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Abstract: Repetitive control seeks to converge to zero tracking error when a feedback control system has 
a periodic command or a periodic disturbance. It is of interest to examine how long one must wait until 
convergence is reached. Without the repetitive control loop, any feedback system has a settling time often 
defined as four times the longest time constant in the characteristic polynomial. When a repetitive control 
loop is put around such a system, there are p additional roots to the characteristic polynomial, where p is 
the period in time steps, which can be very large. Again one can define the settling time, which might best 
be measured in units of periods, representing the number of periods needed to essentially complete the 
convergence process. This paper studies the convergence rate for several general classes of repetitive 
controller design methods. 

 

1. INTRODUCTION 

Repetitive control (RC) is a relatively new field (Inoue et al. 
1981, Omata et al. 1984, Hara et al. 1985) that seeks to 
converge to zero tracking error when following a periodic 
command, or following a constant command in the presence 
of a periodic disturbance of known period. This is usually 
done by adjusting the command given to a feedback control 
system every time step, based on the error observed in the 
previous period. RC differs from iterative learning control 
(ILC) in that ILC looks at the previous run instead of the 
previous period, and the system is reset to the same initial 
condition before each run.  

Stability and stability robustness are serious issues in RC, and 
as a result most of the attention in creating RC designs is 
directed to these issues. But, as in more general control design 
problems, one is also interested in the settling time needed 
before one has essentially reached convergence to zero 
tracking error. It is the purpose of this paper to supply some 
evaluation of this issue. There are several general approaches 
to RC design that we consider: (1) the simplest form of RC 
that is a single gain times the error at an appropriate time step 
one period back, (2) using the inverse of the system transfer 
function as a compensator, (3) using the inverse modified to 
produce zero phase for any zeros that are not stably invertible, 
(4) using an FIR fit to the inverse of the steady state frequency 
response, and (5) combining the FIR design with inversion of  
poles and “stable” zeros. The properties of the settling time 
for these approaches are investigated here. 

2. REPETITIVE CONTROL FORMULATION 

Figure 1 gives the basic structure used for the repetitive 
control system. The G (z)  normally represents the closed loop 
transfer function of a feedback control system, and is assumed 
to be asymptotically stable. The RC wraps a feedback loop 
around this with RC controller  

 

R(z) = φF (z) /(z p −1)                            (1) 
 
The φ  is the repetitive controller gain or learning gain, F (z)  
is the RC compensator, p is the period of the periodic 
command or periodic disturbance given in time steps of 
sample time interval T, YD (z)  is the desired periodic or 
constant output, and V (z)  is a periodic output disturbance. 
The periodic disturbance might enter the feedback control 
system in various places around its loop, but wherever it 
enters, there is an equivalent periodic output disturbance 
which is used here. Using block diagram algebra, the 
difference equation giving the error as a function of time step 
k, and the characteristic polynomial can be written 
respectively as 
 

{z p − [1−φF (z)G (z)]}E(z) = (z p −1)[YD (z) − V (z)]    (2) 
φF (z)G (z) /(z p −1) = −1                          (3) 

For simplicity, and to aid in obtaining a general understanding, 
we consider that G (z)  comes from feeding a continuous time 
system G (s)  through a zero order hold. Based on the results 
in (Åström et al. 1980), this allows us to know where the 
zeros are that are introduced by the discretization, at least 
asymptotically as T tends to zero, based on the pole excess of 
the original continuous time transfer function.  
 
According to (Longman 2000) a sufficient condition for 
asymptotic stability and convergence to zero tracking error  
from all possible initial error histories, is 
 

1−φF (z)G (z) < 1  ∀   z = exp(iωT ),   0 ≤ ωT ≤ π      (4) 
 
And (Songschon et al. 2003) shows that this condition is very 
close to being both sufficient and necessary, except for very 
small values of p, that are usually not reasonable in 
applications. 

