
A Unified Approach To Control Design

Using A Cooperative Co-Evolutionary

Bisection Algorithm

A. O. Farag ∗

∗ e-mail: elgiloshi@yahoo.co.uk

Abstract: This paper proposes a novel algorithm named as a Co-evolutionary Cooperative
Bisection (CCB) algorithm as master tool for solving variety of control problems. The proposed
algorithm is computationally attractive and has very favorable convergence properties. The
numerical superiority of the CCB-algorithm is back to two main factors, the numerical efficiency
of γ-Bisection algorithm, and the multi-population evolutionary algorithm proposed in this
paper (Cooperation + Parallelism). To demonstrate the potential of the proposed algorithm
a method for designing fixed-structure controllers that minimize an upper bound on the
singular value µ is presented. The problem considered here is of significant practical interest,
since many industrial controllers are constrained in order/structure and required to meet high
robustness demands. Moreover, even if the controller order or structure are not restricted, the
proposed algorithm has the advantage of being able to optimize over for stability multipliers
and controllers simultaneously, thereby improving the chances of converging to the global
minimum. Numerical examples given here confirm the computational efficiency and the excellent
convergence properties of the proposed CCB-algorithm.

1. INTRODUCTION

Even though evolutionary algorithms have been with us for
more than 60 years by now, significant research into the
use of co-evolutionary algorithms did not really begin until
the early 1990s. The notion of cooperative co-evolution
(CCE) was first introduced and made popular in Potter
and Jong [1994], Potter [1997]. They have shown that
CCE-algorithms outperforms standard single population
evolutionary algorithms when applied to static function
optimization problems. Although cooperative co-evolution
was first introduced to solve difficult optimization prob-
lems by means of problem decomposition, its performance
for such tasks was not satisfying in some applications.
One main reason for this, is the weak and not complete
understanding of its dynamics. Among the recent attempts
to understand the dynamic of co-evolution algorithms is
the paper by Popovici and De Jong in 2005. One im-
portant result of their study is the observation that the
rules controlling the performance of simple evolutionary
algorithms (i.e. single population) do not transfer directly
to co-evolutionary algorithms.

They have shown that the interaction between the col-
laboration scheme and landscape of the problem can lead
to a conflicting behavior in case of CCE type algorithms.
A similar conclusion on the influence of the collaboration
scheme on the performance of CCE-algorithms was also
highlighted in Wiegand et al. [2001]. That paper consist
of an empirical study of collaboration methods based on a
huge number of experimental results. Based on their very
interesting study a number of important conclusions about
the performance of CCE-algorithms have been learned. For
example it is evident that using an optimistic approach
is generally the best mechanism for collaboration credit

assignment (i.e select the best). They also manage to drive
some guidelines on the relation between the degree of non-
linearity of the problem landscape and the suitable number
of collaborators as well as the selection pressure. Specifi-
cally their study has shown that for a simple problem that
is linearly separable, a greedy approach to collaborator se-
lection will do well, moreover, the number of collaborators
may be limited (i.e. one or two).

In 2003 Wiegand has introduced the most complete and
powerful analysis of co-operative co-evolutionary algo-
rithms. In his work he has demonstrated the relationship
between the notion of cooperative co-evolution and sym-
metric games in evolutionary game theory Wiegand et al.
[2002a],Wiegand et al. [2002b]. This provided a natural
way to study cooperative co-evolution from a dynamical
systems perspective and provided many new insights.

Let us remember that CCE-algorithms attacks complex
search spaces by breaking them into parts, evolving the
parts separately, and then assembling the parts into a
complete optimal solution. The critical question that need
to be answered now is ”what makes a good part”. Wiegnad
has established the importance of this question by pointing
out that CCE-algorithms do not optimize when they use
certain straightforward notions of what constitutes a good
part. Moreover, he has shown that CCE-algorithms such
as the one described by potter exhibit a behavior called
relative overgeneralization Panait et al. [2004]. In fact,
rather than finding complete objects which are optimal
with respect to the problem, CCE-algorithms tend to find
objects which are robust (e.g. see Wiegand and Potter
[2006]) under a change of parts, the so called robust resting
balance. His results has opened a new question: how can we
move the CCE-algorithms out of local optimal solutions?
(i.e. encourage it to find global optima).

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 12303 10.3182/20080706-5-KR-1001.1100

In 2005 Bucci has presented one of the most successful
attempts to answer the above question Bucci and Pol-
lack [2005]. The main idea of his approach is to modify
CCE-algorithms such that individuals are compared us-
ing Pareto dominance like technique in a similar manner
to that used with Multi-objective Optimization Fonseca
and Fleming [1995]. Another very interesting attempt to
improve the dynamic behavior of CCE-algorithms was in-
troduced in Panait [2006] and Panait et al. [2003]. The key
step here is to bias CCEA to search for ideal collaborations
rather than robust resting balance, this idea has produced
a successful algorithms Panait et al. [2006].

This paper introduces an alternative approach to overcome
problems associated with CCE-algorithms. The key idea
of this approach is to modify the classical CCE-algorithm
proposed in Potter and Jong [1994] by introducing Paral-
lelism into the core of the CCE-algorithm. The motivation
for this approach is based on the previous observations
Cantu-Paz [1992] which had concluded that parallel evo-
lutionary algorithms perform better than non-parallel one
in terms of global convergence.

