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Abstract: Indoor localisation systems based on existent radio communication networks often
make use of received signal strength (RSS) as measured feature. In order to achieve a good
accuracy such systems have a huge payload in the called calibration phase, where many
labelled measurements are collected and used to build a representative feature map. The present
paper introduces a new algorithm based on previous works from the same authors, where the
calibration phase is avoided by unsupervised online learning, during the operational phase of
the system. Using probabilistic localisation and non-parametric density estimation, the new
approach uses unlabelled measurements to learn a feature map, having as start only a rough
initial model. Simulations with artificial generated data and with real measurements validate
the introduced algorithm.
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1. INTRODUCTION

Indoor localisation is still a defying subject among the
localisation tasks. While for outdoor environments the
Global Positioning System or GPS (and soon also Galileo)
is the well established and popular solution, for indoor
environments there are yet many different systems and
solutions, each of them with promising features and some
drawbacks. GPS is satellite based and uses difference of
propagation time from radio signals to locate users. That
is why it fails to operate with the same accuracy in indoor
environments, where the complex setups of corridors,
floors, walls, and doors attenuate and deflect the satellite
signals beyond the system capabilities to adjust itself.

Many indoor systems achieve accuracy of a few metres, as
the best results achieved with GPS for outdoor scenarios.
However, these systems usually need many proprietary
sensors populating the area where a user must be located,
as in Priyantha et al. (2000) and Ni et al. (2003) or they
need many received signal strength (RSS) measurements
prior to system start to build a radio map, as in Bahl
and Padmanabhan (2000), Roos et al. (2002) and Brunato
and Battiti (2005). The major drawbacks in such cases
are the low scalability and high implementation costs.
Propagation time is also used in some indoor systems,
where it achieves comparable performance as with systems
using RSS, but using proprietary sensors and under as-
sumptions, as for example line-of-sight (LOS), that limit
generalisations, as in Oppermann et al. (2004) and Pahla-
van et al. (2002).

The main advantage of using existent communication sys-
tems for localisation is that no extra hardware is needed
to be installed (as is the case with special sensors and
tag based systems), since the RSS measurement is a stan-
dard feature of these systems. However, this advantage
is opposed by the costly calibration phase that must be
accomplished before the system start. In Betoni Parodi
et al. (2006) a localisation system was proposed, which
addressed the cost reduction of this calibration effort. The
Simultaneous Localisation and Learning (SLL) proposed
the use of a rough initial model to start the system, with
only a few information, like the base station (BS) posi-
tions. The system starts with accuracy equivalent to Cell-
ID systems and, through successive localisation queries
combined with an iterative learning algorithm, achieves
accuracy equivalent as using calibration measurements,
and that avoiding the effort of collecting these measure-
ments. The system uses only unlabelled samples, that is,
plain RSS measurements without information about the
true location where the sample is obtained, contrasting
with the required labelled samples for usual calibration.
In Betoni Parodi et al. (2007) some important properties
and conditions for successful use of SLL were proven.

The SLL is based on the Self Organising Maps or SOMs
(see Kohonen (1990)) and records as feature the mean
value of RSS in the feature map, performing localisation
with a simple pattern matching approach called near-
est neighbours (NN). As the natural evolution of SLL,
the Simultaneous Probabilistic Localisation and Learning
(SPLL) is presented here as the main contribution of this
paper. As the SLL finds a parallel with SOMs, the same
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could be said of SPLL and the Bayesian SOM (BSOM),
as in Yin and Allinson (1997).

First a brief introduction about SOMs is presented, then
the SPLL algorithm is described, with examples in one
dimensional (1D) environments using simulated data and
real measurements, which validate the algorithm.

2. INTRODUCTION ON SELF ORGANISING MAPS

SOMs are a special class of neural networks, which are
based on competitive learning. In a SOM, the neurons
are placed at the nodes of a 1D or 2D lattice, known
also as latent space. The neurons are selectively adapted
to various input patterns in the course of a unsupervised
competitive learning process. The locations of the winning
neurons in latent space become ordered in such a way
that a meaningful coordinate system for different input
patterns is created over the lattice, Kohonen (1990). A
SOM is therefore characterised by the formation of a
topological map where the input patterns are mapped
from the input space into the latent space, preserving
the intrinsic statistical features contained in the input
patterns, Haykin (1998).

