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Abstract: With the use of Lyapunov functions chosen as the norm of state vector, we obtain the
robust stability sufficient conditions for a wide class of nonlinear, and generally nonstationary,
discrete-time control systems with the given set-valued parameter estimates. For a strictly
monotone nonlinear function, validation of these conditions is equivalent to solution of a series
of combinatorial problem in the state space.
Synthesis of robustly stable control systems in a domain is performed on the basis of the obtained
sufficient conditions of robust stability.
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1. INTRODUCTION

The problem of stability for nonlinear discrete-time
systems has gained a nearly 50-year history written
by the well-known researchers like Ya. Z. Tsypkin,
V. A. Yakubovich, B. T. Polyak, E. Juri, R. Kalman,
A. Khalanai and others. These authors contributed es-
sentially to solution of the problem, however the problem
remains actual and far from being solved.

The apparatus of Lyapunov functions has been (and still
remains) the major tool of stability analysis for nonlinear
discrete systems. This tool is used once again for obtaining
the robust stability sufficient conditions presented below.
The stability analysis and control synthesis is considered
in the present paper for a domain (a given bounded set in
the state space) specific for the considered class of systems.

Hereinafter, the following class of nonlinear, generally
nonstationary, systems is considered,

Xn+1 = F (Xn, Ln); X0 =
◦
X; n = 0, 1, . . . , (1)

where Xn ∈ Rm is a state vector, F (·) is a nonlinear
continuous single-valued m-dimensional function which
satisfies the condition F (0, Ln) = 0 ∀n ∈ [0;∞), Ln is
a vector of (generally) time-dependent parameters. We
assume that F (·) is linear in parameters Ln.

Consider obtaining the conditions of asymptotic stability
in a convex set X, 0 ∈ X, for the system (1) with the use
of Lyapunov function

vn = ‖Xn‖, (2)
where the norm is not fixed yet. In view of (1), the first
difference of (2) is calculated as

vn+1 − vn = ‖F (Xn, Ln)‖ − ‖Xn‖.

Fulfilment of the following inequality provides the robust
stability of the system (1),

max
Xn∈X

{‖F (Xn, Ln)‖ − ‖Xn‖} < 0 ∀n ∈ [0;∞). (3)

In order of obtaining verifiable sufficient stability con-
ditions from the inequality (3), one needs to present a
nonlinear function F (Xn, Ln) in the form of quasi-linear
parameterized function, where the parameters minimize
the left-hand side of the inequality.

2. DOMAIN ROBUST STABILITY SUFFICIENT
CONDITIONS

Consider set X in (3) is given as
X = {X : ‖X‖ ≤ ρ = const}.

Assume at the beginning that all components fi(·) of the
vector function F (·) are strictly monotone functions in X.

Since ‖Xn‖ is a convex function, maximum in (3) is
reached at the boundary of X. In view of this, choose the
vector norm in (2) in the form of either

‖X‖∞ = max
j=1,...,m

|xj | or ‖X‖1 =
m∑

j=1

|xj |

and represent X as a convex hull of its vertices,
X = conv

k=1,...,2m
{Xk}, (4)

where Xk is the kth vertex of either an m-dimensional
cube with a side of the length 2ρ or an m-dimensional
octahedron depending respectively on the norm chosen.
Since (regardless to the choice of either 1-norm or ∞-
norm)

max
Xn∈X

‖X‖ = max
k=1,...,2m

‖Xk‖ = ρ,
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the inequality (3) takes the form of

max
k=1,...,2m

{‖F (Xk, Ln)‖} < ρ ∀n ∈ [0;∞). (5)

Assume additionally that a set-valued estimate is given for
a time-variant parameter vector Ln,

Ln ∈ L = conv
s=1,...,S

Ls ∀n ∈ [0;∞), (6)

where Ls is the sth vertex of a set L and S is the number
of vertices.