The new algorithm has been specifically developed to
tackle complex control design problems. more precisely,
to develop reliable and numerically efficient robust-fixed-
structure controller synthesis. A major issue in control de-
sign is robustness against model uncertainty, in fact almost
all practical situations involves some sort uncertainty that
bother control engineers. Robust control is also useful to
handle other difficult control problems, for instance the
dynamic behavior of a nonlinear plant can be captured
by a family of linearized models or by a Linear Parameter
Varying LPV model Kajiwara et al. [1999], and then solved
using linear control theory. Over the years many successful
robust control design techniques have been proposed, for
example H∞ techniques Zhou et al. [1996], Chilali and
Gahinet [1996], µ-synthesis Balas and Doyle [1994], Balas
et al. [1993], and robust H2 techniques Packard and Doyle
[1987], How et al. [1994], Banjerdpongchai and How [2000]
and many others.

Most existing robust control syntheses are formulated
as non-convex optimization problems, which make them
unattractive computation wise. For instance, µ-synthesis
which is one of the most widely used design techniques, is
usually solved by searching over controllers and multipli-
ers. Simultaneous Optimization over-both controllers and
multipliers is a non-convex optimization problem which
has no complete solution to date. A commonly used ap-
proach is to retain convexity by iterating once over con-
trollers and once over multipliers, this technique may work,
but in most cases converge to sub-optimal solutions.

This paper proposes a novel Co-evolutionary Cooperative
Bisection (CCB) algorithm to address the above problem.
The proposed algorithm is based on a combined use of
CCE-algorithms and Algebraic Riccati Equation (ARE)
solvers. The work presented here is a continuation of a
previous successful combination of genetic algorithms and
ARE-solvers i.e. see Farag and Werner [2004], [2005a],
and [2005b]. The newly developed technique is not only
computationally faster than previous techniques, but also
poses superior convergence properties as it will be shown
in next sections.

The paper is organized as follows: Section 2 introduces
a unified approach to control design based on a Riccati
Equation Formulation then proposes the γ-bisection al-
gorithm. The CCB-algorithm is proposed in section 3.
Section 4 presents a new method for designing low order
controllers that minimizes an upper bound on the singular
value µ. Conclusions are drawn in section 5.

2. A UNIFIED CONTROL DESIGN SYNTHESIS

Let A(θ, β), Q(θ, β, γ) and R(θ, β, γ) be real n×n matrices
with Q(θ, β, γ) and R(θ, β, γ) are symmetric. Now consider
the parameterized algebraic Riccati equation

A(θ, β)T P + PA(θ, β) − (PB(θ, β) + V (θ, β, γ))R(θ, β, γ)·

(B(θ, β)T P + V (θ, β, γ)T) + Q(θ, β, γ) = 0 (1)

where B(θ, β) and V (θ, β, γ) are real matrices of compat-
ible dimensions. It is assumed here that all these matrices
are continuous functions of a common parameter vectors
θ ∈ Rnθ , β ∈ Rnβ and γ ∈ R.

Note: The importance of solving Equation 1 comes from
the fact that several interesting control design synthesis
can be brought to this specific form.

Finding vectors θ, β, scalar γ and a positive definite
symmetric matrix P ∈ Rn×n that satisfy this equation is
a non-convex problem. Note however that for any fixed
value θ = θ0, β = βo, and γ = γo the problem can
be solved efficiently via Riccati solvers see Arnold and
ALaub [1984]. The decision vectors θ and β will usually
represent controllers and multipliers respectively, while
scalar γ represents some performance measure that need
be optimized.

The main goal of this section is to develop an efficient
algorithm for solving the following problem:

Problem 1:

min
θ, β, P

γ

subject to:

A(θ, β)T P + PA(θ, β) − (PB(θ, β) + V (θ, β, γ))R(θ, β, γ)·

(B(θ, β)T P + V (θ, β, γ)T) + Q(θ, β, γ) = 0
(2)

R(θ, β, γ) < 0 (3)

P = P T > 0 (4)

Now let us consider a simplified version of Problem-1.

Problem 2: For given θ = θ0 and β = βo,

min
P

γ

subject to:

A(θ0, β0)
T P + PA(θ0, β0) − (PB(θ0, β0) + V (θ0, β0, γ))R·

(θ0, β0, γ)(B(θ0, β0)
T P + V (θ0, β0, γ)T) + Q(θ0, β0, γ) = 0

(5)

R(θ0, β0, γ) < 0 (6)

P = P T > 0 (7)

This problem can be solved using the γ- Bisection Algo-
rithm Boyd et al. [1989] shown in Figure 1.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12304

Choose a suitable values for scalars γU and γL

repeat:
γ0 = (γU + γL)/2
If R(θ0, β0, γ0) < 0
γU = γ0; If a solution to Equation-(5) exists;
γL = γ0; Otherwise;

Otherwise
γL = γ0;

until (γU − γL ≤ εγL)
γ = (γU + γL)/2
where ε is a small number (i.e. ε = 0.01).

Fig. 1. The γ- Bisection Algorithm

Once this algorithm is terminated it will return some
optimal γ and a corresponding solution P > 0.

For convenience let us represent the computations per-
formed using the above γ-Bisection algorithm by the map-
ping function M(θ, β),

γ0 = M(θ0, β0) (8)

Note: this mapping exists as long as A(θ0, β0) is stable.