The principal feature of Kohonen’s SOM is the automatic
and adaptive mapping of signals from input space into the
latent space, using these signals to perform a parametric
regression over the neurons, fitting them to the distribu-
tion of the input samples. This mapping forms clusters in
the latent space, which preserve the topological relations
of the data in the input space. This is the called self
organisation.

The learning is achieved by performing iteratively three
steps in addition to the initialisation: competition, co-
operation and adaptation. During the initialisation the
synaptic weights in the neural network are randomly set,
if no other initialisation is specified.

In the competitive step a winning neuron c with the weight
vector mc = [mc1, · · · ,mcn] in the n dimensional input
space is selected such that it has the smallest cost with
respect to a given input feature vector ξ = [ξ1, · · · , ξn]T.
The cost is usually calculated using some distance measure
in input space between ξ and all weights mi, that is,
c = argmin{d(ξ − mi)}, with d as the distance measure
(as the Euclidean distance for most practical applications)
and the index i going through all neurons in the lattice.
The winning neuron c will be the centre for the adaptation
process.

The cooperation determines which neurons will be adapted
together with the winning neuron c. A neighbourhood
function hci(k), dependent on the discrete time step k,
is used to find the neuron i close to the winner c and to
weigh it accordingly with the distance to the winner in the
lattice. A typical choice for the neighbourhood function at
1D problems is the constant function, set to a constant
α(k) for the winner and for an equal number of neighbours,
forward and backward (usually just 2 neighbours are
taken). For 2D or 3D maps the Gaussian function is usually
chosen, so that:

hci(k) = α(k) · exp

(

−

(

dci

2 · σ(k)

)2
)

, (1)

where α(k) is the learning rate, σ(k) is the effective width
of the topological neighbourhood, both dependent on k.
dci is the distance in latent space from neuron i to neuron
c at the centre. The adaptation law, given by

mi(k + 1) = mi(k) + hci(k) ·
(

ξ(k) −mi(k)
)

, (2)

ensures that the response of the winning neuron to the sub-
sequent application of a similar input pattern is enhanced,
Haykin (1998).

The adaptation process consists of two phases: the self-
organising or ordering phase and the convergence phase.
In the ordering phase the topological ordering of the
weight vectors takes place. During this phase the learning
rate and the neighbourhood area should decrease. The
neighbourhood area goes from complete coverage to a
few neurons or even to the winning neuron itself. In the
convergence phase the fine tuning of the feature map
takes place in order to provide an accurate statistical
quantification of the input space. The learning rate should
stay constant or it could decay exponentially, Haykin
(1998).

The Kohonen algorithm is very resilient to a complete
mathematical study, according to Cottrell et al. (1994).
Thorough analyses could be achieved only for the 1D case
in a linear network. The results in higher dimensions are
only partial.

3. DESCRIPTION OF THE ALGORITHM

The SPLL is an iterative algorithm based on the improve-
ment of a feature map using unlabelled samples as its
predecessor, the SLL. The feature recorded in the SPLL
feature map is a probability density function (pdf), in
contrast with only the mean RSS value at the SLL fea-
ture map. A new measurement is used to locate a user
with probabilistic localisation, and this location estimate
defines an area where the feature map is updated. The
pdf is a natural choice for a description of a continuous
random variable, however, as a discretisation step is in-
variably introduced when implementing the algorithm, the
formally right description should be of a probability mass
function (pmf) for discrete random variables. Throughout
this paper, the description of the algorithm will use pdfs
as base, and the implementation with pmfs.

The following sections introduce the main aspects that
together form the SPLL, concluding with the algorithm
itself:

3.1 Probabilistic Localisation

The following scenario exemplifies a typical example found
in localisation systems: An area is covered by N BSs.
A feature map is constructed at Q selected positions xq,
and at each of these positions some sufficient amount of
measurements are taken in order to build some feature, for
example, the mean RSS value, the mean and variance, or
the whole distribution. At some unknown position xM a
measurement vector pM, with dimension N , one for each
BS, is obtained. The localisation task concerns in how to
combine the information contained in the measurement
pM with the information recorded in the feature map so
that some location estimate x is retrieved, as close as
possible to the true location xM.
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The probabilistic localisation deals with the task of de-
termining Pr(x|pM) the probability that a user is at the
position x given the feature pM, here a RSS measurement.
The solution to this problem lies on calculating the poste-
rior probability over all possible Q locations on a discrete
feature map. That is usually accomplished using Bayes
rule:

Pr(x|pM) =
Pr(pM|x)Pr(x)

∑Q

q=1 Pr(pM|xq)Pr(xq)
, (3)

where the conditional probability Pr(pM|x) is retrieved
from labelled samples, that is, measurements at known
locations, which are used to build the pdf g(p, x) as the
information recorded in the feature map; and Pr(x) is usu-
ally set as a constant, assuming it is uniform distributed
if there is no prior information from where a user can be.
The denominator at (3) acts as a normaliser.