3. COMPUTING THE SETTLING TIME 
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In classical control theory, the transients decay as 
exponentials (possibly multiplied by sines or cosines), and in 
theory take an infinite amount of time to converge to zero. In 
order to have a standard concept of how long one needs to 
wait until the transients are negligible, it is common practice 
to define a settling time that is equal to four time constants of 
the slowest decaying solution to the homogeneous equation. 
This corresponds to waiting for the exponential factors of the 
solution to decay to 0.01832 times its original value, i.e. about 
2% of the original value remains for the slowest decaying 
solution. Of course, this is a somewhat arbitrary definition, 
but nevertheless it is a useful one. It puts the main emphasis 
on the slowest decaying solution, and it can happen that this 
part does not dominate, at least at the start of the transient 
decay. We will use this definition here on RC systems. 

For the purpose of this section only, let zi  be the ith root of 
the characteristic polynomial (3). Corresponding to this root is 
a solution to the difference equation given by (zi )

k . An 
exponential exp(−αt)  with time constant 1/α , is given by 
(e−αT )k  at the sample times t = kT . Let ρ = max

i
zi . Then we 

define the settling time given in units of time (seconds) ts , 
given in units of time steps tss , and given in units of periods 
of the command or disturbance tsp , as follows 
 

ts = −4T / ln ρ   ;   tss = −4 / ln ρ   ;   tsp = −4 /(p ln ρ)     (5) 

 

4. THE SIMPLEST FORM OF RC 

The simplest form of RC can be described for a robot link as 
follows: if the link angle was 2 degrees to small at this phase 
of the previous period, add 2 degrees to the command, or add 
gain φ  times 2 degrees to the command. Consider a general 
asymptotically stable first order system G (s) = ab /(s + a) . 
When fed by a zero order hold, the time delay through 
G (z) = b(1− exp(−aT )) /(z − exp(−aT ))  is one time step. To 
account for this delay, one looks one step ahead in the 
previous period, making the RC compensator equal F (z) = z .  
The characteristic polynomial (3) becomes 
 

φ' z /[(z p −1)(z − e− aT )] = −1                      (6) 
 
where φ '= φb[1− exp(−aT )] . This has one zero at the origin, 
one pole given by the system, and p poles evenly spaced 
around the unit circle. Setting p equal to 8, Fig. 2 shows the 
resulting root locus when the DC gain b = 1, and a = 22.31 
producing a discrete time pole at z = 0.8. The p roots on the 
unit circle initially move inward making the RC system stable, 
and then curve and start moving outward, heading for infinity. 
There is an optimum choice of the gain φ '  roughly equal to 
1.6 as seen in Fig. 3 that plots the settling time tss  as a 
function of the RC gain. We note that when using this 
learning law, the best possible settling time is a function of the 
transfer function of the system, and of the number of time 
steps in a period, and one can only influence the settling time 
by optimizing the single repetitive control gain. Although this 
law is always stable for small enough gain for first order 
systems, we will see in the next section that there is no point 

in using this learning law for first order systems. The law 
might be stable for higher order systems provided that the 
pole excess of G (s)  is one. This law is most likely unstable 
when applied to other higher order systems. It is necessary 
that the number of poles and the number of zeros inside the 
unit circle be equal for the product F (z)G (z)  in order to 
satisfy stability condition (4), and this requires a pole excess 
of one in G (s)  when F (z) = z . With a higher pole excess, one 
could consider using F (z) = z 2  or z 3  etc. in order to get an 
equal number of poles and zeros inside the unit circle, but 
there is no guarantee that one can stabilize the system, and 
each system will have its own root locus properties. Design 
methods given in Sections 5 and 6 are generally needed for 
higher order systems. 

