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Abstract: In this paper the existence of a common Lyapunov function for stability is guaranteed
in a switching network of agents. The objective of the team is to achieve consensus in a modified-
leader follower team while the team structure is changing during the mission. The stability of
the team dynamics is guaranteed for networks with both balanced or unbalanced describing
graphs with directional communication links. Although the original design strategy is based on
an optimal control approach, for determining a common Lyapunov function the optimal gains
have to be reselected. However, by introducing a criterion for control gains selection, a desirable
performance can still be achieved. In this paper, we concentrate on one of the many possible
criteria, namely performance-control effort criterion in details. Simulation results are presented
to illustrate the performance and capabilities of the team in presence of a switching structure
and switching leader scenarios.

1. INTRODUCTION

There are many advantages for deploying autonomous net-
work of unmanned systems. For instance, enhanced group
robustness to individual failures, increased and improved
instrument sensing and resolution, reduced cost of opera-
tion, and adaptive reconfigurability capabilities have been
discussed in (Beard et al., 2000). Some applications that
necessitate development of these systems are in satellite
deployment for distributed earth or deep space observa-
tions; maneuvers of a group of unmanned aerial vehicles
(UAVs) for intelligence, surveillance, and reconnaissance
(ISR) missions; automated factories; unmanned underwa-
ter vehicles (UUVs) for search and rescue; and teams of
mobile robots deployed in a hazardous environment where
human involvement is dangerous. In order to fully take
advantage of these large-scale networks and systems of
systems, several prerequisites are required to be satisfied.
Some of these are development of reliable communication,
optimal power consumption management, and team coop-
eration as discussed in (Sinopoli et al., 2003). These issues
are still open areas of research.

In many situations two agents in a team may not be able to
obtain the status of each other, either through communi-
cation links or by means of onboard sensor measurements.
This may arise due to large distances or appearance of
obstacles among the team members. In this situation the
communication network structure among the team mem-
bers should no longer be fixed and should be characterized
as a switching network architecture. This issue has been
discussed in the literature from various perspectives. One
of the underlying assumptions in many of the related work
is that the graph describing the information exchange
structure is a balanced graph. For example, one can refer
to (Olfati-Saber and Murray, 2004) in which directed and

undirected balanced networks with fixed and switching
topologies are considered. The goal of that paper is consen-
sus achievement for a connected graph subject to certain
switching in the network structure. The main focus in
(Jadbabaie et al., 2003) is on attitude alignment in undi-
rected switching network of agents with discrete-time first
order dynamical models. It is shown that the connectivity
of the graph on average (jointly connected or connected
through a finite interval) is sufficient for convergence of
the heading angles of the agents. In (Tanner et al., 2007;
Shi et al., 2006), switching control laws are designed using
Fillippov and non-smooth system frameworks for stability
analysis. The graph describing the network structure is
assumed to be undirected and connected and the goal is
consensus and formation achievement.

In (Xie and Wang, 2006; Xiao and Wang, 2007), the
graph describing the network structure is assumed to
be undirected (and therefore balanced) and connected
and the goal is consensus and formation achievement.
In (Kingston and Beard, 2006; Ren and Beard, 2005)
consensus in a directed, jointly connected, and balanced
network is discussed. The authors in (Sun et al., 2006)
considered the balanced information graphs and proved
the stability under switching time-delayed communica-
tion links. The analysis is performed by introducing a
Lyapunov functional and then proving the feasibility of
a set of linear matrix inequalities. In (Wang and Xiao,
2006) the concept of “pre-leader-follower” is introduced
as a new approach to achieve consensus in a network of
discrete-time systems. The basic properties of stochastic
matrices are used to guarantee consensus achievement in
a network with switching topology and time-delayed com-
munication links. In (Ren, 2007), higher order consensus
algorithms are discussed. The author’s approach to handle
the switching network structure with a spanning tree is to
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find a dwell time as the required time between any two
switching instants. It is shown that the final consensus
value depends on the information exchange structure as
well as the controller weights.