Let us observe that Problem-2 is solvable in a straight
forward manner via the bisection algorithm, moreover,
it is a special case of problem-1 (θ and β are given).
Thus, all needed to solve Problem-1 is to search for the
vectors θ and β using GA, while using γ as an objective
function computed through the mapping M(·). A typical
population structure to solve Problem-1 is given in Table
1 below.

GA Population Bisection+ARE solvers Fitness
Controllers Multipliers

θ1 β1 γ1 = M(θ1, β1) f(γ1)
θ2 β2 γ2 = M(θ2, β2) f(γ2)
...

...
...

...
θnp βnp γnp = M(θnp , βnp) f(γnp)

Table 1. GA Population Structure

Experience has shown that a standard GA may work well
when applied to Problem-1, but only when the size of the
decision vectors θ and β are relatively small (nθ ≤ 10
and nβ ≤ 5). On the other hand if the problem size is big
(nθ+nβ > 15), then GA has difficulties in solving Problem-
1, and may require very long runs to converge to acceptable
solutions. Interestingly, if nβ = 0, then GA remain efficient
in solving Problem-1 even with large values of nθ ≈ 40,
which is bigger that the sum nθ +nβ = 15. In other words,
the decision vector β plays a different role when solving
Problem-1. To clarify this claim let us consider Table 2
below.

Random chromosomes Objective value

(Controller A , Multiplier A) 2.5
(Controller B , Multiplier B) 1.9
(Controller C , Multiplier C) 2.0

Table 2. Objective values of a typical run

This table shows a fictitious scenario that may happen
when using the population structure shown on Table 1.
Note that each chromosome codes both the controller and

the multiplier variables (θ, β). Based on this table it is
clear that the pair (Controller B , Multiplier B) achieve
the best fitness, so it has the highest chances of surviving
in next generations.

Let us now disassemble these pairs and compute the
objective function of every possible combination as shown
in Table 3,

Multiplier Multiplier Multiplier
A B C

Controller A 2.5 7.2 1.2
Controller B 4.1 1.9 3.0
Controller C 1.8 1.5 2.0

Table 3. Fitness values of the disassembled
chromosomes

The question now is how to assign fitness? There are
many ways of doing that for instant a fairer fitness
assignment scheme for controllers (A,B,C) would be
(1.2,1.9,1.5) respectively (minimum of each row). Simi-
larly, a fairer fitness assignment for multipliers (A,B,C)
would be (1.8,1.5,1.2) respectively (minimum of each col-
umn). It is interesting to observe that the best combined
fitness is (controller A + Multiplier C), so the controller
A which has the worst fitness on Table 2 (i.e. very low
chances of surviving) deliver the best fitness when com-
bined with multiplier C.

So, if a standard single population GA is used to solve
this problem with a population structure shown in Table 1
the controller A is combined with the Multiplier A which
give the worst fitness and will be removed from future
generations. This possibility explains why the convergence
of GA is much worst when a new influential player is
introduced i.e. Multipliers. The way GA is dealing with
the problem at the moment is to think in terms of a
combined fitness which may work, but for sure is not
the best option. One possibility is to consider all possible
combinations, then to compute the fitness as shown above
(i.e rows for controller and column for multipliers), but
this option will increase the computational duty drastically
(the number of fitness evaluations in each step is squared).

The option taken here is to separate controllers and
multipliers in different populations (i.e. species), such that
the fitness of all controllers are computed with a single
representative multiplier β∗, similarly, all multipliers are
tested against a single representative controller θ∗. Which
means that the controllers evolve in a separate population
while Cooperating with the multipliers population and vice
versa.

The above discussion opens the door to new directions
in which complex control design problems can be tackled,
namely, to use Co-evolutionary Cooperative algorithms.
The next section presents inner structure of the CCB-
algorithm.

3. A COOPERATIVE CO-EVOLUTIONARY
BISECTION ALGORITHM

Let us start by introducing the following shorthand nota-
tions:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12305

P i
θ : ith controllers population.

P j
β : jth multipliers population.

θ∗i : fittest controller in P i
θ .

β∗

j : fittest controller in P j
β .

np : Populations size (same for all).
nK : number of controllers populations.
nD : number of multipliers populations.
ng : Migration interval.

Initialization Set k = 1, and generate random con-
trollers/multipliers

populations (Pθ , Pβ).
Warming-Up-phase

(1) Compute the fitness of P i
θ (i = 1, ..., nK), using

some β0.
(2) If stabilizing controllers are found in all populations,

then save the best controllers {θ∗1 , θ
∗

2 , ..., θ∗nK
} and

terminate this phase; otherwise continue.
(3) Evolve P i

θ , (i = 1, ..., nK), and go-back to step-1.
Process-Multipliers

(1) Compute the fitness of P j
β using a random θ∗i

selected from the set {θ∗1 , θ
∗

2 , ..., θ
∗

nK
} for (j =

1, ..., nD).
(2) Update the set {β∗

1 , β∗

2 , ..., β∗

nD
}.

(3) Apply Migration (every ng cycles, see Remark 4).

(4) Evolve P j
β , (j = 1, ..., nD).

Process-Controllers
(1) Compute the fitness of P i

θ using a random β∗

j

selected from the set {β∗

1 , β∗

2 , ..., β∗

nD
} for (i =

1, ..., nK).
(2) Update the set {θ∗1 , θ

∗

2 , ..., θ
∗

nK
}.

(3) Apply Migration (every ng cycles, see Remark 4).
(4) Evolve P i

θ , (i = 1, ..., nK).
Termination-Criteria If the maximum number of iter-

ations is reached then stop;
otherwise set k = k + 1, go to Process-

Multipliers.

