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Abstract: We consider the problem of distributed coverage control for mobile sensor networks
operating in environments cluttered with polygonal obstacles which interfere with both the
navigation and sensing by the nodes. A gradient-based motion control scheme is developed
to maximize the joint detection probability of random events in such mission spaces, taking
into account the discontinuities that are introduced by obstacles in the sensing probability
models. The optimization scheme requires only local information at each node. We also propose
a modified objective function which allows a more balanced coverage when necessary. An
interactive simulation environment has been developed through which we illustrate the adaptive
and distributed properties of the coverage algorithm in a variety of mission spaces with obstacles.
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1. INTRODUCTION

The performance of a sensor network depends on how its
nodes are located within a “mission space”, which gives
rise to the fundamental problem of coverage control or
active sensing; see Meguerdichian et al. (2001), Cortes
et al. (2004) and Mihaylova et al. (2002). In particular,
nodes must be deployed so as to maximize the information
extracted from the mission space while maintaining ac-
ceptable levels of communication and energy consumption.
The static version of this problem involves positioning
sensors without any further mobility and optimal locations
can be determined by an off-line scheme which is akin to
the widely studied facility location optimization problem.
The dynamic version allows the coordinated movement of
sensors, which may adapt to changing conditions in the
mission space, typically deploying them into geographical
areas with the highest information density; see, for exam-
ple, Cortes et al. (2004), Meguerdichian et al. (2001)and
Zou and Chakrabarty (2003).

Solutions of the coverage control problem based on par-
titioning the mission space overlook the fact that the
overall sensing performance may be improved by sharing
the observations made by multiple sensors. In addition,
many approaches assume uniform sensing quality and an
unlimited sensing range, which is not the case for most
sensing devices used in practice. A number of solution
techniques are also based on a centralized controller, which
is inconsistent with the distributed communication and
computation structure of sensor networks. Moreover, the
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combinatorial complexity of the problem constrains the
application of such schemes to limited-size networks. Fi-
nally, another issue that appears to be neglected is the
movement of sensors, which not only impacts sensing
performance but it also influences other quality-of-service
aspects in a sensor network, especially those related to
wireless communication: because of the limited on-board
power and computational capacity, a sensor network is not
only required to sense but also to collect and transmit
data as well. For this reason, both sensing quality and
communication performance need to be jointly considered
when controlling the deployment of sensors. In order to
address all these issues, a distributed coverage control
algorithm was developed in Li and Cassandras (2005) and
Cassandras and Li (2005) which uses a distance-dependent
probabilistic sensing model and incorporates communica-
tion constraints.

The environment assumed in Cassandras and Li (2005)
does not take into account boundaries in the mission space
and allows no obstacles. Introducing obstacles has two
ramifications. First, the sensor nodes can obviously not be
located or navigate in the space occupied by an obstacle.
Second, the obstacles interfere with the sensing process.
Unfortunately, the second difficulty is a serious one. The
reason is that, in the presence of obstacles, the detection
probability of an event at some point 2 € R? from a sensor
node at s € R? is no longer a continuous function of s.

In this paper, we develop a distributed gradient-based
coverage control scheme for a finite mission space with
polygonal obstacles where we aim to maximize the joint
probability of detecting events in the mission space with
a given event density function. This objective is in con-
trast to the classic Art Gallery problem setting which
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focuses on ensuring that every point in the mission space
is “visible” by at least one guard with unlimited range; see
Urrutia (2000), O’Rourke (1987), Ganguli et al. (2006a),
Ganguli et al. (2006b). In addition, we allow nodes to
have different sensing characteristics and their range to
be generally limited. Our approach requires gradients of
the objective function evaluated at each node using only
local information along the lines of Cassandras and Li
(2005). The main contribution of the paper is this gradient
derivation, rigorously incorporating the effect of disconti-
nuities in the detection probability functions mentioned
above, which is caused by the obstacles. In addition, we
address the problem of imbalances in the mission space
coverage; in particular, maximizing the joint detection
probability can result in a deployment configuration which
achieves extremely high event detection performance in
certain regions while leaving others virtually uncovered.
Through an appropriate transformation of our objective
function, we show that we can in fact achieve a balanced
performance to any degree desired.