Taking into account that F (·) is linear in L, maximum
of F (L) is reached at a vertex Ls of L. In other words,
the inequality (5) in view of the assumption (6) can be
rewritten as follows,

max
k=1,...,2m;s=1,...,S

{‖F (Xk, Ls)‖} < ρ. (7)

Consider now a stationary subclass of the class (1), for
which a parameter vector is a time-independent uncertain

vector
◦
L with the given set-valued estimate

◦
L ∈

◦
L = conv

s=1,...,S

◦
Ls,

where
◦

Ls is the sth vertex of a polytope
◦
L. In the case, the

domain sufficient robust stability condition is identical to
(7) to the extent of notations.

3. DOMAIN SUFFICIENT ROBUST STABILITY
CONDITIONS FOR NONLINEAR SYSTEMS WITH A

LINEAR PART

The following widely considered subclass of the class (1)
is worth of independent research,

Xn+1 = AnXn + Φ(Xn); X0 =
◦
X; n = 0, 1, . . . , (8)

where An is an m×m-dimensional matrix with uncertain
coefficients bounded with the given set-valued (particu-
larly, interval) estimates, Φ(·) is a nonlinear continuous
single-valued m-dimensional vector function, Φ(0) = 0.
This function is assumed to have the following presenta-
tion,

Φ(X) = P
◦
Φ(X), (9)

where
◦
Φ(·) is a given function and

P = diag{pj}m
j=1, p

j
≤ pj ≤ pj ,

and the components
◦
φj(X) of function

◦
Φ(X) are strictly

monotone in X.

Introduce the polyhedral estimate for the jth row of
matrix A as follows,

AT
jn ∈ Aj = conv

v=1,...,Vj

{Av
j}, j = 1, . . . , m,

where Av
j is the vth vertex of polytope Aj and Vj is the

number of its vertices.

A sufficient condition of robust stability for the class of
systems (8),(9) in the domain X (similarly to (7)) takes
the form

max
j=1,...,m
k=1,...,2m

max
v=1,...,V j

pj=p
j
,pj

∣∣∣∣(Av
j )T Xk + pj

◦
φj(X

k)
∣∣∣∣ < ρ. (10)

Since ∣∣(Av
j )T Xk

∣∣ ≤ ‖Av
j‖ · ‖Xk‖

and ‖Xk‖ = ρ, inequality (10) can be transformed into the
following one,

max
j=1,...,m
k=1,...,2m

max
v=1,...,V j

pj=p
j
,pj

(∥∥Av
j

∥∥ + ρ−1pj

∥∥∥∥
◦
φj(X

k)
∥∥∥∥
)

< 1. (11)

If, in particular, Φ(Xn) = 0, the inequality (11) degener-
ates into the known sufficient robust stability condition for
linear nonstationary systems,

‖An ‖ < 1 ∀n ∈ [0;∞).

Consider in details the subclass of systems (8) under
the condition that Φ(X) = φ(X)B is a scalar function
and φ(0) = 0. Here B is given constant vector of the
respective dimension. This particular case is widely met
in applications. Thus, we shall be considering the system

Xn+1 = AnXn + φ(Xn)B, X0 =
◦
X, n = 0, 1, . . . .

(12)
Here An is an m×m Frobenius matrix with the mth row
Amn a priori estimated by

AT
mn ∈ A = conv

v=1,...,V
{Av}, ∀n = 1, . . . , (13)

where Av is the vth vertex of polytope A and V is the
number of its vertices.

Assume function φ(X) is given in the form

φ(X) = p
◦
φ(X),

where
◦
φ(·) is a known function and the unknown parame-

ter p is a priori estimated with the interval,
p ≤ p ≤ p.

It is easily seen that the inequality (11) cannot be fulfilled
for the system (12), because ‖An‖ = 1 ∀n ∈ [0;∞). On the
other hand, the considered system can be robustly stable
in domain X. This paradox in robust stability analysis for
linear discrete systems with a Frobenius matrix was men-
tioned by Polyak and Scherbakov [2002b, 2005, 2002a] and
Kuntsevich [2007] and resolved by Kuntsevich [2006a,b,
2007]. Here, we generalize the method of robust stability
analysis, presented by Kuntsevich [2007, 2006a], to the
considered class of nonlinear systems. With this purpose

in view, following Barbashin [1978], represent function
◦
φ(·)

as follows,
◦
φ(Xn) =

◦
Ψ

T

(Xn, L)Xn, (14)
where

Xn = {xjn}m
j=1 ; L = {lj}m

j=1 ;

◦
Ψ

T

(Xn, L) =
{

lj
◦
ψ(Xn)

}m

j=1

. (15)

Here L is a vector of unknown parameters to be calculated.

