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Abstract: This paper investigates development of Fault Detection and Isolation (FDI) filters
for retarded time-delay systems. A bank of residual generators is designed based on the linear
geometric approach so that each residual is affected by one fault and is decoupled from the
others while the H∞ norm of the transfer function between the disturbance and the residual
signals are less that a prespecified value. Simulation results presented in the paper demonstrate
the effectiveness of our proposed FDI algorithm.

1. INTRODUCTION

Modern control systems are becoming increasingly more
complex and issues of availability, efficiency, reliability, op-
erating safety, and environmental protection concerns are
receiving more attention. This requires a fault diagnosis
system that is capable of reliably detecting plant, actuator
and sensor faults when they occur, and of identifying
and isolating the faulty component in the system. In the
past three decades, a number of fundamental results on
fault detection and isolation (FDI) have been developed
see e.g. Massoumnia (1986); White and Speyer (1987);
Frank and Wunnenberg (1989); Seliger and Frank (1991);
Massoumnia et al. (1989); Douglas and Speyer (1995);
Chung and Speyer (1998a,b); Chen and Patton (1999);
Meskin and Khorasani (2006, 2007). However, limited
results exist on designing FDI strategies for time-delay
systems. Time-delay is an inherent characteristic of many
physical systems, such as rolling mills, chemical processes,
water resources, biological, economical and traffic control
systems, to name a few. In this paper, we investigate
development and design of a fault detection and isolation
scheme for retarded time-delay systems.

In recent years, only a few results on FDI of retarded
time-delay systems have been developed. In Yang and
Saif (1996, 1998), an unknown input observer (UIO) is
designed for FDI and Yang and Saif (1997) proposed a
robust UIO approach for uncertain time-delay systems
with bounded uncertainty. In this work, some assumptions
on the system structures are considered. Both approaches
are based on determining a suitable state transformation
and designing a reduced order observer for the transformed
system. Parity space approach is also developed in Kratz
et al. (1998) for fault detection of retarded time-delay
systems. In Liu and Frank (1999); Ding et al. (2001);
Zhong et al. (2003); Jiang et al. (2003); Zhong et al.
(2004); Leishi et al. (2006, 2007), a robust fault detection
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problem for linear time-delay systems is investigated by
solving an H∞ optimization problem. In this approach one
attempts to keep the sensitivity of the residual signal to
unknown inputs (disturbances) less than a specific bound
while increase the sensitivity of the residual signal to
the fault over the frequency range of the fault. In Jiang
et al. (2002); Fuqiang et al. (2004); C. Jiang (2005), an
adaptive observer approach is developed for estimating
the fault signal in time-delay systems. In Nguang et al.
(2006) a robust fault estimation for uncertain time delay
Takagi-Sugeno (TS) fuzzy models is developed ensuring
a prescribed H∞ performance level for fault estimation
error. In Zhu and Cheng (2004), a robust fault detection
and isolation observer for uncertain singular time delay
systems is developed. However, the problem of fault iso-
lation for a general retarded time-delay systems has not
been completely addressed in the above methods.

In this paper, a set of residuals that are based on the
dedicated residual scheme (Chen and Patton (1999)) is
generated by extending the geometric FDI results in Mas-
soumnia et al. (1989) to retarded time-delay systems.
Using the unobservability subspace properties of linear
systems, a set of residuals is generated such that each
residual is affected by one fault and is decoupled from
others. At the same time the effects of disturbances on
the residuals are attenuated by using an H∞ optimization
technique and the LMI approach is used for solving this
optimization problem. The main contribution of this work
is in extending geometric FDI methods to retarded time-
delay linear systems.

The remainder of this paper is organized as follows. In
section II, a brief background on geometric properties
of linear systems and an H∞ control for retarded time-
delay systems are reviewed. The problem formulation and
framework of our proposed fault detection and isolation
strategy are presented in section III. In section IV, a
robust fault detection and isolation strategy for time-
delay systems is presented. In section V, the effectiveness
and capabilities of our proposed algorithm are shown
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through simulation results. Conclusions and future work
are presented in section VI.