Figure 2 shows the population structure associated with
the above algorithm.

Remark 1: In the warming up phase the algorithms
searches for stabilizing controllers, i.e. the controller pa-
rameters (i.e. θ), so at this stage the multipliers pop-

ulations (i.e. P j
β , j = 1, ..., nD) are not evolved. The

fitness of each controller is computed by assuming identity
multipliers (β0 =Identity) and according to the following
objective function:

f(θi) =

{

M(θi, β0), if Ā is stable
κ(Ā(θi)) + πP , if Ā is unstable

where κ(Ā) stands for maximum real part of the eigenval-
ues of Ā, and πP is a penalty for destabilizing controllers.

The use of the penalty πP means that the algorithm
searches for stabilizing controllers at early generations, and
switch to the task of γ-minimization at later generations.
This claim is based on the fact that at later stages the
mutation operator is restricted (older generations has less
mutation i.e. nonuniform mutation). This technique of
handling hard constrains is known as Death penalty refer

to Morales and Quezada [1998] and Michalewicz [1996] for
further details.

Thus, with the help of the death penalty πP the controller
populations P i

θ , i = 1, ..., nK are filled with stabilizing
controllers after few iterations. Note that this phase is
terminated as soon as there is at least one stabilizing
controller in each population, in other words the set
{θ∗1 , θ

∗

2 , ..., θ
∗

nK
} is filled.

Remark 2: In the Process Multipliers step the fitness of
each multiplier is computed according to:

f(βj) = M(θ∗i , βj)

Note that the entire jth multipliers population use a
unique random θ∗i .

Remark 3: In the Process Controllers step the fitness of
each controller is computed according to:

f(θi) =

{

M(θi, β
∗

j), if Ā is stable
κ(Ā(θi)) + πP , if Ā is unstable

Note that the entire ith controllers population use a unique
random β∗

i .

Remark 4: Migration is implemented in standard man-
ner, every ng generations with a complete-net-topology see
Cantu-Paz [2001].

The real potential of this algorithm will be demonstrated
now by applying it to some interesting control problems.

4. µ-SYNTHESIS BASED ON THE
CCB-ALGORITHM

The CCEB developed in the previous section is used here
to construct a new method for designing fixed structure
controllers that minimize an upper bound on the struc-
tured singular value µ. A key step in the proposed design
procedure is to show that this problem can be formulated
as Problem-1 considered in the previous section.

4.1 Problem Formulation

Consider the generalized plant P (s) shown in Figure 3 with
a feedback controller K(s) and a stable perturbation ∆(s)
that satisfies ‖∆(s)‖∞ < 1 and has a given structure ∆.
Partition P (s) as

P =

[

P11 P12

P21 P22

]

and let M(s) denote the lower fractional transformation

M = P11 + P12K(I − P22K)−1P21

A typical design problem with a given performance and ro-
bustness specifications, involves the search for a controller
that minimizes

sup
ω

µ∆(M(jω))

where µ∆ is the structured singular value

µ∆(M) :=
1

min{σ̄(∆) : ∆ ∈ ∆, det(I − M∆) = 0}
(9)

A widely used approach - known as D-K iteration - to
“solve” this problem is to minimize an upper bound on

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12306

Population 1

Controllers

Population 3

Controllers

Population 2

Controllers

Population 1

Multipliers

Population 3

Multipliers

Population 2

Multipliers

Migration
 Migration

Cooperation

Cooperation

{D
*
(s)

1

, D
*
(s)

2

, D
*
(s)

3

}

{K
*
(s)

1

, K
*
(s)

2

, K
*
(s)

3

}

Fig. 2. The CCB-Algorithm

M(P, K)

P

K

P

∆

K

y u

b)

∆

∆p

y u

a)

z w

Fig. 3. Generalized plant

µ∆: introduce stable and minimum phase scaling matrices
D(s) that satisfy D(s)∆(s) = ∆(s)D(s), and try to find a
controller that solves

min
K

inf
D

‖DMD−1‖∞ (10)

by iteratively solving for K and D. Solving for K with
D fixed is a standard H∞ problem; on the other hand,
when K is fixed one searches for D(jω) point-wise on a
frequency grid, and tries to find a transfer matrix D(s)
that fits the resulting magnitude curve (e.g. see Lewin and
Parag [2003]).

A major drawback of this approach is the fact that the
order of the controller equals the order of the generalized
plant plus twice the order of the scaling D(s), which may
lead to high controller orders. Moreover, in this framework
it is not possible to impose constraints on the controller
structure. The following section proposes an alternative
approach for solving the above problem, that avoids these
drawbacks.

4.2 Control Synthesis

Let a state space realization of the generalized plant P (s)
in Figure (3) be

ẋ = Ax + Bww + Bu
z = Czx + Dzww + Dzu
y = Cx + Dww

where x ∈ Rn is the state vector, u ∈ Rnu is the control
input, w ∈ Rnw represents external inputs, y ∈ Rny is the
measured output, and z ∈ Rnz represents the outputs to
be controlled. The matrices Cz, Dzw, Bw, Dz and Dw

are tuning parameters to be chosen to meet some design
requirements. Similarly, let

ζ̇(t) = AKζ(t) + BKy(t)

u(t) = CKζ(t) + DKy(t) (11)

be a state space realization of the controller K(s), where
ζ(t) ∈ Rnc is the controller state vector, and nc ≤ n is the
order of the controller.