5. USING THE SYSTEM INVERSE AS A 
COMPENSATOR 

In certain respects the ideal compensator is the inverse of the 
system, F (z) = G−1 (z) . Whereas the above compensator 
design is guaranteed to work only on first order systems, this 
method is guaranteed to work on systems G (s)  with pole 
excess equal to one with all zeros being minimum phase. 
Furthermore, the approach works on second order systems 
with no zeros, and is likely to work on higher order systems 
that are minimum phase with pole excesses of two. As shown 
by (Åström et al. 1980), asymptotically as the sample time 
interval T gets small, the process of converting G (s)  fed by a 
zero order hold into discrete time form G (z) , will generically 
introduce enough zeros to produce a pole excess of one in 
G (z) . For all even order pole excesses there is a zero that 
approaches -1. For stable second order systems one can show 
that this approaches -1 from inside the unit circle, and hence 
makes a stably invertible system. For a pole excess of 3 there 
is a zero introduced at -3.7321, for a pole excess of 4 there is a 
zero introduced at -9.8990, for pole excess of 5 there are two 
zeros outside the unit circle at -23.2039 and -2.3225, etc. 
Hence, at least for sufficiently fast sample rates one cannot 
stably invert the discrete time transfer function when the pole 
excess is 3 or more. A slow enough sample rate will make any 
minimum phase asymptotically stable transfer function stably 
invertible, but most often the sample rate required is far too 
slow in applications. Here we simply consider RC design 
using a system inverse compensator for first order and second 
order systems, but first we consider what we call the base case 
of a zeroth order system for which G (z) = 1 for which we pick 
F (z) = 1.  

5.1 The Base Case: Zeroth Order System 

The characteristic equation for the case of G (z) = F (z) = 1 
from (3) is z p − (1−φ) = 0  producing p roots evenly spaced 
around a circle, whose radius is given by the pth root of 
(1−φ) . We consider gains 0 < φ ≤ 1 since larger gains simply 
cause over correction. The root locus plot is shown in Fig. 4 
where all poles on the unit circle move radially inward at the 
same rate, and reach the origin when φ = 1. This corresponds 
to deadbeat control, producing zero error in finite time, after 
one period. One may chose to use this gain, but often one 
picks a smaller gain to make less aggressive changes each 
time step. The final value of the error when there is plant and 
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measurement noise can be improved by using a smaller gain. 
When the gain is less than unity, the settling time is non-zero 
and is given by tss = −4 p / ln(1−φ)  expressed in units of time 
steps. This makes a settling time that is linear in p. And when 
the settling time is given in periods, it becomes a constant, 
independent of the period, tsp = −4 / ln(1−φ) . As the gain 
approaches unity, these settling times approach zero, meaning 
that the error is zero starting after the initial conditions of one 
period of operation, or as soon as the RC can be turned on.  

5.2 First Order Systems 

Now consider the use of F (z) = G−1 (z) as an RC compensator 
for the first order system above equation (6). Substituting into 
the characteristic polynomial (3) demonstrates that the root 
locus is identical to the base case above, except that there is a 
pole zero cancellation at the system pole z = exp(−aT ) . The 
polynomial can be written as  
 

(z − e− aT )[z p − (1−φ)] = 0                        (7) 
 
The conclusion is that if the gain φ  is above some threshold, 
the p roots from the square bracket term are closer to the 
origin that the system pole, and hence the system pole 
dominates with its fixed time constant independent of the gain. 
And this situation applies when φ = 1, so that the RC system 
is no longer deadbeat, but instead has the settling time of the 
original feedback control system G (z) . If the gain is below 
this threshold, the p roots dominate and the settling time 
coincides with that of the base case: 
 

tss = max 4
aT

, −4 p
ln(1−φ)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  ;  tsp = max 4

a(pT )
, −4

ln(1−φ)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

(8) 
Graphs of these are formed from a zero slope section and a 
nonzero slope section as shown in Figs. 5-7. In these plots the 
value of a  is set to 74.25 and p = 8 when φ  is varied, and 
φ = 0.8 when period p is varied. No plot of tsp  versus φ  is 
given since it is just a scaled version of Fig. 5. For a fixed p, 
the gain at which the slope changes is given by 
φc = 1− exp(−apT )  where pT  is the period of the command 
or disturbance. If φ ∈ [φc ,  1) , the tss  is the settling time of 
G (s) , and otherwise it is the settling time of the base case. For 
fixed gain φ , the period p at which the plots have a 
discontinuous slope is given by pc = − ln(1−φ) /(aT ) . If the 
period p is shorter than pc , the settling time is determined by 
the system poles, and otherwise it is determined by the base 
case. Note that when using F (z) = z  there is a pole at +1 and 
a pole on the real axis from the system, and hence the root 
locus will exist on the line between these with a breakaway 
somewhere in the middle. This indicates that the inverse 
design here can always be made to have a better settling time 
than the simplest form of RC. 