In addition to the changes that may occur in the commu-
nication structure of a network, in some circumstances in
the leader-follower structure, the assignment of the leader
may also change during the mission. This can be either as
a result of the fact that some agents are more accessible in
different stages of the mission or for certain safety issues
some agents are more reliable or safer to be assigned as the
leader during some parts of the mission. In these conditions
the leader assignment can be time-varying as well.

The main contribution of the present work is to introduce a
strategy which can guarantee consensus achievement for a
team of agents with a general underlying network topolog-
ical graph subject to both types of changes in the network
topology and leader assignment. Our proposed framework
can handle strongly connected, directed, and unbalanced
graphs under a switching network configuration. This work
is an extension of another work by the authors presented
in (Semsar-Kazerooni and Khorasani, 2007) to switching
networks. In our previous work an optimal control strategy
is suggested to achieve consensus in a team of agents. The
team structure is a fixed modified leader-follower which is
described in detail in that paper. In the current paper, our
previous results are used to design a control strategy which
guarantees stability and consensus achievement for a team
with switching leader assignment and network structure.

Using the properties of balanced graphs and by assigning
the eigenvectors of the closed-loop matrix which corre-
sponds to the error dynamics of the team to a desirable
vector, the existence of a common Lyapunov function and
consequently the stability and consensus achievement are
guaranteed. By utilizing this approach one requires that
the gain matrices that are defined in the cost functions
to take on specific values. This in turn results in a con-
straint on the optimal control law which has been designed
initially for the fixed network topology. However, by in-
troducing additional criteria, the desirable performance
of the team can still be ensured and guaranteed. As a
demonstration of such a criterion, the performance-control
effort tradeoff is considered and is discussed in detail in this
paper.

The organization of the paper is as follows: In Section 2,
background preliminaries and problem formulations are
presented. In Section 3, switching networks, switching
control design and stability analysis as well as criteria for
selection of the control gains are developed. Simulation
results are presented in Section 4. Finally, conclusions are
discussed in Section 5.

2. BACKGROUND PRELIMINARIES

2.1 Problem Formulation

Multi-agent teams: Assume a set of agents A = {ai, i =
1, . . . , N}, where N is the number of agents in a team.
Each member’s dynamics are governed by the following
model in which the interaction terms, i.e. ǔi, are incorpo-
rated (Semsar-Kazerooni and Khorasani, 2007), that is we
have:















ṙi = vi

v̇i = ui + ǔi

ǔi =
∑

j∈Ni

F ijvj , Y i = vi, i = 1, . . . , N
(1)

where ri ∈ R2 and vi ∈ R2 are the position and
velocity vectors of vehicles and F ij is the interaction
coefficient. In the literature, e.g. (Stipanović et al., 2004;
Semsar-Kazerooni and Khorasani, 2007), it is shown that a
double integrator model can be considered as the linearized
dynamical representation of a ground vehicle, e.g. a mobil
robot.

Information structure and neighboring sets: In order to en-
sure cooperation and coordination among team members,
each member has to know the status of other members,
and therefore members have to communicate with each
other. For a given agent i, the set of agents connected to
it via communication links is called a neighboring set N i:

∀ i = 1, . . . , N, N i = {j = 1, . . . , N |(ai, aj) ∈ E} (2)

where E is the edge set corresponds to the underlying
graph of the network.

2.2 Graph Theory Preliminaries

The following are some definitions and properties from
graph theory that we will use throughout the paper (Fax
and Murray, 2004; Olfati-Saber and Murray, 2004).

• Laplacian Matrix: This matrix is used to describe
the graph associated with information exchanges in
a network of agents and is defined as L = [lij ]N×N ,
where

lij =

{

dout(i) i = j
−1 (ai, aj) ∈ E and i 6= j
0 otherwise

(3)

where dout(i) is equal to the cardinality of the set N i

(Olfati-Saber and Murray, 2003), |N i|, or the number
of links that depart the vertex i and is called the out-
degree of vertex i (the number of nodes from which
it receives information).

• Balanced graphs: If the Laplacian matrix of a
graph, L, has the property that 1T L = 0, then the
graph is called a balanced graph.