If the measured feature pM has dimension N 6= 1, then
Pr(pM|x) can be calculated as:

Pr(pM|x) =
N
∏

n=1

Pr(pM,n|x), (4)

if measurements from distinct BSs are assumed indepen-
dent. In this case a unidimensional pdf gn(p, x) is needed
for each BS.

A position estimate is usually retrieved from the probabil-
ity densities either using the Maximum Likelihood (ML):

x = argmax
xq

Pr(pM|xq), (5)

where, as self explained by its name, the most likely loca-
tion is determined; or using the Minimum Mean Squared
Error (MMSE), where

x = E[xM|pM] =

Q
∑

q=1

xq · Pr(xq |pM), (6)

is the best estimation for x, which minimises E[(xM−x)2],
being E[·] the expected value. For its intrinsic robustness,
the latter is the method chosen for this work.

3.2 Non-parametric Density Estimation

In order to obtain Pr(pM|x) from the measurements there
are many possibilities to consider: parametric approaches
are often found in the literature under the assumption that
the real distribution can be approximated by some known
model, usually describing the pdfs in terms of Gaussian
distributions or even Gaussian mixtures. Non-parametric
approaches, as the histogram and the kernel based, are
then used when the pdf cannot be described in terms
of a set of parameters. The SPLL uses a variant of the
kernel based approach, known also as Parzen method and
described thoroughly in Webb (2002).

According to the kernel method, a pdf for a set of k
observations can be estimated using:

gk(p) =
1

k
·

k
∑

i=1

fi(p), (7)

being fi(p) the kernel function, assumed to be a pdf by its
own, i.e., fi ≥ 0 and

∫

fi dp = 1.

The kernel method takes all contributions from 1 to k
equally, placing one kernel for every observation on the

set. Permutations on the sequence of observations have no
effect at the estimated density, which is not adequate for
SPLL learning yet.

Thus, a small modification on the kernel method is pro-
posed. It is presented in a recursive form, which is more
appropriate for a recursive process as the SPLL:

gk+1(p, x) =
gk(p, x) + fk+1(p)

∫ (

gk(p, x) + fk+1(p)
)

dp
, (8)

where fk+1(p) is the kernel function, which does not need
to be constrained to

∫

fk dp = 1, as the integral at the
denominator normalises the kernel contribution at k + 1.
This, combined with the fact that g(p, x) ≥ 0 assures that
(8) describes in fact a pdf.

The kernel function fk may have almost any shape, but
the choice of the kernel reflects directly at the estimated
pdf. For example, a rectangular kernel, with discontinuity
at its borders, will generate also a discontinuous pdf. The
kernel at time k is centred at pM,k and for the SPLL a
natural shape choice was the Gaussian function:

fk = κ · exp

(

−

(

p− pM,k

φ

)2
)

, (9)

where κ controls the amplitude and φ the width of the
kernel. As defined in Betoni Parodi et al. (2007) for the
SLL, κ is the learn rate and φ is often mentioned as
smoothing parameter or bandwidth in the literature about
kernel method. In fact, φ controls how smooth the learned
pdf will be: if φ is too wide, then the pdf will be very
smooth and fine details as peaks in the pdf will never be
learned. On the other hand, if φ is too narrow the pdf
will be very spiky and rough. The condition imposed for
the kernel in Webb (2002), forcing it to have unity area,
is here relaxed since (8) has already a normalising factor.
Noteworthy is that fk at SPLL is a function of power p
and not anymore of position x as fc,k with SLL.

For further analysis the recursive form of (8) is not
very helpful. The following theorem introduces a closed
formulation for (8):

Theorem 1. Calling the denominator of (8) as Ak+1 for
the sake of readability, it is possible to write the recursive
formula at (8) in closed form as:

gk(p, x) =
g0(p, x)
∏k

j=1Aj

+
k
∑

i=1

fi(p)
∏k

j=i Aj

, (10)

where g0(p, x) is the pdf chosen for the system initialisa-
tion, at time k = 0.