5.3 Second Order Systems 

Now consider G (s) = bωn
2 /(s2 + 2ζωn + ωn

2) , a general second 
order system with no zeros. When fed by a zero order hold 
and discretized one obtains the following form 

 
G (z) = b' (z − z1) /[(z − p1)(z − p2)]                    (9) 

 
where the pi  are images of the continuous time poles, and z1  
is a zero introduced by the discretization. This zero is 
normally inside the unit circle, but as the sample time T gets 
small, it approaches the point -1 on the unit circle. Hence, one 
can still entertain using the system inverse as a compensator. 
Substituting (9) and this compensator into the characteristic 
equation (3) produces 
 

(z − p1)(z − p2)(z − z1)[z p − (1−φ)] = 0             (10) 
 
This follows the same pattern as observed above for the first 
order system, having the system poles introduced along with 
the base case roots, except that this time the zero of the 
discrete time system is also a root of the RC system 
characteristic equation. As an example, consider that b = 1, 
ωn = 37 rad/sec (5.9 Hz), and ζ = 0.5. Then the zero location 
as a function of the sample rate is given in Fig. 8 showing 
how it approaches -1. Figure 9 plots the value in time units of 
four time constants of the associated pole used to cancel the 
zero, i.e. the settling time for a root at the zero location. It is 
clear that this root can easily dominate, and determine the 
settling time of the system. Hence, it is clear that the settling 
time can be long when using this type of compensator on a 
second order system. This statement generalizes to any system 
with a pole excess of two. A method of addressing this is 
given in a later section. 

6. COMPENSATOR DESIGN METHODS 

Several general methods have been developed to address RC 
design problems for which the above methods do not apply, 
which are summarized here. 

6.1 Compensator Design for Phase Cancellation Only 

One method develop by (Tomizuka et al. 1989) applies 
techniques from filtering theory to handle the nonminimum 
phase zeros introduced on the negative real axis by the 
discretization process. For simplicity of understanding, 
consider a third order system composed of a /(s + a)  times the 
second order G (s)  above. When fed by a zero order hold and 
converted to discrete time, one has 
 

G (z) = b (z − z1)(z − z2) /[(z − p1)(z − p2)(z − p3)]       (11) 
 
Asymptotically as T gets small, the zero approaches 
z1 = −3.7321, and z2  approaches the reciprocal location. The 
compensator design uses the reciprocal of all terms in (11) 
that are stably invertible, and to address the zero outside the 
unit circle, a zero is introduced inside the unit circle at the 
reciprocal location, and a pole is placed at the origin. One can 
introduce a gain b '  that adjusts the DC gain of the repetitive 
control process. Then 
 

F (z) =
(z − p1)(z − p1)(z − p1)

b (z − z2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

b ' (z − z1
−1)

z

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥           (12) 
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This cancels the influence on phase of the zero outside the 
unit circle, but does not cancel its frequency dependent 
influence on the amplitude. To see this, one can write the 
terms related to the zero outside, and substitute z = exp(iωT )  
to obtain the frequency response 
 

(z − z1)(z − z1
−1)

z
= z +

1
z

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ − z1 +

1
z1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = cos(ωT ) + R     (13) 

 
where asymptotically R = 3.7321+1/3.7321. Since ωT  goes 
from 0 to π  as the frequency goes from zero to Nyquist, (13) 
is a real number and is always positive. This implies that for 
appropriately chosen gain φ , one can always satisfy the 
stability condition (4). The approach generalizes in an obvious 
way to handle larger pole excesses, and hence forms a general 
approach to designing RC compensators. 
 