• For balanced connected graphs we have the property
that L+LT can be considered as the Laplacian matrix
of an undirected and connected graph described in
(Olfati-Saber and Murray, 2004).

• Normalized adjacency matrix: The normalized
adjacency matrix of a graph, denoted by A is a
square matrix of size N, defined by aij = 1

dout(i)
if

(ai, aj) ∈ E and i 6= j, and is zero otherwise.
• Normalized Laplacian matrix: The normalized

Laplacian matrix L̂ is defined similar to the Laplacian

matrix of a graph, where L̂ = [l̂ij ]N×N and

l̂ij =

{

1 i = j
−1/dout(i) (ai, aj) ∈ E and i 6= j
0 otherwise

(4)

The following is the well-known Perron-Frobenius Theo-
rem for nonnegative matrices.
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Theorem 1. Perron-Frobenius Theorem (Horn and
Johnson, 1990). Let M ∈ Mn and suppose that M is
irreducible and nonnegative. Then

1) ρ(M) > 0

2) ρ(M) is an eigenvalue of M

3) There is a positive vector x such that Mx = ρ(M)x

4) ρ(M) is an algebraically simple eigenvalue of M ;

where Mn is the set of matrices of order n and ρ(M) is the
spectral radius of matrix M (Horn and Johnson, 1990).

Since certain concepts from the original optimal control
approach developed in (Semsar-Kazerooni and Khorasani,
2007) is needed here, a brief description of our method is
provided below.

2.3 Application of Semi-Decentralized Optimal Control to
a Modified Leader-Follower Team of Vehicles

Our main goal is to make agents’ output, e.g. velocity,
converge to a desired value, i.e. ∀i, Y i → Y d. It is assumed
that this command is available to only the leader and the
other vehicles should follow the leader through information
exchanges among themselves and the leader.

Definition of cost functions: To achieve the above require-
ment, let us define the cost functions for the team as
follows

di =

∫ T

0

{
∑

j∈Ni

[(Y i − Y j)T Qij(Y i − Y j)]+

(ui)T Riui}dt + Y i(T )T EiY i(T ) + (F i)T Y i(T ) + mi

(5)

d1 =

∫ T

0

{
∑

j∈N1

[(Y 1 − Y j)T Q1j(Y 1 − Y j)]

+ [(Y 1 − Y d)T Γ(Y 1 − Y d)] + (u1)T R1u1}dt

+ Y 1(T )T E1Y 1(T ) + (F 1)T Y 1(T ) + m1

(6)

Superscript 1 is used to denote the leader and i = 2, . . . , N
correspond to the followers, respectively. In the above
definitions Qij ,Γ, Ei and Ri are symmetric and positive
definite matrices, F i is a vector with proper dimension,
and mi is a scalar. By minimizing the above cost functions
it can be shown that in steady state all agents in a
neighboring set would reach to the same output vector.

The following two lemmas are presented and proven in
(Semsar-Kazerooni and Khorasani, 2007).

Lemma 2. Consider a group of vehicles whose dynamics
are governed by the double integrator equations given in
(1) and that has a fixed topology. The leader is aware of
the desired command while the followers operate through
interactions among the vehicles based on the neighboring
sets. The interaction coefficient terms and the control laws
proposed below would minimize the cost functions (5) and
(6), and moreover guarantee the alignment of the vehicles,
where:

ǔi =
∑

j∈Ni

F ijvj =
∑

j∈Ni

2(Ki)−1Qvj , i = 1, . . . , N (7)

ui∗ = −
1

2
(Ri)−1Ki(t)vi, i = 2, . . . , N (8)

u1∗ = −
1

2
(R1)−1(K1(t)v1 + g1(t)) (9)

We assume that all Qij ’s are selected to be the same, i.e.
∀i, j, Qij = Q and ui∗ and u1∗ denote the optimal values
of ui and u1, respectively. Moreover, vd is the command
provided for the leader and the leader’s parameter g1 and
the Riccati equations for finding Ki satisfy:

−K̇i = 2|N i|Q −
1

2
Ki(Ri)−1Ki, i = 2, . . . , N (10)

−K̇1 = 2(|N1|Q + Γ) −
1

2
K1(R1)−1K1 (11)

Ki(T ) = 2Ei

ġ1 = 2Γvd +
1

2
K1(R1)−1g1, g1(T ) = (F 1)T (12)

Lemma 3. a. Modified consensus protocol: For the
group of vehicles described in Lemma 2 corresponding to
an infinite horizon problem (i.e., T −→ ∞), the control
law ûi reduces to the modified agreement protocol for the
leader-follower structure. The protocol for a follower is
given by

ûi(vi, vj) = ui(vi) + ǔi(vj) = Γi(vi −

∑

j∈Ni vj

|N i|
) (13)

and for the leader is given by

û1(v1, vj) = Γ1(v1 −

∑

j∈N1 vj

|N1|
) + β1(v1 − vd) (14)

∀i, Γi = −2(Ki)−1|N i|Q, β1 = −2(K1)−1Γ (15)
b. Stability: The above protocol stabilizes the closed-
loop system, i.e. the error dynamics of the entire team is
asymptotically stable, implying that

ei = vi − vd → 0 as t → ∞, i = 1, . . . , N (16)

Using the results obtained in (Semsar-Kazerooni and Kho-
rasani, 2007), the closed-loop error dynamics matrix can
be found as follows. We assume that the desired command
vd is time-invariant. Therefore, the error dynamics for the
entire team can be found as ė = Lcle using the agents’ dy-
namical equations and the input commands for the leader
and followers as given by (1), (13), and (14), respectively,
where

Lcl =



































Γ1 + β1 l12
|N1|

Γ1 . . .
l1N

|N1|
Γ1

l21
|N2|

Γ2 Γ2 . . .
l2N

|N2|
Γ2

...
...

...
...

li1
|N i|

Γi . . .
lij
|N i|

Γi . . .

...
...

...
...

lN1

|NN |
ΓN . . .

lN(N−1)

|NN |
ΓN ΓN



































e = [(e1)T . . . (eN )T ]T , lij are the elements of the
Laplacian matrix, and Γi and β1 are defined in (15). This
can be further simplified as follows:

Lcl = −2K−1(L ⊗ Q +









Γ 0 . . . 0
0 . . . 0 0
...

...
...

...
0 . . . 0 0









)

= −2K−1(L ⊗ Q + G)

(17)
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where K = Diag{Ki, i = 1, . . . , N} and L is the Laplacian
matrix of the underlying graph. We will use the expression
for Lcl to investigate the stability properties of the switch-
ing network topologies in the next section.

3. SWITCHING NETWORK TOPOLOGIES

As discussed earlier, there are many situations in which
two agents in a team cannot gather the status of each
other due to several restrictions existing for the team
members. In this situation team members have to find
new neighbors in order to maintain the connectivity of the
team information graph. This implies that the neighboring
sets should more appropriately be defined as time-varying
sets, namely N i(t). These neighboring sets would result in
a set of information graphs with time-varying Laplacian
matrix, for which the only assumed condition is their
connectivity. Moreover, in some circumstances in a leader-
follower structure the assignment of the leader may change
during the mission. In these scenarios the team structure
will not remain fixed any longer and, therefore, we have to
analyze the team behavior with a switching topology.

3.1 Switching Control Input and Stability Analysis

Assume that we have a team of agents with a switching
topology due to the time-varying neighboring sets N i(t)
or time-varying leader assignment. The corresponding
switching signal is denoted by σ(t) : R

+ → N which is
a train of pulsed signals that has a constant integer value
over each time interval τ . The communication links among
the agents are assumed to be directional with a Laplacian
matrix denoted by L. For switching networks, at each time
interval matrix L is a function of the switching signal, i.e.
Lσ(t), where Lσ(t) describes the Laplacian of a strongly
connected graph. To represent that the leader assignment
is time-varying we may assume that the matrix G in (17)
is a function of the switching signal as well, i.e. Gσ.