Proof. For the sake of readability the dependencies of p
and x from g and f were suppressed. The first and second
iterations of SPLL can be directly written as:

g1 =
g0 + f1

A1

,

g2 =
g0 + f1

A1 ·A2

+
f2

A2

,

which are conform with (8).

Assuming that the closed form of the update law (10) at
step k is true, an inductive proof is constructed applying
(10) on the recursive form (8) at step k + 1:
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gk+1 =
gk + fk+1

Ak+1

=

g0

k
∏

j=1

Aj

+
k
∑

i=1

fi

k
∏

j=i

Aj

+ fk+1

Ak+1

=
g0

Ak+1 ·
k
∏

j=1

Aj

+
1

Ak+1

·
k
∑

i=1

fi

k
∏

j=i

Aj

+
fk+1

Ak+1

Moving Ak+1 to inside the product on the first and second
fractions gives:

gk+1 =
g0

∏k+1

j=1 Aj

+

k
∑

i=1

fi
∏k+1

j=i Aj

+
fk+1

Ak+1

,

and finally the last fraction can be moved into the sum, so
that the expression for step k + 1 is obtained in the same
form as the expression for step k:

gk+1 =
g0

∏k+1

j=1 Aj

+

k+1
∑

i=1

fi
∏k+1

j=i Aj

(11)

2

The area defined by Ak+1 is composed by two terms,
as seen in (8): the area under the pdf gk(p, x), which
was normalised at the previous step k − 1 consequently
having value 1, and the area of the actual fk+1(p). Hence,
Ak > 1∀k.

Making k → ∞ it is possible to observe what happens
with (10) when the number of iterations grows. As Ak > 1

it follows that lim
∏k

j=1 Aj = ∞, which cancels the first

term of (10). As a consequence of this, the initial model
g0(p, x) is entirely replaced by the second term in (10),
which depends only on the measurements. An important
property observed is that older terms of fi have less weight
on the sum than the newer ones. This capability to forget
old values while learning new ones is a necessary condition
so tat changes in the radio environment can be tracked.
This is the major difference between the non-parametric
density estimation developed here and the methods found
at the literature, where all measurements are equally
weighted to compose the pdf.

3.3 Algorithm Main Steps

Now that the main aspects of SPLL were introduced, they
are here grouped to compose the main algorithm.

Initialisation Although the initial model g0(p, x) will
eventually vanish, as explained in section 3.2, the choice of
it should reflect some plausibility. For example, pdfs with
higher mean RSS value at BS positions and decay with
distance. Since the algorithm operates blindly over the
actual feature map, a bad choice, as uniform distributions
overall, can make the algorithm fail to learn.

Localisation As justified at section 3.1, the localisation
technique chosen is the MMSE. With a new measurement
pM, an estimate for location x is retrieved using (6). This
estimate lays inside the cartesian boundaries defined by
the feature map positions xq, with q = 1, · · · , Q.

Neighbour Selection Once a location estimate x is re-
trieved, then it must be selected which positions in the
feature map will effectively be updated.

Defining the Euclidean distance between the location
estimate x and the qth feature map position xq as:

dq =
√

(x− xq)T(x− xq), (12)

and defining the maximum distance from x where a update
is made as ψ, then every position xq for which dq < ψ will
be updated.

Feature Map Update At the xq positions inside the ψ
radius the feature map is updated. The update uses the
non-parametric density estimation as explained in section
3.2, and considering the discrete time as k + 1, then the
update law follows (8) applied at xq.

Since the update is made at several positions using the
same measurement pM, a small modification is made at
f so that the positions xq closer to the centre x are
privileged, with a higher update amplitude: now κ in (9)
is made dependent on dq, so that

κ = κ(dq) =
ψ − dq

ψ
κmax, (13)

where κmax is the maximum value for κ.

The control parameters of SPLL κ, φ, and ψ can and
should be made variable with time. Right after initiali-
sation they should start with great magnitude such that
the model is brought from its false initialisation condition
to the vicinity of the true model, and then the parameters
should be made smaller such that the fine details of the
model can also be learned.