The following notation is used throughout this paper.
Script letters X ,U ,Y, ..., denote real vector spaces. Ma-
trices and linear maps are denoted by capital italic letters
A, B, C, ...; the same symbol is used both for a matrix and
its map; the zero space, zero vector ,..., are denoted by
0. B = Im B denotes the image of B; Ker C denotes the
kernel of C. If a map C is epic, then C−r denotes a right
inverse of C (i.e., CC−r = I)). A subspace S ⊆ X is
termed A-invariant if AS ⊆ S. For A-invariant subspace
S ⊆ X , A : S denotes the restriction of A to S, and
A : X/S denotes the map induced by A on the factor
space X/S. For a linear system (C, A, B), < Ker C|A >
denotes the unobservable subspace of (C, A).

2. BACKGROUND

Consider the linear system

Σ :

{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

where x ∈ X is the state of the system with dimension n,
u ∈ U , y ∈ Y are input and output signals with dimensions
m and q, respectively.

Definition 1. (Massoumnia (1986)). A subspace S is a
(C, A) unobservability subspace (u.o.s.) if S =< Ker HC|A+
DC > for some output injection map D : Y → X and
measurement mixing map H : Y → Y.

Given an u.o.s. S, a measurement mixing map H can
be computed from S by solving the equation KerHC =
KerC +S. Let D(S) denote the class of all maps D : Y →
X such that (A + DC)S ⊆ S. The notation S(L) refers
to the class of (C, A) u.o.s. containing L ⊆ X . The class
of u.o.s. is closed under intersection; therefore, it contains
an infimal element S∗ = infS(L). In Massoumnia et al.
(1989) an algorithm for computing S∗ is proposed.

Given the matrices Ai, i = 0, ..., N and C, a subspace
S0,...,N is called a common u.o.s. for the pairs (C, Ai), i =
0, ..., N if

S0,...,N =< Ker HC|Ai + DiC >, i = 0, ..., N (1)

for some output injection maps Di : Y → X and measure-
ment mixing map H : Y → Y.

The notation S0,...,N (L) refers to a common u.o.s. con-
taining L ⊆ X . The following algorithm can be used for
finding the smallest common u.o.s. S(0,...,N)∗(L) for the
pairs (C, Ai), i = 0, ..., N containing L

CUOS :

{

S0 = X
Sk = W∗ + (∩N

i=0A
−1
i Sk−1) ∩ Ker C

where S(0,...,N)∗(L) = lim Sk and W∗ = lim Wk where
Wk can be obtained from following algorithm

(1) W0 = L

(2) Wk = Wk−1 +
∑N

i=0 Ai(Wk−1 ∩ Ker C)

For details see Massoumnia (1986) and Balas et al. (2002,
2003). As it will be shown in section IV, a central role
is played by common unobservability subspaces S0,...,N in
the geometrical approach to fault detection and isolation
of retarded time-delay systems.

Let S ⊂ X be an u.o.s. , i.e., S =< Ker HC|A + D0C >,
then the factor system of Σ which is denoted by Σ : X/S
is defined as

Σ : X/S

{

ẋ(t) = ASx(t) + BSu(t)
y(t) = CSx(t)

where AS = A + D0C : X/S, BS = PB, CS is the unique
solution of CSP = HC, D0 ∈ D(S) and P : X → X/S is
the canonical projection.

In the following, certain results on H∞ disturbance at-
tenuation of retarded time-delay systems are reviewed.
Consider a linear time-delay system

ẋ(t) = A0x(t) +
N

∑

i=1

Aix(t − τxi(t)) + Dd(t)

y(t) = Cx(t), x(t) = 0 (t ≤ 0) (2)

where τxi(t) are assumed to satisfy τxi(t) ≤ τi < ∞,
τ̇xi(t) ≤ τ̄i ≤ 1 and d(t) represents the unknown input vec-
tor including modeling errors and uncertain disturbances.
Without loss of generality, it is assumed that d is L2-norm
bounded. The next lemma provides a sufficient condition
for asymptotic stability of system (2) while the H∞ norm
of the transfer function between the disturbance d and the
output signal y is less that a given positive value γ.