Subsequently, we denote all the parameters corresponding
to the switching case by a subscript σ(t), i.e. (.)σ. Hence,
the closed-loop matrix defined in (17) can be rewritten as:

Lcl,σ = −2K−1
σ (Lσ ⊗ Q + Gσ)

where Lcl,σ,Kσ, Lσ, Gσ are the matrices Lcl,K, L,G cor-
responding to the switching structure. Obviously, the con-
troller coefficient matrix K depends on the switching state
since it is a function of the neighboring sets N i(t). Now,
we can split matrix Lcl,σ into two parts L̄σ = K−1

σ (Lσ⊗Q)
and K−1

σ Gσ. The first part, L̄σ is itself the Laplacian of a
directed weighted graph which is not necessarily balanced.
However, if we could transform L̄σ into the Laplacian of a
balanced graph, then we will show below that a common
Lyapunov function for the corresponding switching system
can be found. One solution for achieving the above goal
is to design a switching control such that L̄σ becomes
balanced for any switching network. This implies that one
needs to design the matrix Kσ to satisfy this condition.
One of the means by which Kσ can be designed to com-
pensate for the switching structure is by selecting different
Qij ’s for different nodes in each structure (in contrast to
the assumption in Lemma 2). If such a control design
goal can be accomplished, not only undirected graphs but

also directed and unbalanced graphs can be analyzed by
utilizing our proposed method.

Hence, assuming that Qij is no longer equal to Q, it
will have different values for different agents and this is
denoted by Qi

σ for each switching state. Moreover, L̄σ can
be written as

L̄σ =







(K1
σ)−1Q1

σl11 (K1
σ)−1Q1

σl12 . . . (K1
σ)−1Q1

σl1N

(K2
σ)−1Q2

σl21 (K2
σ)−1Q2

σl22 . . . (K2
σ)−1Q2

σl2N

...
...

...
...







where lij is the (ij)-th entry of the matrix Lσ which is time
dependent (due to switching). In order to have a balanced
L̄σ matrix, we should have

(1T ⊗ In)L̄σ = 0 →
[

(K1
σ)−1Q1

σl11 (K2
σ)−1Q2

σl22 . . . (KN
σ )−1QN

σ lNN

]

×

(







1 l12/l11 . . . l1N/l11
l21/l22 1 . . . l2N/l22
...

...
...

...






⊗ In) = µT

σ (L̂σ ⊗ In) = 0

(18)

where 1T = [ 1 . . . 1 ], n is the dimension of the agents’

output and L̂σ is the normalized Laplacian matrix of the
graph. To ensure the above expression, Qij (Qi

σ), Ri and Γ
should be selected such that µσ in (18) is in the left null-

space of L̂σ⊗In. Assume that ωσ is a normalized vector in
this space (the eigenvector of L̂σ corresponds to the zero
eigenvalue), then we should have

µσ = κωσ ⊗ In (19)

where κ is the scaling factor that should be selected by
using a desired performance criterion (e.g. along the lines
of what is provided in the next subsection).

We now state the following lemma which will be used in
the subsequent discussions of our method.

Lemma 4. The Laplacian matrix of any strongly con-
nected directed graph has a left eigenvector which corre-
sponds to the zero eigenvalue and whose entries have the
same sign, i.e. they are either all positive or all negative.

Proof: Since the adjacency matrix A (refer to section
2.2), is a nonnegative matrix (according to its definition),
it would satisfy all the properties that are stated in
Theorem 1. Also, from graph theory we know that ρ(A) =
1 for a normalized adjacency matrix. Hence, 1 is an
eigenvalue of A and the corresponding eigenvector would
have positive entries. This applies to both the right and the
left eigenvectors of A since both A and AT are nonnegative.
Using the relationship between the normalized Laplacian
matrix L̂ and A (Godsil and Royle, 2001), that is L̂ = I −

A, the zero eigenvalue of L̂ corresponds to the 1 eigenvalue
of A, and the corresponding right eigenvector is 1. The left
eigenvector is not 1 for directed graphs in general, unless
they are balanced. However, this vector would have the
property that its entries have the same sign.