4. SIMULATED 1D EXAMPLE

In order to show the learning capabilities of the SPLL the
following 1D simulation example was set:

xq = q − 1 with q = {1, · · · , 21} in metres. Only one BS
is considered and placed at x1 = 0m. The propagation
profile is Gaussian with standard deviation σ = 5 and the
mean µ decays linearly with distance, such that µq = p0−
γxq, where the output power p0 = −20dBm and the
attenuation factor γ = 2dB/m. Additionally, at x11 = 10m
a discontinuity of -20dBm was placed, which could be
the effect of a thick wall. In this way, the pdf at xq is
N (−20 − 2xq, 5) if q < 11 and N (−40 − 2xq, 5) if q ≥ 11.
The pdfs were recorded as pmfs in a discrete space with
field strength range from 0 to −100dBm with step of 1dB.
For each position 1000 samples were generated from the
correspondent distributions and used as measurements.

The initial model for the feature map was set such that the
profile is also Gaussian but following N (−60− 2xq, 5), ∀q.
This ensures that the initial model totaly mismatches
the true measurements, but still attending to physical
plausibility, since the highest µ is placed where the BS
is. At Figs. 1 and 2 both the true model that generated
the measurements and the initialisation can be observed.

The control parameters were left fixed so that κmax = 0.05,
φ = 3, and ψ = 3. This makes it possible to observe
the convergence potential of SPLL without composition
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Fig. 1. Simulated example: true model

of many effects. A faster and better convergence could be
obtained with variable parameters but this was not the
aim of this example. A global mean error between the true
model pdf that generated the measurements gtrue(p, x),
discretised as pmf, and the actual pmf gk(p, x) recorded in
the feature map at time k was defined as:

epdf,k =

∑Q
q=1

√

∑R
r=1 (gk(pr, xq) − gtrue(pr, xq))2

Q
, (14)

where R is the number of discrete field strength sampling
points for the pmfs.

The experiment was run going from x1 to x21 and back to
x1 100 times, resulting in 4200 iterations. At each position
xq one measurement was randomly selected from the 1000
possible. Figure 3 shows the evolution of epdf,k.

epdf,k starts falling immediately and achieves its minimum
after 1500 iterations. The final feature map after 4200
iterations is displayed in Fig. 4.

It is noteworthy to compare Figs. 1 and 4 and verify that
the learned pmf was brought by the SPLL to the position
of the true model and that even the discontinuity was
learned at the right position.

5. REAL WORLD 1D EXAMPLE

For this experiment WLAN measurements were taken in a
corridor with length of 31.2m, with a BS at x1 = 0m and
step of 1.2m between the feature map positions xq = (q −
1) · 1.2 with q = {1, · · · , 27}. Each position was measured
100 times and the corridor has a thick metal door at
x14 = 15.6m, which was kept shut during all experiment.

The feature map was initialised using N (−60 − xq, 5), ∀q.
As there is no a priori knowledge of the true model, a
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Fig. 2. Simulated example: initialisation
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Fig. 3. Simulated example: pdf error

representation of its pdf is achieved using common non-
parametric density estimation, but only for comparison
with the learned feature map. The mismatch between the
measurements and the initial model are presented in Figs.
5 and 6, respectively. Noticeable are the discontinuity due
to the door and also the difference in the wideness of the
true and the initial feature map pmfs.

The experiment was run going from x1 to x27 and back to
x1 300 times, resulting in 16200 iterations. At each position
xq one measurement was randomly selected from the 100
possible. The control parameters κmax, φ, and ψ have the
same value as in the simulated example. Figure 7 shows
the evolution of epdf,k.

epdf,k starts falling after a short rise and achieves its
minimum after 7000 iterations. It takes somewhat longer
to achieve the minimum as in the simulated example,
as well as the minimum error itself is bigger. This can
be explained as the measurement profile here is more
complex, and the pdfs used for comparison are only a
representation of the unknown true pdfs. Nevertheless, the
feature map goes from its initially false start state to a
much better representation of the measurements as Fig.
8 shows. In this plot the learned feature map after 16200
iterations is displayed.

Once again it is possible to verify that the learned pmf
was brought by the SPLL to the position of the true model
and that even the discontinuity was learned at the right
position, as Figs. 5 and 8 show.