2. PROBLEM FORMULATION

We model the mission space Q@ C R? as a non-self-
intersecting polygon, i.e., a polygon such that any two
non-consecutive edges do not intersect. An event density
function R (z) : © — R captures the frequency of random
event occurrences at some point z € Q. R(x) satisfies
R(z) >0 for all z € Q and [, R(x)dz < oo. We assume
that when an event takes place, it will emit some event
signal which may be observed by some sensor nodes.

The mission space may contain obstacles which can inter-
fere with the movement of sensor nodes and the propa-
gation of event signals. We model the boundaries of these
obstacles as m non-self-intersecting polygons properly con-
tained in {2 and denote them by P; C 2, j = 1,...,m. Each
P; divides 2 into two disjoint regions, P;’s exterior and
interior. The interior of P;, denoted by ZBj, is infeasible for
the sensor nodes to navigate in. Thus, the overall feasible

(or navigable) subspace of 2 is F' = Q\ (P1 U---u ]GDm).

We will assume that R (z) = 0 for « ¢ F either because
there is “nothing interesting” happening outside of F' or
because the sensor nodes ignore all points outside of F. In
our coverage control problem, the number of sensor nodes
deployed into 2 may be fixed, N, or time-varying, N (), if
nodes are allowed to “die” or new nodes are occasionally
introduced. When the number of nodes is N their location
is denoted by a 2N-dimensional vector s = (s1,...,5n)
with s; € F, 1 =1,...,N.

Next, we discuss the sensing model used. If there is no
obstacle and ) is convex (thus, there is a clear line
of sight between any two points in ), the probability
that sensor node 7 detects an event occurring at = €
F is denoted by p; (x,s;). The received signal strength
generally decays with ||z — s;||, the Euclidean distance
between the source and the sensor. We represent this
degradation by a monotonically decreasing differentiable
function p; (x, s;). An example of such a function is

i (2, 8;) = poe Ml sl (1)
Notice that (1) is an omnidirectional model and can be
viewed as a function of ||z — s;]|.

ol
mission boundary

V(si)

Fig. 1. Mission space with two polygonal obstacles

Similar to the geometric terms in Ganguli et al. (2006a),
we use the prefix 9 to denote the boundary of a topological
set, so that OF = 9QU P, U---U P, and let T be the set
of vertices of OF. A vertex v in T is a reflex vertez if the
two edges incident at v form an angle strictly greater than
7 in the interior of F. In Fig. 1, for example, all vertices
of the two obstacles, except v,, are reflex vertices.

A point x € F is wvisible from y € F' if the line segment
defined by « and y is contained in F i.e., (Ax + (1 — A\) y) €
F, for all A € [0, 1]. The wisibility polygon V (z) C F from
a point x € F' is the set of points in F' visible from z.
Let V (z) = F\V (z) denote the invisibility polygon with
respect to z. For example, in Fig. 1, the white area is the
visibility polygon V (s;) of s; and the grey area is V(s;).

Let v be a reflex vertex and let © € F' be a point visible
from v. We define a set of points I (v, z) as follows:
I(v,z)={qeV@):qg= w+1-Nz, A>1}

To give a graphical interpretation of I (v,z), consider a
ray extending from v in the direction of v — x. This ray
travels inside F' until it hits OF at an impact point. The
line segment between v and the impact point is 7 (v, z)
(see also Fig. 1).

Sensing model. If ¢ V (s;), then the ability of node i to
detect an event occurring at x will be reduced, possibly to
zero. In general, an event signal might still be able to travel
through obstacles, but its intensity will be attenuated more
so than in open space depending on factors such as the size
of the obstacle and the number of obstacles in the line of
sight. Thus, the modified probability that sensor node i
detects an event occurring at x is

~ N pi(wys) ifxeV(si)

Pi(,8:) = {ibvz' (z,8i) if z €V (s;) @)
where p; (x,s;) < p; (z,s;). For a totally “opaque” obsta-
cle, we have p; (z,s;) = 0.