We are now in a position to summarize the above discus-
sions in the following lemma:

Lemma 5. Stability analysis. For the team of vehicles
described in Lemmas 2 and 3, and under the assumptions
of switching network and switching leader, the control laws
ûi

σ, i = 1, . . . , N selected according to
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ûi
σ(vi, vj) = Γi

σ(vi −

∑

j∈Ni vj

|N i(t)|
), i = 2, . . . , N (20)

û1
σ(v1, vj) = Γ1

σ(v1 −

∑

j∈N1 vj

|N1(t)|
) + β1

σ(v1 − vd) (21)

Γi
σ = −2κρi,σIn, i = 1, . . . , N,

β1
σ = −γ(κρ1,σr1 +

√

(κρ1,σr1)2 + γr1)In

(22)

will guarantee that for the family of the closed-loop error
dynamics

ė = Lcl,σe, Lcl,σ = −2K−1
σ (QσLσ ⊗ In + Gσ) (23)

a common Lyapunov function exists. This function ensures
that the closed-loop dynamics is asymptotically stable,
where Qσ = diag{Q1

σ, . . . , QN
σ }, and ρi,σ is the i-th el-

ement of the vector ωσ, i.e. an eigenvector of L̂σ corre-
sponding to its zero eigenvalue. Moreover, matrices Ri and
Γ used in (5), (6) are chosen as Ri = riI, Γ = γI, where
ri, γ are two constants and κ is a design parameter used
for improving the team performance as shown below.

Proof: See the Appendix A for details.

Given that the performance of the optimal controller is
now limited due to imposing some constraints on the cost
function gains Qi

σ (see Appendix A), one may compensate
this performance degradation by introducing a new crite-
rion for selecting the design parameter κ. This parameter
can be considered as a scaling factor which can define
the weight given to different design specifications. Various
criteria can be considered in order to guarantee a specific
closed-loop team behavior. One such criterion deals with
a tradeoff between the performance and the control effort,
i.e. the relationship between the matrices Qi

σ and Ri as
discussed in the following subsection.

3.2 Criterion for Selection of κ: Performance-Control
Effort Tradeoff

An issue that we would like to consider here deals with
defining the criterion for selecting the scaling factor κ. An
example of this criterion is to achieve a tradeoff between
the performance and the control effort. According to the
definitions of the cost functions given in (5) and (6), Qij

defines the weight assigned to the performance whereas
Ri is the weight assigned to the control effort. Hence,
depending on the specifics of a particular application the
weights may be selected differently. For example, we may
require a predefined ratio between the matrices Qij and

Ri, i.e. to require that λmax(Qij)
λmax(Ri) > mi. The following

lemma provides a sufficient condition to guarantee this
requirement.

Lemma 6. To achieve a tradeoff between the performance-

control effort as characterized according to λmax(Qij)
λmax(Ri) >

mi, i = 1, . . . , N , the design parameter κ defined in
Lemma 5 should be selected according to

κ2 >
1

4
max {

m1|N
1|

ρ2
1,σ

,
maxi=2,...,N (mi|N

i|)

mini=2,...,N (ρ2
i,σ)

} (24)

Proof: See the Appendix B for details.

4. SIMULATION RESULTS

Simulation results presented in this section are for a team
of four agents. The team structure switches between 3
structures based on a specific switching signal pattern that
is shown in Figure 1. It follows from this figure that the
switching signal can take 3 different values at different time
intervals, namely 1, 2, and 3. In other words, there are
three different states for the team structure and the leader
assignment during the mission. The leader assignment is
changing at each switching instant and is defined to be
according to agents 1, 4, and 2 corresponding to σ(t) =
1, 2, 3, respectively. Moreover, the leader command is a
pulsed-like signal which has the same duration as the
switching signal time interval, τ . The leader command
values for σ(t) = 1, 2, 3 is vd = [15 14]T , [7 20]T , [20 6]T ,
respectively. The graphs describing the network structure
are directional and the Laplacian matrices corresponding
to the three switching states are as follows:

L1 =







1 −1 0 0
−1 2 0 −1
−1 0 1 0
0 0 −1 1






, L2 =







1 0 −1 0
0 1 0 −1
−1 0 2 −1
0 −1 −1 2







L3 =







1 0 0 −1
−1 1 0 0
−1 −1 2 0
0 0 −1 1







(25)

The simulation results are obtained by of applying the
switching control laws given in Lemma 5 to the network
of four agents with the dynamics governed by (1) and
the switching topology as described above. In Figure 2,
the x−component and in Figure 3, the y−component of
the velocity profiles of the four-agent team are shown for
the above configurations. Figure 4 shows the paths that
are generated by the agents during the mission where the
team members are switching to different structures and
operating with different commands and leaders.

5. CONCLUSIONS

A novel control strategy for consensus seeking in a team
with a switching structure characteristic is developed and
investigated. In contrast to the common assumption in
the literature where graphs are assumed to be balanced,
in this paper it is assumed that the graph describing
the communication topology is not necessarily a balanced
graph. A criterion for selecting the controller parameters
is suggested to guarantee a specific performance require-
ment. An extension of this work is to search for a solution
that provides the required stability conditions while re-
ducing the restrictions that are imposed on the optimal
performance of the controller.

Fig. 1. Switching signal σ(t)
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Fig. 2. The x-component of the velocity profile of a mod-
ified leader-follower (MLF) team of four agents with
switching structure and switching leader resulting
from the application of our proposed control strategy.
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Fig. 3. The y-component of the velocity profile of a mod-
ified leader-follower (MLF) team of four agents with
switching structure and switching leader resulting
from the application of our proposed control strategy.
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Fig. 4. The x − y path trajectories of a modified leader-
follower (MLF) team of four agents with switching
structure and switching leader resulting from the
application of our proposed control strategy.

APPENDIX A: PROOF OF LEMMA 5

First, we should show that the switching control laws
given in (20) and (21) transform the matrix L̄σ into a
balanced matrix. For this to hold we have to design Qij

(Qi
σ) appropriately. Using the results achieved in Lemmas

2 and 3, we know that the following relationships hold
between Ki (Ki

σ) and Qij (Qi
σ) for an infinite horizon

problem:

2|N i|Qij −
1

2
Ki(Ri)−1Ki = 0, i = 2, . . . , N

2(|N1|Q1j + Γ) −
1

2
K1(R1)−1K1 = 0

(26)

Let us for sake of simplicity assume that all the design
parameter matrices are homogenous and diagonal, i.e.:

Qij = qiI, Ri = riI, Γ = γI (27)

The solutions to (26) is given by:

Ki = 2
√

|N i|qiriI, i = 2, . . . , N,

K1 = 2
√

(|N1|q1 + γ)r1I
(28)

Let us now denote the i-th element of the vector ωσ as
ρi,σ. Using the definition of µσ given in (18), we have:

µT
σ =

(

|N1|q1

2
√

(|N1|q1 + γ)r1

|N2|q2

2
√

|N2|q2r2
. . .

|NN |qN

2
√

|NN |qNrN

)

⊗ In = κ [ ρ1,σ ρ2,σ . . . ρN,σ ] ⊗ In

(29)

The following relationships would then follow














κρ1,σ =
|N1|q1

2
√

(|N1|q1 + γ)r1

κρi,σ =
|N i|qi

2
√

|N i|qiri
, i = 2, . . . , N

(30)

In the first equation of (30), ρ1,σ and |N1| are given and
κ, q1, r1, γ are parameters to be selected. Similarly, in the
second equation κ, qi, ri are to be selected. It is assumed
that ri and γ are set to fixed values and qi is then obtained
that satisfies the above equations. Therefore, the following
equations in terms of qi should be satisfied:







|N1|2(q1)2 − (4κ2ρ2
1,σ|N

1|r1)q1 − 4(κρ1,σ)2γr1 = 0

qi =
4(κρi,σ)2ri

|N i|
, i = 2, . . . , N

(31)

It is not difficult to show that the first equation in (31)

always has a positive solution q1 =
2κρ1,σ

|N1| (κρ1,σr1 +
√

(κρ1,σr1)2 + γr1). Also, from the second equation of
(31), it is obvious that qi is always positive. Hence, there
is always a positive solution for qi, i = 1, . . . , N .