6.2 FIR Frequency Response Inversion Compensator Design 
 
(Panomruttanarug et al. 2004) presents a method of designing 
an FIR filter  
 

  F (z) = a1z m−1 + a2z
m− 2 + L+ an z−( n− m)                (14) 

 
as a compensator that approximates the frequency response of 
the system inverse, by picking the gains to minimize 
 

J = [1− G (eiω jT )FG (eiω jT )]W j[1− G (eiω jT )FG (eiω jT )]*
j=1

N

∑   (15) 

 
where the sum is taken over a suitably dense sampling of 
frequencies from zero to Nyquist, the W j  is a weight factor if 
desired, and asterisk indicates the complex conjugate. 
Experience suggests that the value of m should be chosen to 
equal 1+ n / 2 when n is even, and 1+ (n +1) / 2  when n is odd. 
This is a very simple compensator to implement, requiring 
only that one compute a linear combination of n errors from 
the previous period.  
 
Note that the FIR filter supplies n − m  poles at the origin, and 
it can pick n −1  zeros to minimize (15). When given the 
appropriate number of gains, the zeros form special patterns. 
First they cancel the poles of the system. For any zero inside 
or outside the unit circle, additional zeros are introduced, 
symmetrically placed around a circle with radius equal to the 
zero location. 

6.3 Combination of FIR and System Inverse 

The FIR compensator is only able to place poles at the origin, 
so it cannot place poles to cancel any zero inside the unit 
circle. Of course, for such invertible zeros, we can perform 
the cancellation, and then use the optimization (15) to design 
a compensator for the system with the zeros already cancelled. 
Thus, one can invert all terms of the transfer function that are 
invertible, and then for whatever zeros of G (z)  exist outside 
the unit circle, we design and FIR filter using (15) to 
approximate the frequency response of these zeros. We will 
study the comparison between these two approaches. The 

resulting design then cancels everything inside the unit circle, 
and places zeros evenly spaced around a circle of radius given 
by the system zero. Implementing this compensator requires 
running the error signal through the somewhat non-standard 
filter formed by the inversion of everything inside the unit 
circle, and then applying the FIR filter as a linear combination 
of the resulting values. 

7. RC FOR 3rd ORDER SYSTEMS 

Here we consider RC on third order systems with no 
continuous time zero. One zero outside the unit circle is 
introduced, which approaches -3.7321 as the sample time goes 
to zero, and there is another zero introduced inside the unit 
circle by the discretization, which approaches the reciprocal 
location. The zero outside cannot be stably inverted, and its 
influence is addressed by one of the above design methods. 
The results here are indicative of what happens for higher 
order systems with odd pole excesses. Even pole excesses of 4 
or more have a zero or zeros outside the unit circle as in this 
section, and also have a zero that approaches -1 on the unit 
circle as in the second order problem treated above (also 
considered in the next section). Hence, considerable 
understanding of higher order systems is provided. 

Many of the results are generated for the asymptotic locations 
of the zeros as indicated above. Since these zeros do not move 
dramatically with the sample time interval T, by looking at the 
asymptotic locations one obtains an understanding of what 
will happen for a large class of third order systems. Some 
results are generated for a specific third order system G (s)  
formed by multiplying the second order system used above by 
a /(s + a)  where a = 8.8, and using the sample time interval 
T = 1/100 . For this example, the zeros introduced by 
discretization are at -3.3104, and -0.2402. 

7.1 Settling Time for Phase Cancellation 

Denote the zeros by z1,z2 with z1  outside the unit circle, and 
the poles by p1, p2 , p3 . Then the characteristic polynomial (3) 
becomes  
 

(z − p1)(z − p2)(z − p3)(z − z2)[(z p −1) +φb ' (z − z1)(z − z1
−1)] = 0 

(16) 
As before, the system poles or the system zero inside the unit 
circle can dominate, and otherwise the settling time is 
determined by the square bracket term. But this term no 
longer corresponds to the base case. Figure 10 shows the root 
locus plot for this term using the asymptotic location for the 
zero. It can be proven that the poles on the unit circle depart 
radially inward, as in the base case. But they do not continue 
radially inward to the origin, and instead curve and go 
unstable. Figures 11-13 use the given third order system and 
present the settling time versus period and versus gain, 
showing discontinuities when the domination switches from 
poles or zeros to the bracket term. As before in Fig. 7, the 
settling time in periods vs. the length of the period approaches 
a constant value as the period gets long. 