Lemma 2. (Kim and Park (1999)). Given γ > 0 and the
time-delay system (2), if there exist positive-definite ma-
trices P and Q such that the following Riccati inequality
is satisfied

AT
0 P + PA0 + CT C + Q + γ−2(PD)(PD)T

+ N

N
∑

i=1

ciPAiQ
−1AT

i P < 0

where ci = 1
1−τ̄i

, then system (2) is asymptotically stable
and its L2 gain is not greater than γ, i.e.

∫ ∞

0

yT (t)y(t)dt ≤ γ2

∫ ∞

0

dT (t)d(t)dt (3)

3. PROBLEM FORMULATION

Consider the following linear retarded time-delay system

ẋ(t) = A0x(t) +

N
∑

i=1

Aix(t − τxi(t)) + B0u(t)

+
L

∑

j=1

Bju(t − τuj(t)) +
k

∑

l=1

Llml(t)

+ Dd(t)

y(t) = Cx(t) (4)

with the continuous initial condition x(θ) = φ(θ), θ ∈
[−τ, 0] where x ∈ X is the state of the system with dimen-
sion n, u ∈ U , y ∈ Y are input and output signals with
dimensions m and q, respectively, mi ∈ Mi are the fault
modes with dimension ki and Li’s are fault signatures and
τ = maxiτxi(0). The fault modes together with the fault
signatures may be used to model the effects of actuator
faults, sensor faults and system faults on the dynamics
of the system. For modeling a fault in the i-th actuator,
Li = [b0i, b1i, ..., bLi] and the fault mode mi is chosen to
model the type of a fault where bji, j = 0, ..., L denote
the i-th column of matrices Bj , j = 0, ..., L. For example
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a complete failure of an actuator can be represented and
modeled by mi(t) = [−ui(t),−ui(t − τu1(t)), ...,−ui(t −
τuL(t))]T . A system fault can be represented by a potential
variation in the parameters of the Ai’s matrices as shown
below:

ẋ(t) =(A0 + ∆A0)x(t) +

N
∑

i=1

(Ai + ∆Ai)x(t − τxi(t))

+ B0u(t) +

L
∑

j=1

Bju(t − τuj(t))

y(t) =Cx(t)

As an example, a change in the i-th row and j-th column
of matrix A1 can be modeled as ∆A1x(t − τx1(t)) =
Ii∆a1

ij
xj(t − τx1(t)) where xj is the j-th element of the

vector x and Ii is an n-dimensional vector with all zero
elements except one in the i-th element. Define the signal
mi(t) � ∆a1ij

xj(t− τx1(t)) as an external input and fault
signature Li = Ii, then this fault can be modeled as in
equation (4).

It should be noted that sensor faults can initially be
modeled as additive inputs in the measurement equation
y = Cx +

∑q

j=1 Ejnj where Ej is an q × 1 unit vector
with a one at the j-th position and nj ∈ R is a sensor
fault mode, which corresponds to a fault in the j-th sensor.
For example, a complete failure of the j-th sensor can be
represented and modeled by nj = −cjx where cj is the
j-th row of the matrix C. The sensor fault signature can
also be modeled as an input to the system (Chung and
Speyer (1998a); Hashtrudizad and Massoumnia (1999)).
Following Chung and Speyer (1998a), let fj be the solution
to Ej = Cfj . The new states can be defined according
to x̄(t) = x(t) +

∑q

j=1 fjnj(t), where the state space
representation for the new states can be written as

˙̄x(t) = A0x̄(t) +
N

∑

i=1

Aix̄(t − τxi(t)) + B0u(t)

+
L

∑

j=1

Bju(t − τuj(t)) +

q
∑

j=1

Ljmj(t)

y(t) = Cx̄(t)

(5)

where Lj = [ fj A0fj A1fj · · · ANfj ] and mj(t) =
[ṅj(t),−nj(t),−nj(t − τx1(t)), · · · ,−nj(t − τxN (t))]T .