However, for the above results to be guaranteed, one
should ensure a property in the left null space of L̂σ.
Namely, due to the positive definiteness of (Ki

σ)−1Qi
σlii,

all the elements of the vector µσ are of the same sign, i.e.
positive, which implies that the null space of L̂σ should
also enjoy this property. This can be shown by using the
results provided in Lemma 4.

We are now in a position to use the above relationships
for determining the switching control law. From Lemma
3, the control inputs can be calculated by using (13)-(15).
By replacing qi from (31), and Ki from (28) we obtain

Γi = −2
|N i|qi

2
√

|N i|qiri
In = −2κρi,σIn, i = 2, . . . , N,

Γ1 = −2
|N1|q1

2
√

(|N1|q1 + γ)r1
In = −2κρ1,σIn,

β1 = −2
γ

2
√

(|N1|q1 + γ)r1
In

= −γ(κρ1,σr1 +
√

(κρ1,σr1)2 + γr1)In

(32)

where ρi,σ can be found if the Laplacian matrix of the
team at each switching stage is given. The control laws
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provided in (32) are the same as the ones given in Lemma
5 and guarantee that matrix L̄σ has 1 as its left eigenvector
corresponding to the zero eigenvalue and is the Laplacian
of a balanced graph.

For showing the stability of the closed-loop switching
system we should suggest a common Lyapunov function
which is valid for all the switching states. Let us select
a Lyapunov function candidate to be V = 1

2eT Pe and
assume that P = I. Its derivative along the trajectories of
(23) is given by V̇ = 1

2eT (Lcl,σ +LT
cl,σ)e = −eT (L̄σ + L̄T

σ +

K−1
σ Gσ + GT

σ K−1
σ )e. Based on the above discussion L̄σ =

2K−1
σ QσLσ⊗In can be considered as the Laplacian matrix

of a weighted and a balanced graph. By using the results
provided in (Olfati-Saber and Murray, 2004), L̄σ + L̄T

σ is
also a valid Laplacian matrix representing an undirected
(due to its symmetry) and connected graph. Hence, it is a
positive semi-definite (PSD) matrix. Moreover, the second
term in the expression (23), i.e. K−1

σ Gσ is a diagonal
matrix with one non-zero and positive element and so is
PSD. Hence, Lcl,σ + LT

cl,σ is at least NSD. Also, the null

space of the two matrices, L̄σ + L̄T
σ and K−1

σ Gσ does not
have any intersection and hence their summation is a PD
matrix. Hence, V̇ < 0 and the proof is complete.

APPENDIX B: PROOF OF LEMMA 6

Similar to the proof of Lemma 5, and without loss of gen-
erality, assume that all the matrices involved are homoge-

nous diagonal matrices. We would then have λmax(Qij)
λmax(Ri) =

qi

ri =
4(κρi,σ)2

|Ni| > mi, i = 2, . . . , N and given that ∀i, ρi,σ 6=

0 (Lemma 4), we have

κ2 >
maxi=2,...,N (mi|N

i|)

4 mini=2,...,N (ρ2

i,σ
)

On the other hand for the leader, we have the following
relationship:

q1 =
2κρ1,σ

|N1| (κρ1,σr1 +
√

(κρ1,σr1)2 + γr1) >
4κ2ρ2

1,σr1

|N1|

and therefore it is sufficient to select κ so that κ2 > m1|N
1|

4ρ2

1,σ

.

Consequently, κ should be selected according to:

κ2 >
1

4
max {

m1|N
1|

ρ2
1,σ

,
maxi=2,...,N (mi|N

i|)

mini=2,...,N (ρ2
i,σ)

} (33)
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