7.2 Settling Time for FIR 

When one uses a 10 gain compensator (14) on the given third 
order system, the resulting product F (z)G (z) for frequencies 
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from zero to Nyquist is plotted in the complex plane in Fig. 14. 
If the plot were just a point at +1, the FIR compensator would 
be a perfect inverse of the system frequency response. Here it 
stays very close to +1 for all frequencies up to Nyquist, 
making a stable and easily calculated inverse of the frequency 
response. Examining the design, one sees that there are four 
compensator poles at the origin, and nine zeros introduced as 
follows: three zeros that cancel the system poles, three zeros 
around a circle of the radius of the zero outside, and similarly 
for the zero inside. Using this information, the characteristic 
equation can be written as 
 

0 = (z − p1)(z − p2)(z − p3)(z − z2)[(z p −1)z 4 +

φ (z − z1)(z + z1)(z − z1i)(z + z1i)(z − z2)(z + z2)(z − z2i)(z + z2i)]
    

(17) 
Figure 15 is a root locus plot of the roots for the square 
bracket term, when the period is given as p = 8. This makes a 
very symmetric situation. Note that the optimization (15) 
automatically creates a negative value for φ , so that the root 
locus plot is shown for negative gains. Figure 16 illustrates 
how the plot changes when p = 7, and similar modifications 
apply when not enough gains are supplied to complete a 
pattern. Figures 17-18 present the settling time vs. period for a 
10 gain RC designed for the given third order system using 
(15). Comparing Figs. 17 and 18 to Figs. 11 and 12, it is clear 
that the FIR frequency response inverse compensator design is 
dramatically superior to the phase-cancellation-only design 
above, for this third order system. 

To create a more general understanding, we examine the 
settling time associated with the bracket term as a function of 
learning gain, using the asymptotic locations of the zeros, Fig. 
19. Again, the performance is dramatically faster than in Fig. 
13. When making an RC design one can obtain roughly the 
performance indicated here (based on asymptotic locations), 
until the settling time indicated gets faster than the slowest of 
the zeros and poles outside the square bracket in (17). For 
third order systems (and higher order systems with odd poles 
excess) it is not likely that the zero inside the unit circle is the 
dominant root, in which case the RC system can reach the 
settling time associated with the given feedback control 
system G (s) . 

7.3 Settling Time for FIR Combined with System Inverse 

The FIR compensator is only able to introduce poles inside 
the unit circle that are located at the origin. Therefore, it 
cannot create a pole located to cancel the zero inside the unit 
circle, the way inverse designs would do. Of course we can 
always introduce this pole to cancel the zero, and then present 
what is left to optimization criterion (15) to design an FIR 
compensator for this part of the system. The overall result will 
then be that the compensator cancels all poles and all zeros 
inside the unit circle, leaving only the one zero outside the 
unit circle on the negative real axis. The characteristic 
polynomial is then 
 

(z − p1)(z − p2)(z − p3)(z − z2)•

   [(z p −1)z 4 +φ (z − z1)(z + z1)(z − z1i)(z + z1i)] = 0
   (18) 

 

Figure 20 presents the root locus plot for the square bracket 
term using the asymptotic zero location. Note that the roots 
move further toward the origin before changing direction, so 
there is a potential for faster settling times by comparison to 
Fig. 15 that has zeros inside the unit circle. The number of 
gains for (14) for this design is 4 to introduce three zeros 
while Fig. 15 uses 7 to introduce 6 zeros. Figure 19 also 
presents the settling time in time steps for this square bracket 
term, as a function of the gain φ . For higher gains this 
combined compensator design can have a substantially faster 
settling time indicated in the figure. This improvement is 
realizable in practice provided the roots in the square bracket 
term still dominate for the gain of interest. When the gain φ  is 
unity, the settling time reaches tss = 3.6796  corresponding to 
a root location with zi = 0.3372 . 