Rewrite the system (12) in the quasi-linear form:
Xn+1 = H (Xn,An, L)Xn, (16)

where

H (·) = An + P
◦
Ψ

T

(Xn, L)
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is a Frobenius matrix with the mth row Hm given by the
equality

HT
m(Xn, Amn, L) = AT

mn + P
◦
Ψ

T

(Xn, L).

Assume
◦
ψj(X) = x−1

j

◦
φ(X), j = 1 . . . ,m. Hence, from

(14,15), one obtains
m∑

j=1

lj = 1. (17)

We shall prove that the following inequality is a sufficient
robust stability condition in domain X for the class of
systems (12,13),

max
Xn∈X

AT
mn∈A
p=p,p





m∑

j=1

∣∣∣∣amj,n + p lj
◦
ψj(Xn)

∣∣∣∣



 ≤ q < 1, (18)

where amj,n are coefficients of the mth row of matrix
An and q is a constant. The following statement is a
generalization of the one given by Kuntsevich [2006b,
2007].
Lemma 1. For a matrix

H = H (Sm) H (Sm−1) · · ·H (S1),
which is the product of m Frobenius matrices of the
dimension m × m depending respectively on parameter
vectors Si, i = 1, . . . , m, the following inequality is
fulfilled,

‖H ‖ ≤ q < 1,

if the mth rows Hm(Si), i = 1, . . . , m, of the respective
matrices satisfy the condition

‖Hm(Si)‖ =
m∑

j=1

|hmj(Si)| ≤ q < 1.

Note that the parameter vectors Pi can be state vectors
and/or discrete time, etc.
Theorem 1. The class of nonlinear stationary systems
(12,13) with a Frobenius matrix H (Xn, Am,n, L) is stable
in the set X if the inequality (18) is fulfilled for the mth
row HT

m of the matrix H .

See the proof in Appendix.

The function ξ(L) in (??) is defined to the extent of the
parameter vector L. Further, we need to calculate this
vector.

Consider first a particular case, when AT
m,n is a vector of

constants, meaning A is a point-wise set which contains

the only vector
◦
A

T

m. It is desired to find L which minimizes
ξ(L) at L ∈ L, where L is given by the equality (17) and
the condition lj ≥ 0, j = 1, . . . , m. However, this mini-
mization problem has no analytical solution, and finding
a numeric solution to the problem is rather complicated.
Instead of solving the problem directly, make use of the
inequality

max
Xn∈X





m∑

j=1

|hmj(Xn, L)|


 ≤

m∑

j=1

{
max

Xn∈X
|hmj(Xn, L)|

}

and strengthen the inequality (??):

ξ(L) =
m∑

j=1

max
Xn∈X

|hmj(Xn, L)| ≤ q < 1. (19)

Find L as solution to the problem

min
L∈L



ξ(L) =

m∑

j=1

max
Xn∈X

|hmj(Xn, L)|


 ≤ q < 1. (20)

Assume
◦
ψj(X) are symmetric functions,

◦
ψj(−X) =

−
◦
ψj(X), j = 1, . . . , m. This assumption is not fundamen-

tal and it is made for simplification reasons only.

Next, find a solution to the following optimization prob-
lem,

?

ψj = max
X∈X

{ ◦
ψj(X) = x−1

j

◦
φ(X)

}
, j = 1, . . . ,m,

either analytically (if possible) or by application of the
routine by Kappel and Kuntsevich [2000]. In particular, if
◦
ψj(X) are monotone functions in X, a solution

?

ψj is found
at a vertex of the set X.

Substitute the obtained solutions
?