Note that for a fixed point z, p; (z, s;) is not a continuous
function of s;. There is a jump whenever s; crosses a
line I (v,z), where v is a reflex vertex visible from z. For
example, in Fig. 1 assuming “opaque” obstacles, s; cannot
see x, 80 D; (x,s;) = 0. But if s; moves left and eventually
reaches [ (vg, x), then z becomes visible with respect to s;
and p; (x, s;) jumps to a nonzero value p; (z, s;).

Coverage optimization problem. Since multiple sensor
nodes are deployed to cover the mission space, the joint
probability that an event occurring at x is detected,
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denoted by P (z,s), is given by

N
P(z,s)=1-— H [1—p;(x,s8;)] (3)
i=1
and the optimization problem of interest is
max/R(x)P(:c,s) dx (4)
S
Q
st.s; e Fyi=1,...,. N
In (4) we use the locations of the sensor nodes as decision
variables to maximize the frequency of event detection in
Q. Our goal is to develop a distributed algorithm to solve
this optimization problem with each node performing a
limited number of computations based on local informa-
tion only. This eliminates the communication burden of
transferring information to and from a central controller
and the vulnerability of the whole system which would be
entirely dependent on this controller.

Since we have assumed R (x) = 0 for ¢ F, we rewrite
the objective function in (4) as

H(s) = /R(m) P(x,s)dz (5)

F

3. CONVEX MISSION SPACE WITH NO OBSTACLES

If the mission space is convex and contains no obstacles,
we have F' = Q and € V (s;) for any x,s; € F. Thus,
Di (x,s;) in (3) can be replaced by p; (z,s;) and P (z,s)
is a continuous function of s; if p; (x,s;) is continuous.

Therefore,
0H (s) OP (x,s)
5 /R(x) 25, dx (6)

Q
The following is obtained in Cassandras and Li (2005):

0H (s dp; (x,5;) 5 — T
R(z [1-— _— d
o~ @ L el S e
keB;

(7)
where d; (z) = ||z — s;]|- If § denotes the sensing radius of
node ¢, then the node’s region of coverage is represented
by Q; = {x : d;(x) < §}. B; is a set of neighbor nodes with
respect to i:

Bi={k:|si—sl| <25, k=1,...,N, k#1i}
In (7), all information is locally available to node ¢ and the
gradient can be used to determine the next waypoint on
the ith mobile sensor’s trajectory through
0H (s)
— 8

where k is an iteration index, and the step size sequence
{nk} is selected according to standard rules (e.g., see Bert-
sekas (1995)) when the convergence of motion trajectories
must be guaranteed.

E+1 _ _k
S; =8, + Mk

4. A MISSION SPACE WITH OBSTACLES

Node #’s position in R? is represented by s; = (s, S, ). For
simplicity, we will drop the subscript i in s;, sz, and sy,
and focus on a typical node whose position is denoted by
s. In addition, in the following discussion, we will assume

that obstacles are fully opaque, i.e. p; (z,s;) = 0, for all 4,
z and s;, to simplify the derivation.

As already pointed out, for a given z € F, p(z,s) is not
a continuous function of s and so neither is P (z,s) in (3).
Thus, we cannot interchange the order of differentiation
and integration as in (6). A natural way to proceed is to
separate the integration area F' in (5). In particular, we
will separate F' into V (s) and V (s), and define:

N
Pi(z,s)=1— [] [0z se)](1—pi(zs))
k=1,k#i
N
P(z,s)=1-— H 1 — D (z,s6)] (1 — i (z,8:))
k=1,k#i
so that

Hi(s) = / R(z) Py (2,5) dz + / R () P> (2,8) dz (9)

V(s) V(s)

Gradient derivation. We will apply an extension of the
Leibnitz rule (Flanders (1973)) to evaluate 0H (s) /0sy,
since in (9), both the integrand and the domain of inte-
gration are functions of s. For the first term in the right
hand side of (9), we have

d o 8P1 (.’E, S)
T R (x) Py (z,8) dx = / R(x) D5, dx
V(s) V(s)
+ / R (2) Py (2,8) (uadary — uydas) (10)
oV (s)

where (u,, u,) denotes the “velocity” vector at a boundary
point = (x,x,) of V (s). The first term in the right
hand side of (10) does not involve any variation of the
integration domain and can be evaluated similarly to (7).
To evaluate the second term, we need to introduce some
more definitions related to the geometry of Fig. 1.