Now, let
PD(s) = DL(s)P (s)DR(s) (12)

denote the augmented generalized plant shown in Figure
4, where

DL(s) = diag(D(s), Iny
), DR(s) = diag(D−1(s), Inu

).

z P

K

D D−1

y u

w

Fig. 4. Closed loop with D-scaling

Moreover, let

ẋ = Âx + B̂ww + Bu

z = Ĉzx + D̂zww + D̂zu

y = Cx + D̂ww

be a state space model of PD(s). A realization of the
nominal closed-loop transfer matrix M(s) is then

ẋcl = Āxcl + B̄w
z = C̄xcl + D̄w

where

Ā =

[

Â + BDKC BCK

BKC AK

]

, B̄ =

[

B̂w + BDKD̂w

BKD̂w

]

,

(13)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12307

C̄ =
[

Ĉz + D̂zDKC D̂zCK

]

, D̄ = D̂zw + D̂zDKD̂w

(14)

Using the real bounded lemma Boyd et al. [1994], we have
the following result.

Theorem 4.1. The matrix Ā is stable and ‖M(s)‖∞ < γ if
and only if there exists a matrix X = XT > 0 that satisfies

[

ĀT X + XĀ + γ−1C̄T C̄ XB̄ + γ−1C̄T D̄
B̄T X + γ−1D̄T C̄ −γI + γ−1D̄T D̄

]

≤ 0 (15)

Using the Schur complement, inequality (15) holds if and
only if

ĀT X + XĀ + γ−1C̄T C̄−

(XB̄ + γ−1C̄T D̄)R−1(B̄T X + γ−1D̄T C̄) ≤ 0 (16)

and
R = −γI + γ−1D̄T D̄ ≤ 0 (17)

When this result is applied to the minimization problem
(10), the solution X will be on the boundary; therefore one
can replace the inequality by an equation and consider

Ā(θ, β)T X+XĀ(θ, β)+γ−1C̄T (θ, β)C̄(θ, β)−(XB̄(θ, β)

+ V (θ, β, γ))R(θ, β, γ)−1(B̄T (θ, β)X + V (θ, β, γ)T) = 0
(18)

instead of (16), where

V (θ, β, γ) = γ−1C̄T (θ, β)D̄(θ, β),

θ, β are vectors containing the controller K(s) and scaling
matrix D(s) (i.e. multipliers) variables respectively.

Thus, the condition ‖DMD−1‖∞ < γ is met upon finding
θ, β and X = XT > 0 such equation (18-17) is satisfied.
This problem takes the from of Problem-1, so it can
be solved in a straight forward manner using the CCB
algorithm.

Note that using the CCB algorithms avoids the frequency
gridding and transfer function fitting required in standard
D-K iteration (see examples below). Moreover, controller
order and structure can be chosen freely.

4.3 Spinning Satellite Example

This section applies the design technique developed in the
previous section to a design example - control of a spinning
satellite - taken from the Tutorial of the µ Analysis and
Synthesis Toolbox Balas et al. [1993] .

The state space model of the satellite is given as
[

β̇x

β̇y

]

=

[

0 10
−10 0

] [

βx

βy

]

+

[

0 1
1 0

] [

u1

u2

]

(19)

[

y1

y2

]

=

[

0 10
−10 0

] [

βx

βy

]

Actuator uncertainty in both input channels is modelled
as multiplicative input uncertainty, with weights

Wδ1
=

10(s + 4)

s + 200
; Wδ2

=
10(s + 24)

3(s + 200)

for input 1 and 2, respectively. Both sensors measurements
are assumed to be noisy, this is modelled by the sensor
noise weight Wn = wnI2, where

wn =
12(s + 25)

5(s + 6000)
.

Finally, the performance objective of achieving a tracking
error of no more than 1% is expressed by a performance
weighting filter Wp = wpI2, where

wp =
s + 4

2(s + 0.02)
.

Performance and robustness specifications are expressed
in the form of a µ synthesis problem by introducing the
augmented uncertainty structure

∆a = {diag(∆, ∆p) : ∆ ∈ ∆, ∆p ∈ C(4×2)}

where

∆ = {

[

δ1 0
0 δ2

]

: δi ∈ C}

The corresponding scaling D(s) must then have the form

D(s) = {diag(D11(s), D22(s), I)}

A controller then meets the performance and robustness
requirements when the peak value of µ∆a

is less than 1.

Low Order Controller Using CCB Now, we will use the
CCB algorithm developed in the previous section to design
a second order controller that meets all robustness and
performance requirements. The chosen controller structure
is given below:

Ak =

[

a11 0
0 a22

]

, Bk =

[

b11 0
0 b22

]

,

Ck =

[

c11 c12

c21 c22

]

, Dk =

[

d11 d12

d21 d22

]

which means that the decision vector θ contains 12-
decision variables, namely,
{a11, a22, b11, b22, c11, c12, c21, c22, d11, d12, d21, d22}.

The multiplier matrix D(s) is selected as:

D(s) =











d1s
2 + d2s + d3

s2 + d4s + d5
0 0

0
d6s

2 + d7s + d8

s2 + d9s + d10
0

0 0 I











which implies that the decision vector β contains 10 deci-
sion variables, namely, {d1, d2, d3, d4, d5, d6, d7, d8, d9, d10}.