6. CONCLUSION

In this paper, the SPLL, a new algorithm for online learn-
ing of feature maps for localisation systems, was intro-
duced. The core of the algorithm is based on probabilistic
localisation using discretisation of pdfs as recorded feature
in the feature map and on non-parametric density estima-
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Fig. 4. Simulated example: learned pdf at k = 4200
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Fig. 5. Real world example: true model

tion as ways of recursive learning of these pdfs. The system
starts with a rough initial model and unlabelled samples
are used as information source for the learning algorithm,
bringing the feature map to a state that better describes
the measurements than the initialisation.

The algorithm was performed in an artificial 1D test
environment and with a real world 1D scenario, using
measurements taken in a corridor. On both cases the
feature map was improved, going from its initial state
to one that better describes the measurements. That was
verified using a global error variable that was made smaller
with increasing iterations of the algorithm. A discontinuity
imposed on the measurements was also learned by the
SPLL, indicating its versatility.

REFERENCES

Paramvir Bahl and Venkata N. Padmanabhan. RADAR:
An in-building RF-based user location and tracking
system. In IEEE INFOCOM 2000, pages 775–784, Tel
Aviv, Israel, March 2000.

Bruno Betoni Parodi, Henning Lenz, Andrei Szabo, Hui
Wang, Joachim Horn, Joachim Bamberger, and Dragan
Obradovic. Initialization and online-learning of RSS
maps for indoor / campus localization. In PLANS 2006,
pages 164–172, San Diego - CA, USA, April 2006.

Bruno Betoni Parodi, Henning Lenz, Andrei Szabo,
Joachim Bamberger, and Joachim Horn. Algebraic and
statistical conditions for the use of SLL. In ECC 07,
Kos, Greece, July 2007.

Mauro Brunato and Roberto Battiti. Statistical learning
theory for location fingerprinting in wireless LANs.
Computer Networks, 47(6):825–845, 2005.

Marie Cottrell, Jean-Claude Fort, and Gilles Pagés. Two
or three things that we know about the Kohonen algo-

0

10

20

30

−100−80−60−40−200

0

0.1

0.2

x
 (

m
)

p (dBm)

g
(p

,x
)

Fig. 6. Real world example: initialisation

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.1

0.2

0.3

0.4

iteration

 e
 p

d
f (

d
B

m
)

Fig. 7. Real world example: pdf error

0

10

20

30

−100−80−60−40−200

0

0.1

0.2

x
 (

m
)

p (dBm)
g
(p

,x
)

Fig. 8. Real world example: learned pdf at k = 16200 and
initialisation

rithm. In ESANN’94, pages 235–244, Brussels, Belgium,
April 1994.

Simon Haykin. Neural Networks: A Comprehensive Foun-
dation. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1998. ISBN 0132733501.

Teuvo Kohonen. The self-organizing map. Proceedings of
the IEEE, 78:1464–1480, 1990.

Lionel M. Ni, Yunhao Liu, Yiu Cho Lau, and Abhishek P.
Patil. LANDMARC: Indoor location sensing using ac-
tive RFID. In IEEE International Conference on Per-
vasive Computing and Communications2003, volume 10,
pages 407–415, Fort Worth - TX, USA, 2003.

I. Oppermann, A. Karlsson, and H. Linderbäck. Novel
phase based, cross-correlation position estimation tech-
nique. In IEEE ISSSTA 2004, pages 340–345, Septem-
ber 2004.

K. Pahlavan, X. Li, and J. P. Makela. Indoor geolocation
science and technology. IEEE Communications Maga-
zine, 40(2):112–118, February 2002.

Nissanka B. Priyantha, Anit Chakraborty, and Hari Bal-
akrishnan. The Cricket location-support system. In
6thACM International Conference on Mobile Comput-
ing and Networking, pages 32–43, Boston - MA, USA,
August 2000.

Teemu Roos, Petri Myllymäki, Henry Tirri, Pauli Misikan-
gas, and Juha Sievänen. A probabilistic approach to
WLAN user location estimation. International Journal
of Wireless Information Networks, 9(3):155–164, July
2002.

Andrew R. Webb. Statistical Pattern Recognition. Wiley,
2nd edition, 2002. ISBN 0470845147.

Hujun Yin and Nigel M. Allinson. Comparison of a
Bayesian SOM with the EM algorithm for gaussian
mixtures. In WSOM97, pages 118–123, Espoo, Finland,
June 1997.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11547