A reflex vertex v is an anchor of s if it is visible from s
and I (v,s) ={¢eV v)|lg= v+ (1—X)s,A> 1} is not
empty, see also Ganguli et al. (2006a). Denote the anchors
of s by vj, j = 1,...,Q(s), where @Q (s) is the number of
anchors of s. An impact point of v;, denoted by Vj, is the
intersection of I (vj,s) and OF. Let D; = ||s —v;|| and
d; = ||V; — vj]|. Define 6; to be the angle formed by s —v;
and the z-axis which satisfies 6; € [0, 5].

For simplicity, we will abbreviate I (v;,s) by I; in what
follows. Observing that I; is always on the boundary of
V (s) and V (s), we define n; to be the unit normal vector
on I; which points to the interior of V (s). Assuming
that s is not on a reflex vertex, a polygonal inflection,
or a bitangent (see definitions of these terms in LaValle
and Hinrichsen (2001)), on the boundary of the visibility
polygon of s, only the points on I}, j € 1,...,Q (s), will
have a nonzero “velocity” when s is perturbed; see Fig. 2
for an illustration. Thus, the second term in the right hand
side of (10) becomes

> [

.71[

x) Py (z,8) (ugpdzy — uydx,)

(11)
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Fig. 2. Only points on I; will be affected as s; is perturbed

Since the original contour integral on OV (s) is counter-
clockwise, the orientation of the line integral above associ-
ated with I; can be determined accordingly. Without loss
of generality, we further assume that a point on I; will only

move along the z-axis under a small perturbation in s,.

Thus we have u, = 0 and u, Zlvg=el , for a point x € I;.

After skipping some calculations (Whlch may be found in
Zhong and Cassandras (2007)), (11) can be rewritten as
Q(s)

> Jn

x) Pi (z,8) ugpdxy,

J= 1]
) sin 6, 7
= 3 om0 T [ R0 Py ) 5) v
70
where

r
pi(r) = (Vi —vj) =+ (12)

J
After evaluating the second term in (9) in a similar way
and combining the results, we obtain

0H (s) 0P (z,s)
o / R (@) 255 o (13)
V(s)
dj
sm&
Z sgn (nje) == [ R(p; (r)) @7 (r)pi (p; (1) , s5) rdr
0
Where p; (1) was defined in (12) and we set
N
Ny = [ [1—Dk(ps(r),s0)]
k=1,k+i

Proceeding in the exact same manner, we obtain

—é)gfsis) = /R(m) 73P18£j,5)dm+ (14)
V(s)
0; Y.
ngn njy) < / R (p; (1)) Y, (r)ps (5 (1), 1) rr
0

A more elaborate derivation of (13)-(14) using purely
geometric arguments (instead of the Leibnitz rule) is also
possible and can be found in Zhong and Cassandras (2007).

Distributed algorithm. The derivatives in (13)-(14) can
now be used in the motion control scheme (8) with the
inclusion of a standard projection mechanism so that if
a node points immediately into an edge of an obstacle

or of the mission space boundary, we project H (s) /0s;
onto that edge, thus forcing the node to “slide” along the
associated motion constraint. As in the case of no obsta-
cles, OH (s) /0s; can be evaluated using only information
locally available to node i. Let €;, B; and § be defined as
in Section 3. We can then rewrite (13) as

OH (s)
08z,
~ dp; (x, s;) (8; — x)
Rix) T[] (1= pelesi)] =57~ —dn
V(s)nQ keB; ddi(z)  di(x)

Zj

sin 0 ~
3 sgn () 52 [ Ry ) 8000 (05 (1) ) e
JEL; S
(15)
where I'i = {j : D; < 6,5 = 1,...,Q(s0)}; z; =
min (d;, 6 — D;) and we define

oN(r) = T 15k (p; (r) 5]
kEB;

The computation of the integrals in (15) is quite involved.
Thus, we resort to the same mission space discretization
as in in Cassandras and Li (2005), which reduces the eval-
uation to a worst-case computation of order O(NgW? +
|T;| NgU) where N — 1 is the number of neighbors of
i, while W and U are controllable resolution parameters
to discretize the surface integration and line integration,
respectively.