When using standard GA to solve this problem each
chromosome contains 22 variables (θ+β). For given values
of θ and β the objective function γ is computed using the
mapping M(.). This γ is an upper bound on the structured
singular µ that must be minimized to meet the design
requirements.

To understand how each part of the CCB algorithm func-
tion four techniques (options) are compared here: CCB

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12308

without cooperation (CCB-P), CCB with only two popu-
lations (CCB-C) (i.e one for controllers and one for multi-
pliers), standard GA (single population), and the full CCB
algorithm. The main objective here is to understand the
individual effect of cooperation and parallelism. Moreover,
to ensure fairness; all algorithms are forced to use the same
number of function evaluations Nmax (i.e. number of times
M(.) is called). This restriction is important due to the
fact that CCB-algorithm is a multi-population algorithm
and the observation that fitness evaluation is the most time
consuming operation. Furthermore, all tested algorithms
use identical evolution operations (Nonuniform mutation
and Arithmetical Crossover see Michalewicz [1996]).

CCB algorithm is a heuristic algorithm that may return
a different solution every time it is used. To reduce the
effect of this heuristic behavior when comparing the above
techniques a number of runs are performed, then four per-
formance measures are computed to check performance.
The proposed performance measures are: average-γ, best-
γ, worst-γ and Standard Deviation (SD). It is clear that
smaller values of all these quantities are more favorable
(for this example), for instance smaller SD implies better
Consistency in achieving a given level of performance.
Table 4 shows the results obtained in ten different runs
(All computations were performed on a standard desktop
computer, Pentium-IV 2.0G, 512MB Ram, the average
computation time for 10, 000 function evaluations is ≈ 4
minutes).

Iteration GA CCB-P CCB-C CCB
np = 30 np = 30 np = 20 np = 20

N = 1000 N = 250 N = 750 N = 150
zm = 1 zm = 4 zm = 2 zm = 10

1 5.293 2.920 1.151 1.070
2 2.593 2.919 1.000 1.149
3 2.593 1.142 1.119 1.246
4 1.843 4.678 2.691 1.057
5 0.977 1.088 1.227 0.937
6 1.256 2.920 1.241 1.708
7 2.698 5.385 1.008 1.129
8 2.594 1.221 0.976 1.274
9 2.593 1.070 2.565 1.313
10 1.152 1.117 1.498 1.780

γave 2.359 2.446 1.448 1.266

γworst 5.293 5.385 2.691 1.780

γbest 0.977 1.070 0.976 0.937

σγ 1.238 1.599 0.641 0.276

Table 4. Results of ten different runs, with a
maximum number of 30,000 function evalua-

tions (zm : number populations).

Based on the results shown on Table 4 the CCB algorithm
has a much better performance compared to standard GA
in every aspect. For example, the average γ obtained with
CCB is 1.266 which is roughly 50% less than the one
obtained with GA (i.e. 2.359), moreover, CCB algorithm is
much more consistent in achieving this performance level
(i.e. σγ = 0.276) which is approximately 4.5 times less than
that of standard GA. Another clear advantage of the CCB
algorithm is the fact that its worst expected performance
is not far from average (γworst = 1.780), in contrast GA
has a much worst behavior (γworst = 5.385). It is worth
nothing that smaller values of SD do not necessarily mean
smaller values of γworst.

Another important observation that can be drawn from
Table 4, is the fact Cooperation plays an important role
on the performance of proposed algorithm (i.e. CCB), this
confirms the claims made in section 2. More precisely,
the use of one controller to compute the fitness of the
whole multiplier population and vice versa do improve
convergence. On the other hand parallelism (PGA) has no
clear advantage when add to pure GA, but it improves the
performance when combined with a cooperative algorithm
(compar column 3 and column 5 in Table 4).

The above claims can further be clarified by considering
Figure 5, which shows the variation of γave, γbest and
γworst against the maximum number of function evalua-
tions Nmax. Figure 5.a shows that as Nmax increases γave

improves and the gap γworst−γbest decreases. While Figure
5.b shows the variation of the same quantities when (CCB-
P) is used, which is just standard GA plus parallelism (i.e
use of multi-populations), unfortunately, no clear improve-
ment is observed compared to standard GA. In contrast,
incorporating cooperation Figure 5.c (CCB-C) improves
γave, and reduces the gap γworst−γbest drastically. Finally,
the performance of the full CCB algorithm which uses
both parallelism and cooperation is shown in Figure 5.d,
clearly this algorithm outperforms all others in terms of
the achieved γave and the gap γworst − γbest.

10 20 30 40
0

5

10

Function evaluations

γ

GA

10 20 30 40
0

5

10

Function evaluations

γ

CCB−P

10 20 30 40
0

5

10

Function evaluations

γ

CCB−C

10 20 30 40
0

5

10

Function evaluations

γ

CCB

10k 10k

10k 10k

20k 20k

20k 20k 20k

30k30k

30k30k

40k 40k

40k 40k

Fig. 5. The variation of γave, γbest and γworst against Nmax

(k : kilo = 1000)

To better understand the above results let us observe that
when using GA for solving optimization problems then
the minimum number of iterations required to converge to
acceptable solutions, increases as the number of decision
variable increases. Let us assume now that for a given
problem GA requires 100 iteration with a population size
of 20 to converge to acceptable solutions. Now, if more
than one population is used, for instance 4 populations,
then to keep Nmax = 100 × 20 fixed the number of
iterations must be reduced to 25, but this is to small for
GA to work at all. This explains why the use of parallelism
does not improve the convergence properties of GA, in
other words the reason for that is the limited number of
function evaluations (5k-40k) and the complexity of the
search space.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12309

