output disturbances i.e. EtOH and GlcE output 
disturbances. Furthermore, these disturbances are assumed to 
enter the system as step inputs changes. 

 

3.1 Closed-loop Performance under EtOH Output 
Disturbance  

 

Fig. 4 illustrates the comparative closed-loop performances on 
the scaled EtOH when the scaled output disturbance in EtOH 
is 0.1 at time of 400s. For the SCC strategy, it takes more than 
20,000 seconds (about 6 hrs) for EtOH to settle. On the other 
hand, for MSC strategy with the micro-scale controller of Kc 
= 10, it only takes about 2,000 seconds (about 0.5 hrs) to 
settle. However, there is a minor offset. When the Kc for the 
micro-scale controller is increased to 50, the response of the 
closed-loop system is even faster with reduced offset i.e. 
settling time is less than 1,000 seconds.  

 

Fig. 5 shows the responses of the scaled L (liquid level) to the 
output disturbance in EtOH of 0.1. It can be noted that the 
MSC strategy leads to not only a faster response (shorter 
settling time) but also less oscillation with smaller overshoot. 
Fig. 6 indicates the responses of scaled GlcE when subjected 
to the disturbance in EtOH. Although there is no clear 
improvement on the closed-loop response of GlcE when the 
micro-scale controller is implemented, it is important to note 
that both SCC and MSC perform virtually the same. Also it is 
important to point out that the implementation of MSC 
remains stable even for the large change in Kc values and yet 
with the added advantages on the clear improvements on the 
EtOH and L control-loops. 

 
Fig. 3.  Multi-scale input-output structure of 
fermentation considered in this case study 
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Fig. 4.  Responses of scaled EtOH when subject to 
output disturbance of ΔEtOH = 0.1 
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Fig. 5. Responses of scaled bioreactor liquid level when 
subject to output disturbance of ΔEtOH = 0.1 

Table 1.  Macro-scale controller tunings 
Configuration Controllers 

Fo-EtOH ( ) ssGc /1105015.0 3
1 +×−=  

So-GlcE ( ) ssGc /15.8094.02 +−=  
kv-L ( ) ssGc /1109095.0 2

3 +×−=  
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3.2 Closed-loop Performance under GlcE Output Disturbance 

The second test of control strategy performance is against the 
step disturbance in GlcE of 5 units (scaled unit). Fig. 7 shows 
the performance of both SCC strategy and MSC strategy. 
Clearly that MSC with Kc = 10 for micro-scale controller 
gives a faster response that the SCC where the former and the 
latter takes 3,000 seconds and 20,000 seconds respectively 
(more than 6 times improvement). 

 

Similarly, MSC strategy outperforms SCC strategy when 
subject to a step decrease in GlcE by 10 units. The responses 
of other control-loops (GlcE and L) follow the same trends as 
when it is subjected to EtOH disturbance i.e. does not degrade 
the macro-scale controller performance. Note that in both 
cases, the tuning of the macro-scale controllers are kept 
unchanged. Hence, the observed improvement is solely due to 
the implementation of micro-scale controller. 

In addition to the step change in output disturbances, the 
system also has been tested against random disturbances in 
GlcE and EtOH. For this type of fluctuating disturbances, the 
frequency of the fluctuation seems to have significant effects 
on both SCC and MSC strategies. Due to the space limitations 
the results are not included in this paper. 

 

4. DISCUSSIONS 

Many of the potential benefits that could be harnessed from 
the multi-scale modeling techniques (i.e. model that embed 
detail knowledge at the cellular level) could not be realized 
due to a number of obstacles. One of these obstacles relates to 
the task of linking the information across the different time 
and length scales which is always not straightforward. 
Another important obstacle is the lack of analytical tools that 
are currently available to efficiently mine and extract vital 
information from such a rigorous model. As a comparison, 
significant benefits have been realized in the field of 
metabolic engineering through the applications of multi-scale 
models. The key reason for this success is the development of 
analytical tools that complement the multi-scale model, for 
example, metabolic control analysis (Gulik et al., 2000) has 
been widely applied to identify the bottleneck in reaction steps 
occurring in microbial cells. 

The case study shows that a simple multi-scale control system 
with an appropriate control structures could significantly 
improve the closed-loop performance of bioreactor. The result 
of this paper confirms our previous study where based on 
idealized multi-scale system, the multi-scale control strategy 
can indeed lead to benefits which could not be clearly 
perceived from the macro-scale point of view. However, the 
key limitations in the application of multi-scale control 
strategy rest on the difficulty of identifying the suitable micro-
scale inputs. In this paper, it is important to realize that 
NADH could not be directly manipulated in the sense of 
macro-scale inputs such as flowrate and fresh substrate 
concentration. However, NADH concentration inside the cells 
is generally affected by various factors such as dissolve 
oxygen level, pH and nutrients availability. Hence, it is still 
possible to indirectly manipulate the NADH by manipulating 
one or more of these factors. A successful example which is 
quite similar to this situation is the enhancement of pyruvate 
decarboxylase enzyme production in yeast C. utilis by pH 
adjustment (Chen et al., 2005). In metabolic engineering, one 
common approach in the identification of the target genes for 
deletion/addition is by examining the sensitivity of certain 
metabolites of interests to the perturbed enzymes. Then the 
genes expressing the enzymes which show the strong 
correlation with the metabolites of interest could either be 
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Fig. 6. Responses of scaled GlcE when subject to output 
disturbance of ΔEtOH = 0.1 
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Fig. 7. Responses of scaled EtOH when subject to output 
disturbance of ΔGlcE = 5 
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Fig. 8. Responses of scaled EtOH when subject to output 
disturbance of ΔGlcE = -10 
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deleted or enhanced, which depends on either to minimize or 
maximize the metabolites respectively. So, this technique 
could to a certain degree be adopted in process engineering 
via two steps: (1) by examining the sensitivity of certain 
intracellular metabolites, enzymes and co-factors to the 
possible manipulated inputs, (2) by relating this sensitivity to 
the bioreactor performance.  There are many possible 
strategies that could be explored through judicial use of multi-
scale model in order to enhance the process performances as 
measured by yield, productivity and dynamic controllability. 
And in our case, simple controller algorithm with an 
appropriate selection of multi-scale control structure could 
lead to significant dynamic controllability performance. There 
is a reasonable ground to believe that to properly harness this 
knowledge it is important to develop not only the multi-scale 
modelling techniques but also analytical tools, which allows 
efficient use of the models to improving bioprocess design 
and operation. 
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