Recall that in the derivation of (13)-(14) we assumed that
the controllable node location s; does not coincide with
a reflex vertex, a polygonal inflection, or a bitangent, at
which points H (s) is generally not differentiable. To take
these points into account, one can modify the standard
gradient-based algorithm in (8) resorting to nonsmooth
optimization methods. Since our objective function is non-
concave, subgradient algorithms with diminishing stepsize
(e.g., Shor (1985)) do not guarantee convergence. Instead,
we may use bundle methods (Kiwiel (1985)) which aggre-
gate the subgradient information in the past iterations
and find a descent direction at each step (in contrast, the
subgradient method does not always follow a descent di-
rection). For a locally Lipschitz problem with constraints,
there are results for these methods guaranteeing conver-
gence to stationary points. However, efficient implementa-
tion of bundle methods is fairly complicated.

Whereas such nonsmooth optimization methods are in-
valuable in optimization problems where the points of non-
differentiability are hard to determine in advance, the geo-
metric properties of the coverage problem greatly simplify
this concern. In particular, since we assume the topology
of the mission space is known, it is straightforward to
determine all reflex vertices, polygonal inflection points,
or bitangents. Therefore, upon execution of the gradient-
based algorithm (8), it is easy to detect when s¥ is in the
vicinity of such a point at any iteration k and simply adjust
the corresponding step size 7 so as to bypass this point.
Moreover, in practice numerical errors normally have the
same effect. The only case where this approach is not as
simple is when a local optimum in fact coincides with a
reflex vertex, polygonal inflection, or bitangent (which may
not be that uncommon). In this case, this approach will
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lead to oscillatory behavior of a node around such a point.
If convergence must be guaranteed, then a local nonsmooth
optimization method may be used.

We should also point out that convergence of (8) often
requires a step size sequence such that 7, — 0 as kK — oo.
This, however, is not always desirable if the mission space
is not stationary and one needs to track changes in the
density function or the addition/removal of sensor nodes.
One may trade off oscillatory behavior around local optima
for the benefit of reacting to such changes. It is also obvious
that (8) may lead only to local optima since our objective
function is generally not concave.

5. MODIFIED COVERAGE OBJECTIVE FOR
BALANCED DETECTION

As defined in (4), the coverage objective function aims at
maximizing the joint event detection probability without
considering the issue of maintaining a balance between a
region which may be extremely well covered and others
which may not. As shown by the examples in the next
section, an optimal coverage solution may lead to a part
of the mission space having a detection probability near
1, while other parts are covered with a small detection
probability. In order to address this issue, we introduce a
modification to the objective function as follows:

Hat(s) = /R(w)M(P (2,5)) dz

Q

(16)

where M (P) [0,1] — R is a (possibly piecewise)
differentiable concave non-decreasing function of the joint
detection probability P. Clearly, M (P) may be selected
so that the same amount of marginal gain in P(z,s) is
assigned a higher reward at a lower value of P. Letting

U =M1 - (r)(1—p; (p; ()))] = ML — & (r)]
the gradient of Hyy (s) is given by:
d;
Z sgn (n32) 5 [ Rlp, () wrar
0
+ / R(z) M (P (z,s)) %dm
V(s) ¢
Q) %
0H cosf;
O (3) = a5 [ Ry e
0
/ oP
+ / R(z)M (P, (z,5)) %daz
y

V(s)

Obviously, using H s (s) /0s; instead of OH (s) /0s; in
(8) will lead to different local optima. One can use H(s)
to guide the nodes to such a point and assess whether
the coverage is sufficiently balanced. If not, switching to
H;(s) induces the nodes to move to a different stationary
configuration at which, interestingly, H(s) may in fact be
higher than before; see examples in the next section.

6. SIMULATION RESULTS

An interactive Java-based simulation environment has
been developed and may be found (along with instruc-
tions) at http://codescolor.bu.edu/coverage.