ψj(X), j = 1, . . . ,m,
into (20) and find the required vector Lopt as a solution to
the problem

min
L∈L





m∑

j=1

∣∣∣∣hmj(
?

ψj , L)
∣∣∣∣



 . (21)

Note that |hmj(L)| are convex functions and L is a convex
set, hence the problem (21) is a local minimization problem
which can be efficiently solved particularly with SolvOpt
(see Kappel and Kuntsevich [2000]).

Consider now a more general case, when uncertain pa-
rameter vectors AT

m,n are estimated by (13). Instead of
fulfilment of the inequality (19), we require fulfilment of
the following condition,

ξ(L) =
m∑

j=1

max
Xn∈X

AT
m,n∈A

p=p,p

|hmj(Xn, Am,n, L, p)| ≤ q < 1.

In this case, we obtain the desired vector Lopt as solution
to the problem

min
L∈L





m∑

j=1

max
Xn∈X

AT
m,n∈A

p=p,p

∣∣∣∣hmj(·) = amj,n + p lj
◦
ψj(Xn)

∣∣∣∣





. (22)

Assume A is an interval set,
A = a1 × a2 × · · · × am,

where
aj = {amj : amj ≤ amj ≤ amj}, j = 1, . . . , m,

and the numerical bounds amj and amj are known.

If the functions
◦
ψj(Xn) are strictly monotone, maximum

in (22) is reached at the boundary of set X, which is
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defined in (4) as a hyper-box, and therefore, the problem
(21) is reduced to the following one,

min
L∈L





m∑

j=1

max
k=1,...,2m

amj,n=a
mj

,amj

p=p,p

∣∣∣∣amj,n + p lj
◦
ψj(X

k)
∣∣∣∣





. (23)

Finding maximum in (23) does not require essential com-
putational efforts with m ∼ 10, and therefore, the mini-
mization problem (23) can be efficiently solved again with
SolvOpt.

4. SYNTHESIS OF ROBUST STABILIZING SYSTEMS
WITH SCALAR CONTROLS

Consider a widely applicable description of discrete-time
control systems given by the difference equation

Xn+1 = Φ(Xn, un, Ln), (24)
where Xn is a state vector as above, un is a scalar control
at a discrete time n, Φ(·) is an m-dimensional nonlinear
function, Φ(0, Ln) = 0, and Ln is a vector of generally
time-varying uncertain parameters with the given set-
valued estimates Ln ∈ L.

Assume that Xn is measurable exactly at any n.

Our objective is calculation of controls un = u(Xn)
providing the robust stability of the closed-loop system,

Xn+1 = Φ(Xn, un, Ln),
in the given domain X, X0 ∈ X, and, if possible, with the
given parameter set-valued estimate L.

For the Lyapunov function (2) and the equation (24), find
the first difference as follows,

∆vn = ‖Φ(Xn, un, Ln)‖ − ‖Xn‖,
and calculate the required control un at a discrete time n
as minimizer for the first difference ∆vn (see Kuntsevich
and Lychak [1977]),

min
un

‖Φ(Xn, un, Ln)‖.

Consider a particular subclass of systems (24), widely met
in applications,

Xn+1 = AnXn + ψ(Xn)Bn + unCn, (25)
where ψ(X) is a scalar nonlinear function, ψ(0) = 0, An

is a Frobenius matrix, and vectors Bn and Cn are of the
standard form,

BT
n = bn(0; . . . ; 0; 1), CT

n = cn(0; . . . ; 0; 1).

Assume the following set-valued estimates are given for
the mth row, Am,n, of matrix An and scalars bn and cn at
n = 0, 1, . . .,

AT
m,n ∈ A = conv

k=1,...,K
{Ak}, (26)

bn ∈ b = {b : b ≤ b ≤ b}, cn ∈ c = {c : c ≤ c ≤ c}. (27)
Here Ak, k = 1, ...,K, are vertices of the polytope A.
Assume also b > 0 and c > 0 without loosing a generality.