The remaining question now is why parallelism helps when
combined with cooperation even with a small Nmax to
clarify this point we need to consider problem solved in this
section. Let Nmax = 30k and np = 30 which gives Nitr =
1000 if pure GA is used, but if CCB-P is used with the
same np and 5 populations then each population is allowed
to evolve for only 200 iterations which is apparently not
enough to search for 22-decision variable (θ, β). Now,
when solving the problem in cooperative manner there
will be 10 populations (5 sub-populations for controllers
θ’s, and 5 sub-populations for multipliers β’s), in this case
Nitr = 100, but the search space is much smaller (i.e each
subpopulation searches for either 12-controller variables or
10-multipliers variables), consequently, this small number
of iterations Nitr = 100 is sufficient to show the power
of parallelism. Interestingly, if the maximum number of
function evaluations is further decreased (say 5k), then
parallelism will not work in either cases (cooperative or
noncooperative), this fact is clear in Figure 5, and can
be further clarified with the help of Figure 6. This figure
shows the variation of SD against Nmax, and confirms that
the CCB algorithm has the best consistency (i.e smallest
σγ) for Nmax = 10k − 40k, but with Nmax = 5k CCB-
C outperform CCB, which means that parallelism has a
negative effect if Nmax is not sufficiently large.

There are several parameters influencing the performance
of parallel GA, in particular migration rate, number of
migrants, and the migration strategy (or scheme). Suitable
values for these parameters can be estimated by per-
forming a sufficient number of experiments. Four possible
migration strategies (i.e. for transferring and receiving mi-
grants) were considered here, random → random, random
→ worst, best → random and best → worst. For example,
random → random scheme means that each population
export a random set of migrants, on the other hand a
random set of individuals are removed from it to receive
new migrants. It has been found that random → random
scheme achieves the best SD, moreover, based on this
experimental study a hybrid scheme (proposed here) was
found to perform the best. This scheme uses best → ran-
dom at early generations, then switches to best → worst
scheme at later generations (e.g. after 50% of total num-
ber of iteration). The motivation for this hybrid scheme
is based on the observation that at earlier generations
removing the worst individuals may lead to premature
convergency towards local minima. On the other hand at
later generations all populations are already converged to
some solutions so is its more important at this stage to
share best solutions between these populations. Figure 7
shows the performance of some tested schemes including
the hybrid scheme, this figure confirms the superiority
of the proposed scheme over other schemes, all results
developed here are based on this hybrid-scheme.

Considering other migration parameters, it was found that
a suitable migration interval may be chosen as 0.05 −
0.15 × Niter, a suitable number of migrants (transmitted)
can be selected as Np/(zm − 1)/2 which implies that each
subpopulation receives Np/2 migrants (i.e. complete net
topology). For example if Np = 20 with three populations,
then each population receives ten migrants (5 migrants
from each other population).

10k 20k 30k 40k
0

0.5

1

1.5

2
GA

CCB−P

CCB−C

CCB

of function evaluations

σ
γ

Fig. 6. SD versus Nmax for GA and CCB.

0

0.5

1

1.5

2

2.5

3
CCB

best−rand

best−worst

rand−rand

best−hybrid

γ
best

γ
ave

γ
worst

σ
γ

Fig. 7. The influence of migration strategy on σγ .

5. CONCLUSION

This paper proposes a novel algorithm named as a Co-
evolutionary Cooperative Bisection (CCB) algorithm as
master tool for solving variety of control problems. The
proposed algorithm is computationally attractive and has
very favorable convergence properties. The numerical su-
periority of the CCB algorithm is back to two main factors,
the numerical efficiency of γ-Bisection algorithm, and the
multi-population structure proposed in this paper (Coop-
eration and Parallelism).

To demonstrate the potential of the proposed algorithm
a method for designing fixed-structure controllers that
minimize an upper bound on the singular value µ has been
developed. The problem considered here is of significant
practical interest, since many engineering control problems
involve hard constraints on the controller order or struc-
ture. Moreover, even if the controller order or structure are
not restricted, the proposed algorithm has the advantage
of being able to optimize over the multiplier D(s) and
controllers K(s) simultaneously, thereby improving the
chances of converging to the global minimum. Numerical

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12310

examples given here confirm the computational efficiency
and the excellent convergence properties of the CCB-
algorithm.

REFERENCES

W.F. Arnold and J. ALaub. Generalized Eigenproblem Al-
gorithms and Software for Algebraic Riccati Equations.
In Proc. IEEE, pages 1746–1754, 1984.

G.J. Balas and J.C. Doyle. Robust Control of Flexible
Modes in the Controller Crossover Region. AIAA
Journal of Guidance, Dynamics and Control, 17(2):370–
377, 1994.

G.J. Balas, J.C. Doyle, K. Glover, A. Pack, and R. Smith.
µ-Analysis and Synthesis Toolbox. The Math Works,
1993.

D. Banjerdpongchai and J. P. How. Parametric robust H2

control design using iterative linear matrix inequalities
synthesis. AIAA Journal of Guidance Control and
Dynamics, 23(1):138–142, 2000.

S. Boyd, V. Balakrishnan, and P Kabamba. A Bisection
Method for Computing the h∞ Norm of Transfer Matrix
and Related Problems. IEEE Math Control Signal
Systems, 2:207–219, 1989.