(c) H(s)= 1684.9 (d) H(s)= 1832.6

Fig. 3. Coverage control using the sensor model (1), pg; =
1, A; = 0.08, 8 nodes deployed.

(b) H(s) = 1908 7

(a) H(s)= 1775.7

Fig. 4. (a) Modified coverage objective used. (b) Original
objective used after reaching (a).

Fig. 3 shows snapshots of an optimal coverage deployment
trajectory generated under (8) with the gradient evaluated
through (13)-(14). In this example, there are eight sensor
nodes in a bounded mission space with uniform event
density. The dark polygons represent obstacles which are
totally opaque to the sensors. The numbered small white
rectangles indicate the locations of the nodes, all initially
starting at the upper-left corner. The mission space is
color-coded from darker to lighter as the detection prob-
ability decreases. In Fig. 3(d), note that the equilibrium
configuration includes three nodes (2, 4 and 6) which are
very close to each other; local optimality prevents them
from navigating into the lower right corner, which is only
partially covered. If the modified objective function (16) is
used with all other settings unchanged, the nodes spread
more evenly as shown in Fig. 4(a). After an equilibrium
is reached using (16), we change the objective function
to the original one and obtain the coverage of Fig. 4(b)
where the H (s) value achieved is higher than that in
Fig. 3(d). This suggests that alternating between the two
objective criteria provides opportunities to escape local
optima which provide imbalanced coverage and possibly
improve the original objective as well.

4166



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

(a) H(s)= 452.3

“j Objective function switch
v Time,
5y & o

£ % w

(d) Switch to modified objective at 7=200

(c) H(s)= 2332.0

Fig. 5. Coverage control of maze with \; = 0.05, 15 nodes

Fig. 5 shows snapshots of an optimal coverage deployment
trajectory in a maze-like environment, which is harder to
cover. At equilibrium, the corner points are attractive node
locations because a node at such a point has the benefit
of seeing two “corridors” at the same time. Again, the 15
nodes do not cover the whole mission space evenly, with
the majority placed so that some extremely well covered
areas are created. After reaching equilibrium as shown in
Fig. 5(b), we switch to the modified objective function and
the final result is provided in Fig. 5(c).

We should point out that in these simulated coverage
missions, we observe nodes oscillating around local optima,
consistent with the discussion of the distributed algorithm
in Section 4. We can easily eliminate such oscillations
by using a decreasing step size sequence. However, in
practice, maintaining a large step size is desirable for
faster deployment, thus giving rise to a tradeoff between
deployment speed and oscillatory behavior. If, for example,
the nodes are deployed into the mission space from a single
point, a large step size is critical for preventing the nodes
from being trapped in a configuration where they remain
close to each other. Using a large step size at the expense
of a convergence guarantee in effect encourages some
“random exploration” in order to bypass local optima near
the initial state. The simulation results shown here are in
fact making use of such a scheme.

7. CONCLUSIONS AND FUTURE WORK

We have presented a gradient-based distributed coverage
control scheme for mobile sensor networks operating in en-
vironments cluttered with polygonal obstacles. The main
technical challenge has been the evaluation of the objective
function derivatives with respect to node positions in the
presence of discontinuities in the sensing probability mod-
els due to the obstacles. We also propose a modified version
of our approach when the objective includes balancing the
mission space coverage by skewing the objective function
so as to assign higher rewards for coverage improvement
in low detection probability areas. The algorithm provably
converges to local optima under well-known conditions,
although in practice a certain amount of oscillatory be-

havior around such points is desirable in order to trigger
response to changes in the mission space. Methods that can
guarantee attaining a global optimum are highly desirable
but remain elusive except for special cases.

Future work aims at incorporating communication costs
into the objective function and allowing for sensor nodes
with limited fields of view or application-specific sensing
models. More importantly, the algorithm presented in this
paper is synchronized in the sense that when a node
updates its heading in its motion control, it requires
the most up-to-date information from its neighbors. This
results in a high volume of local communication. An
asynchronous version of the algorithm aiming at reducing
communication frequency is the subject of our current
work.
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