We are now in a position to formally introduce the robust
fault detection and isolation problem considered in this
paper.

4. ROBUST FAULT DETECTION AND ISOLATION
OF RETARDED TIME-DELAY SYSTEMS

The Robust Extended Fundamental Problem in Residual
Generation (REFPRG) for the retarded time-delay system
(4) is to design a set of filters that generate k residuals ri(t)
such that a fault in the i-th component Li can only affect
the residual ri(t) and no other residual rj(t)(i 	= j) and

∫ ∞

0

rT
i (t)ri(t)dt ≤ γ2

∫ ∞

0

dT (t)d(t)dt, i = 1, ..., k (6)

Specifically, the residual signals ri(t) are generated accord-
ing to the following filters:

ẇi(t) =Fiwi(t) +

N
∑

l=1

Filwi(t − τxl(t)) − Eiy(t) + Kiu(t)

−

N
∑

l=1

Eily(t − τxl(t)) +

L
∑

j=1

Kiju(t − τuj(t))

ri(t) = Miwi(t) − Hiy(t) (7)

The following theorem summarizes our proposed strategy.

Theorem 3. The REFPRG problem defined by expressions
(6) and (7) has a solution for the linear retarded time-
delay system (4) if there exist the following common
unobservability subspaces

Si = S(0,...,N)∗(
∑

j �=i

Lj), i = 1, ..., k (8)

such that Li ∩ Si = 0, i = 1, ..., k as well as the gain
matrices Gij , j = 0, ..., N ,i = 1, ..., k and positive-definite
matrices Ri and Qi, i = 1, ..., k such that

(A0Si
+ Gi0MSi

)T Ri + Ri(A0Si
+ Gi0MSi

) (9)

+ MT
Si

MSi
+ Qi + γ−2(RiDuS

)(RiDuS
)T

+ N

N
∑

l=1

ciRi(AlSi
+ GilMSi

)Q−1
i (AlSi

+ GilMSi
)T Ri < 0

where Pi is the canonical projection of X on X/Si, DuS
=

−PiD, and the pairs (MSi
, AlSi

), l = 0, ..., N are the

factor system of the pairs (C, Al), l = 0, ..., N on X/Si,
respectively.

Proof: Given the unobservability subspaces Si, there exist
output map injections Di0, Di1, ..., DiN and measurement
mixing map Hi such that

Si =< Ker HiC|A0 + Di0C >

Si =< Ker HiC|A1 + Di1C >

...

Si =< Ker HiC|AN + DiNC >

where Hi is the solution to Ker HiC = Si + Ker C and
is common for all Ai’s. Let MSi

be a unique solution to
MSi

Pi = HiC and

A0Si
= (A0 + Di0C : X/Si)

A1Si
= (A1 + Di1C : X/Si)

...

ANSi
= (AN + DiNC : X/Si)

where

Pi(A0 + Di0C) = A0Si
Pi

Pi(A1 + Di1C) = A1Si
Pi

...

Pi(AN + DiNC) = ANSi
Pi (10)

Let Gij , j = 0, ..., N denote the solution to the inequality
(9) and define

Fi = A0Si
+ Gi0MSi

Fi1 = A1Si
+ Gi1MSi

...

FiN = ANSi
+ GiNMSi
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



















AT
0Si

Ri + RiA0Si
+ MT

Si
T T

0 + T0MSi
+ MT

Si
MSi

+ Qi RiDus RiA1Si
+ T1MSi

· · · RiANSi
+ TNMSi

∗ −γ2I 0 · · · 0

∗ ∗ −
1

N
c−1
1 Qi 0 0

... ∗
...

. . .
...

∗ ∗ ∗ ∗ −
1

N
c−1
N Qi





















< 0 (12)

and

Ei = Pi(Di0 + P−r
i Gi0Hi)

Ei1 = Pi(Di1 + P−r
i Gi1Hi)

...