S.P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrish-
nan. Linear Matrix Inequalities in Systems and Control
Theory, volume 15 of Studies in Applied Mathematics.
SIAM, Philadelphia, PA, USA, 1994.

A. Bucci and J. Pollack. on Identifying Global Optima
In Cooperative Coevolution. In the 2005 Genetic and
Evolutionary Computation Conference, pages 539–544,
2005.

E Cantu-Paz. A Survey of Parallel Genetic Algorithms.
Calculateurs Paralleles, Reseaux et Systems Repartis, 10
(2):141–171, 1992.

E Cantu-Paz. Migration Policies, Selection Pressure, and
Parallel Evolutionary Algorithms. Journal of Heuristics,
7(4):311–334, 2001.

M. Chilali and P. Gahinet. H∞-design with pole placement
constraints: An LMI approach. IEEE Trans. Automatic
Control, 41(3):358–367, 1996.

A. Farag and H. Werner. A Ricatti - Genetic Algorithms
Approach to Fixed-Structure Controller Synthesis. In
Proc. American Control Conference ACC, 2004.

A. Farag and H. Werner. Decentralized Control of Winding
Systems: a Hybrid Evolutionary-Algebraic Approach. In
Proc. 16th IFACWorld Congress, Prague, 2005a.

A. Farag and H. Werner. Fixed-Order Control of Ac-
tive Suspension : a Hybrid Evolutionary-Algebraic Ap-
proach. In Proc. 16th IFACWorld Congress, Prague,
2005b.

C.M. Fonseca and P.J. Fleming. An Overview of Evo-
lutionary Algorithms in Multiobjective Optimization.
Evolutionary Computation, 3(1):1–16, 1995.

J.P. How, S.R. Hall, and W.M. Haddad. Robust controllers
for the middeck active control experiment using Popov
controller synthesis. IEEE Trans. Control Systems
Technology, 2(2):73–86, 1994.

H. Kajiwara, Pierre Apkarian, and Pascal Gahinet. LPV
Techniques for Control of an Inverted Pendulum. IEEE
Control Systems Magazine, 19:44–54, 1999.

D. R. Lewin and A. Parag. A constrained genetic algo-
rithm for decentralized control system structure selec-
tion and optimization. Automatica, 39:1801–1807, 2003.

Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer-Verlag, Berlin, 1996.

Angel Kuri Morales and Carlos Villegas Quezada. Univeral
Eclectic Genetic Algorithm for Constrained Optimiza-
tion. In Proceedings of the 6th European Congress on
Intelligent Techniques and Soft Computing, pages 518–
522, 1998.

A. Packard and J. Doyle. Robust control with an H2

performance objective. In Proc. American Control
Conference, pages 2141–2146, 1987.

L. Panait, R.P. Wiegand, and S. Luke. Improving Coevo-
lutionary Search for Optimal Multiagent Behaviors. In
Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI), pages 653–658, 2003.

L. Panait, S. Luke, and R. P. Wiegand. Biasing Coevolu-
tionary Search for Optimal Multiagent Behaviors. IEEE
Transactions on Evolutionary Computation, 2006.

Liviu Panait. The Analysis and Design of Concurrent
Learning Algorithms for Cooperative Multiagent Sys-
tems. PhD thesis, George Mason University, Fairfax,
Virginia, 2006.

Liviu Panait, R. Paul Wiegand, and Sean Luke. A Visual
Demonstration of Convergence Properties of Coopera-
tive Coevolution. In Schwefel, pages 892–901, 2004.

Elena Popovici and Kenneth De Jong. Understanding Co-
operative Co-evolutionary Dynamics via Simple Fitness
Landscapes. In Genetic and Evolutionary Computation
Conference GECCO 2005, pages 507–514, 2005.

M. Potter. The Design and Analysis of a Computational
Model of Cooperative CoEvolution. PhD thesis, George
Mason University, Fairfax, Virginia, 1997.

Mitchell A. Potter and Kenneth A. De Jong. A Cooper-
ative Coevolutionary Approach to Function Optimiza-
tion. In In Proceedings of the Third Conference on
Parallel Problem Solving from Nature, pages 249–257,
1994.

R. P. Wiegand. An Analysis of Cooperative Coevolutionary
Algorithms. PhD thesis, George Mason University,
Fairfax, Virginia, 2003.

R. P. Wiegand and M. A. Potter. Robustness in Co-
operative Coevolution. In Genetic and Evolutionary
Computation Conference GECCO 2006, pages 369–376,
2006.

R. P. Wiegand, W. Liles, and K. De Jong. An empir-
ical analysis of collaboration methods in cooperative
coevolutionary algorithms. In Genetic and Evolutionary
Computation Conference GECCO 2001, pages 1235–
1242, 2001.

R. P. Wiegand, W. Liles, and K. De Jong. Analyzing Co-
operative Coevolution with Evolutionary Game Theory.
In In Proceedings of the 2002 Congress on Evolutionary
Computation, pages 1600–1605, 2002a.

R. P. Wiegand, W. Liles, and K. De Jong. Modeling Vari-
ation in Cooperative Coevolution Using Evolutionary
Game Theory. In Foundations of Genetic Algorithms,
pages 231–248, 2002b.

K. Zhou, C. Doyle, and K. Glover. Robust and Optimal
Control. Prentice Hall, USA, 1996.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12311