8. IMPROVING THE SETTLING TIME IN SECOND 
ORDER SYSTEMS 

Note that the difficulty in using the inverse compensator on 
second order systems came from the fact that the zero location 
approaches the unit circle as the sample time gets short, 
making a settling time for the pole that cancels this zero 
approach ts  equal to roughly 0.324 sec. This is slower by 
50% than the settling time of the second order system model, 
which is ts = 0.2162. One can avoid having this limitation to 
the settling time of the RC system by introducing an extra 
pole to the analogue system, for example by introducing a 
first order anti-aliasing filter. Then one obtains a third order 
system, with a zero outside the unit circle, and the zero inside 
is moved much closer to the origin, to a location where it 
would not normally dominate. Then one can design the 
compensator for the resulting third order system, using the 
techniques of the previous section. Therefore, it is suggested 
that one should not use the inverse as a compensator for 
second order systems, but instead introduce the extra root to 
the continuous time system and design the RC for the 
resulting third order system. The same method should work to 
improve performance of RC of higher order systems G (s)  
with even pole excesses. 

9. CONCLUSIONS 

(1) The simplest form of RC works for first order systems and 
can work in some other situations, but other methods can 
always give better settling times.  
(2) RC using a compensator that is the inverse of the system 
works on first order and second order systems, and on higher 
order systems with continuous time pole excess of one 
provided it is minimum phase, and it is likely to work for pole 
excesses of two as well. The settling time can be made to 
equal the larger of the settling time of the system and the zero 
location nearest the unit circle. The zero location can make 
the settling time rather long, and other methods can improve 
on this. 
(3) RC compensators that cancel the stably invertible part of 
the system and cancel the phase influence of the rest, work on 
general systems. Settling times are related to the nature of the 
root locus plot for the zero(s) outside the unit circle, and the 
cancelled system zeros or poles, and can be long. 
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(4) RC using an FIR inverse of the system frequency response 
can give substantially faster settling times. 
(5) The combination of inversion of all parts of the system 
that are stably invertible and the FIR design, have the 
potential to have still faster settling times. 
(6) A method is presented to improve the settling times of 
systems with even pole excess, by introducing an analogue 
filter to increase the system pole excess to an number.  
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Fig. 1. Repetitive control system block diagram. 
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Fig. 3. Settling time in time steps for the 1st order system  

with ,)( zzF = .8=p  
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Fig. 2. Root locus for 1st order system with zzF =)( . 
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Fig. 4. Root locus for base case, 0th order system. 
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Fig. 5. Settling time in time steps vs. learning gainφ   

for the 1st order system with inverse compensator.  
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Fig. 7. Settling time in periods vs. period  

for the 1st order system. 
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Fig. 9. Settling time in seconds vs. sample rate  
for a pole at the zero location, 2nd order system. 
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Fig. 11. Settling time in time steps vs. period,  

phase cancellation compensator design, .8.0=φ  
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Fig. 6. Settling time in time steps vs. period  

for the 1st order system.  
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Fig. 8. Zero location vs. sample rate  

for the 2nd order system. 
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Fig. 10. Root locus plot  

for phase cancellation compensator design. 
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Fig. 12. Settling time in periods vs. period,  

phase cancellation compensator design, .8.0=φ  
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Fig. 13. Settling time in time steps vs. learning gainφ , 

phase cancellation compensator design, .8=p  
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Fig. 15 Root locus plot for asymptotic zero locations  

for FIR compensator design, 8=p . 
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Fig. 17. Settling time in time steps vs. period  

for the 3rd order system using  
10 gain FIR compensator, .0.1=φ  
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Fig. 19. Settling time in time steps vs. learning gainφ using 9 
gain for zeros inside and outside (solid line), 4 gain for zero 

outside only (dashed) FIR compensator using asymptotic 
zero locations, .8=p  
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Fig. 14. Polar plot of )()( TiTi eGeF ωω ⋅ ,  

10 gain compensator, the 3rd order system.. 
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Fig. 16. Root locus plot for asymptotic zero locations 

for FIR compensator design, 7=p . 
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Fig. 18. Settling time in periods vs. period  

for the 3rd order system using  
10 gain FIR compensator, .0.1=φ  
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Fig. 20. Root locus plot for 4 gain FIR compensator  

with asymptotic zero location outside unit circle, 8=p . 
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