EiN = Pi(DiN + P−r
i GiNHi)

Let Mi = MSi
, Ki = PiB0, and Kij = PiBj , j = 1, ..., L.

Define ei(t) = wi(t) − Pix(t), then using (7) we have

ėi(t) =Fiwi(t) +

N
∑

l=1

Filwi(t − τxl(t)) − Eiy(t) + Kiu(t)

−
N

∑

l=1

Eily(t − τxl(t)) +
L

∑

j=1

Kiju(t − τuj(t))

− Pi(A0x(t) +

N
∑

l=1

Alx(t − τxl(t)) + B0u(t)

+

L
∑

j=1

Bju(t − τuj(t)) +

k
∑

l=1

Llml(t) + D(t)d(t))

=Fiwi(t) +
N

∑

l=1

Filwi(t − τxl(t))

− Pi(A0 + Di0C)x(t) − Gi0MiPix(t)

−

N
∑

l=1

Pi(Al + DilC)x(t − τxl(t)) − PiDd(t)

−
N

∑

l=1

GilMiPix(t − τxl(t)) − PiLimi(t)

=F0iei(t) +

N
∑

l=1

Filei(t − τxl(t))

− PiLimi(t) − PiDd(t)

Note that PiLj = 0, j 	= i, since Lj ∈ Si, j 	= i. Also

ri(t) = Miwi(t) − Hiy(t) = Miwi(t) − HiCx(t)

= Miei(t)

Consequently, the error dynamics can be written as

ėi(t) =F0iei(t) +

N
∑

l=1

Filei(t − τxl(t))

− PiLimi(t) + DuS
d(t)

ri(t) =Miei(t) (11)

Using Lemma 2 and the inequality (9), it follows that the
inequality (6) holds. Moreover, from the error dynamics
(11), it follows that ri(t) is only affected by Li and is
decoupled from other fault signatures. �

Using the Schur complement and change of variables Tj =
RiGij , j = 0, ..., N , the inequality (9) can be written as

given by the inequality (12) which is in an LMI form in
terms of Ri, Qi and Tj ’s, and that can be solved by using
standard LMI tools. The observer gains can be calculated
from the Gij = R−1

i Tj .

The generic conditions for existence of the unobservability
subspaces of Theorem 3 can be stated as follows.

Proposition 4. Let Ai, i = 0, ..., N , C and Li be arbitrary
matrices of dimensions n × n, q × n and n × ki, respec-

tively, let v =
∑k

i=1 ki. The unobservability subspaces of
Theorem 3 generically exist if and only if

v ≤ n (13)

and
v − min{ki, i = 1, ..., k} < q (14)

Proof: The proof is the same as in the EFPRG problem
for linear systems Massoumnia et al. (1989) and is omitted
due to space limitations. �

After constructing the residual signals ri(t), i = 1, ..., k,
the last step is to determine the threshold Jthi

and the
evaluation function Jri

(t). In this paper, the following
thresholds and evaluation functions are selected

Jri
(t) =

∫ t

t−T0

rT
i (t)ri(t)dt, i = 1, ..., k (15)

Jthi
= sup

d∈L2,mj=0,j=1,...,k

(Jri
), i = 1, ..., k (16)

where T0 is the length of the evaluation window. Based
on the above thresholds and evaluation functions, the
occurrence of a fault can be detected and isolated by using
the following decision logics

Jri
(t) > Jthi

=⇒ mi 	= 0, i = 1, ...., k (17)

5. NUMERICAL EXAMPLE

To illustrate the effectiveness and capabilities of our pro-
posed FDI algorithm, a numerical example is provided in
this section. Consider the time-delay system (4) that is
specified with parameters

A0 =







2 −1.5 1 1
1 −1 0.5 2
1 2 −3 0
2 0 −1 1






, B0 =







1 0
1 1
1 1
0 1







A1 =







−1 2 0.2 0
−0.1 1.3 0.5 1
0.1 −1 2 0.1
1 0.1 1 2






, B1 = 0

C =

[

1 1 0 0
0 0.2 1 0
0 0 0 1

]

, D =







0.3
0.2
0

0.6






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and τx1(t) = 0.5 + 0.2sin(t) and N = 1, k = 2 and L = 0.
The fault signatures L1 and L2 are selected as the first and
second columns of the matrix B, and hence they represent
actuator faults for the time-delay system.