The following inequality provides a sufficient robust sta-
bility condition for the systems (25-27) in domain X,

max
Xn∈X

AT
m,n∈A

b∈b
c∈c

‖A (Am,n)Xn+ ψ(Xn)B(bn) + unC(cn)‖ −

−‖Xn‖ < 0.

Due to the structural features of matrices An and vectors
Bn and Cn, the only mth coefficient xm,n+1 of vector Xn+1

depends on control un. Hence the optimal control at a time
n should be found as solution to the problem

min
un

max
Xn∈X

AT
m,n∈A

b∈b
c∈c

|AT
m,nXn + bnψ(Xn) + cnun|. (28)

In the boundary case, when A, b and c are point-wise

sets consisting respectively of the only points
◦
A

T

m,
◦
b and

◦
c, solution of the problem (28),

min
un

max
Xn∈X

|
◦
A

T

m,nXn +
◦
bψ(Xn) +

◦
cu(Xn)|,

is trivial,
?
un = −◦c−1

( ◦
A

T

mXn +
◦
bψ(Xn)

)
. (29)

Substitute (29) into (25) and obtain the equation of a
linear stationary system,

Xn+1 = AXn,

where A is a singular nilpotent Frobenius matrix.

If we account the upper bound restriction on controls un,
which is inevitably present in practical applications,

un ∈ u = {u : |u| ≤ σ}, (30)
then the optimal control (29) can be implemented only in
the domain

Ω =
{

X :
∣∣∣∣−
◦
c
−1

( ◦
A

T

mX +
◦
bψ(X)

)∣∣∣∣ ≤ σ

}
.

If the set X, which is determined by the constant ρ, is such
that X ⊂ Ω, then the condition (30) is of no concern and
does not influence the control synthesis procedure. If the
sets X and Ω have a common subset, the optimal control
(29) ”linearizes” the closed-loop system and, consequently,
provides its asymptotic stability only in the domain X∩Ω.

The control synthesis procedure differs insignificantly from
the given above in a more general case, when set-valued
estimates A, b and c contain more than a single point. In
general, minimax problems cannot be solved analytically,
but fortunately the problem (28) is an exception. More
precisely, analytical solution of the minimax problem (28)
requires presentation of the given set-valued estimates in
the centralized form,

A =
◦
A + δA, δA = conv

s=1,...,S
{δAs = As −

◦
A}. (31)

Here
◦
A is the center of the upper-bound ellipsoid for

the polytope A. An efficient numerical algorithm for
calculation of the lower and upper bound ellipsoids for
a given set of points (particularly, the set of vertices of a
polytope) is presented by Shor and Berezovski [1992].

Similarly, the sets b and c will be also represented in the
centralized form,
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b =
◦
b + δb,

◦
b = 0.5(b + b),

δb = conv{δb1 = b−
◦
b; δb2 = b−

◦
b}, (32)

c =
◦
c + δc,

◦
c = 0.5(c + c),

δc = conv{δc1 = c− ◦
c; δc2 = c− ◦

c}, (33)

With the introduced notations, the problem (28) can be
rewritten as follows,

min
un

max
Xn∈X

δAT
m∈δA

δb∈δb
δc∈δc

|(
◦
Am+δAm)T Xn+(

◦
b+δb)ψ(Xn)+(

◦
c+δc)un|.

(34)

The problem (34) is identical to the one solved by Kuntse-
vich and Kuntsevich [1999] to the extent of notations. The
analytically calculated minimizer is given by the following
equality

?
un = −◦c−1

( ◦
A

T

mXn +
◦
bψ(Xn)

)
, (35)

and it is the same as the minimizer (29) for the case of
point-wise set estimates.

In general, with arbitrary set-valued estimates δA, δb and
δc, the control (35) cannot guarantee the robust stability
of systems (25-27),(35). Therefore, we need to verify the
stability conditions for the closed-loop control system.
Aiming this, substitute the obtained solution (35) into the
equation (25) and obtain the equation which describes the
closed-loop control system,

Xn+1 = F (Xn), (36)
where F (Xn) is a vector function, F (Xn) = {fj(Xn)}m

j=1,
which is calculated as follows,

F (Xn) =

∥∥∥∥∥∥∥∥∥∥

0
...
0

I

. . . . . . . . . . .
−δc δAT

∥∥∥∥∥∥∥∥∥∥

Xn +

∥∥∥∥∥∥∥∥∥∥∥

0 · · · 0
...