The subspaces in Theorem 3 for the above time-delay
system can be determined using the CUOS algorithm
and are given by S1 = L1,S2 = L2. After determining
the subspaces S1 and S2, the maps Di0, Di1, Hi, Mi, i =
1, 2 and matrices A0S1

, A1S1
, A0S2

, A1S2
can be found

according to Theorem 3. Using the LMI tools, the gain
matrices G10, G11, G20 and G21 are computed by solving
the LMI inequality (15) for γ = 0.07. An H∞ robust state
feedback control u(t) = Kx(t) is also designed for the
closed-loop system to ensure its stability.

A disturbance input d(t) is assumed to be a band-limited
white-noise with power of 0.5. The thresholds are cal-
culated as Jth1

= 0.01 and Jth2
= 0.015 for T0 = 5

seconds. Figure 1 shows the residuals and their evaluation
functions corresponding to the healthy operation of the
system. As shown in this figure, no false alarm is generated
during normal operation of the system. Figure 2 shows
the residuals and the evaluation functions corresponding
to a fault in the second actuator (u2) of the system where
the gain of the actuator is decreased by 60% at t = 10
seconds. This fault can be modeled as m2(t) = −0.6u2(t),
where m2(t) is the fault mode of the second actuator. As
shown in this figure, the fault is detected and isolated at
t = 19.7 seconds and the evaluation function of r1 (i.e.
J(r1)) remains below the threshold. Figure 3 shows the
residuals and evaluation functions corresponding to a fault
in the first actuator where the gain of the actuator is
decreased by 70% at t = 10 seconds. This fault can be
modeled as m1(t) = −0.7u1(t), where m1(t) is the fault
mode of the first actuator. As shown in this figure, this
fault is detected and isolated at t = 12.1 seconds and the
evaluation function of r2 (i.e. J(r2)) remains below the
threshold. Figure 4 shows the residuals and the evaluation
functions corresponding to simultaneous faults in both
actuators where 60% loss of effectiveness (gain) is occurred
in the first actuator at t = 5 seconds and 50% loss of
gain is occurred in the second actuator at t = 10 seconds.
According to this figure, the fault in the first actuator is
detected at t = 7.2 seconds and the fault in the second
actuator is detected at t = 13 seconds. It should be noted
that in all above scenarios the time-delay system remains
stable and well-behaved, which makes the FDI problem
more challenging.

Remark : It should be emphasized that the presently
available FDI algorithms in the literature cannot generate
the residual signals with the above decoupling properties.
In those algorithms, faults that one needs to be decoupled
are considered as unknown inputs and the algorithms seeks
to attenuate the effects of faults on the residual. Therefore,
those type of algorithms cannot decouple fault effects from
the residuals. However, in our proposed approach, the
residual signals that can decouple the faults from each
other and are robust with respect to disturbances are
constructed where one can easily use these residuals for
both fault detection and isolation.
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Fig. 1. Residual signals and their evaluation functions cor-
responding to the normal mode (healthy operation)
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Fig. 2. Residual signals and their evaluation functions
corresponding to a fault in the second actuator
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Fig. 3. Residual signals and their evaluation functions
corresponding to a fault in the first actuator

6. CONCLUSIONS

A geometric approach to fault detection and isolation for
linear retarded time-delay systems is developed in this
paper. A set of residual signals are generated so that each
residual is only affected by one fault and is decoupled from
the others while the H∞ norm of the transfer function
between the unknown input (disturbances, uncertainties
and modeling errors) and residual signals is less than a
given positive value. Simulation results demonstrate and
illustrate the effectiveness and capabilities of our proposed
method.
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Fig. 4. Residual signals and their evaluation functions cor-
responding to simultaneous faults in both actuators
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