...
0 · · · 0

. . . . . . . . . . . . . . . . .

(δb −
◦
b δc) ψ(Xn)

∥∥∥∥∥∥∥∥∥∥∥

. (37)

Next, the mth component of F (Xn),

fm(Xn) = −δc δAT Xn + (δb−
◦
b δc)ψ(Xn), (38)

has to be represented as above in quasi-linear form. With
this purpose in view, we introduce the notations

φj(Xn) = x−1
j ψ(Xn)

and
ψ(Xn) = ΦT (Xn, L̃)Xn, (39)

where
Φ(Xn, L̃) = {l̃j φj(Xn)}m

j=1.

Make use of the notations (39) and rewrite (38) as follows,

fm(·) =
[
−δc δ

◦
A

T

m + (δb−
◦
b δc)ΦT (Xn, L̃)

]
Xn.

It was shown above that the inequality

max
Xn∈X

δAT
m∈δA

δb∈δb
δc∈δc

| − δc δ
◦
A

T

mXn + (δb−
◦
b δc)ΦT (Xn, L̃)Xn| ≤ q < 1

(40)

is a sufficient robust stability condition for the class of
systems (36,37) with the set-valued estimates (31,32,33)
in the domain X.

The above made remark on accounting the bounds on
control absolute values and, as a consequence, on the
fulfilment of the sufficient robust stability condition (40)
in domain X ∩Ω remains actual in the considered case as
well.

The inequality (40) contains the only unknown vector L̃ of
parameters of the decomposition (39). We described above
the method of calculating this vector as minimizer to the
left side of the inequality (40).

If ψ(Xn) is a strictly monotone function in the domain X,
verification of the condition (40) is simplified considerably.
In this case, maximum of the function |ψ(Xn)| is reached
at the boundary (particularly, at a vertex) of the set X.
Hence the condition (40) takes the form

max
k=1,...,2m

s=1,...,S
ι=1,2
κ=1,2

| − δcκ (δAs)T Xk + (δbι −
◦
b δcκ) ΦT (Xk, L̃)Xn|

≤ q < 1 (41)
Since the dimension of the combinatorial problem (41) is
small, a solution can be found by searching among all
4× 2m × S candidates.

5. CONCLUSIONS

The obtained results can be easily generalized to multi-
dimensional nonlinear (generally, nonstationary) dynamic
plants described by the equation

Xn+1 = AnXn + F (Xn) + BUn,

where Un is a vector of controls and B is a matrix of
the respective dimension. The detailed description of this
generalization cannot be given here due to the limitations
put on the paper size. Let us note that B can be either
square or rectangular non-singular matrix. In the first case,
the optimal control is calculated with the use of B−1. In
the second case, a pseudo-inverse matrix B−1 is used.

We have considered above a constructive method for
solution of the control synthesis problem providing the
robust stability of a wide class of nonlinear (generally,
nonstationary) systems.

The robust stability of discrete-time systems cannot be
guaranteed with arbitrary set-valued estimates for uncer-
tain system parameters. Therefore, the final step of a
synthesis procedure necessarily has to include verification
of sufficient robust stability conditions. If none of the
applicable conditions is satisfied, the a priori data has to
be refined. Possibly, one can either reduce a given domain
X or improve set-valued estimates of uncertain values. If
all of the improvements do not provide the system robust
stabilizability, it is still possible to obtain the desired
result by application of adaptive control procedures aiming
reduction of uncertainty.
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APPENDIX

Here we present the proof for the theorem.

We shall prove first that the system (16) is stable by
Lyapunov if the inequality (18) is fulfilled.

Introduce the Lyapunov function
vn = ‖Xn‖. (A.1)

Define the first difference of function (A.1) for the system
(16) as

∆vn = vn+1 − vn = ‖Xn+1‖ − ‖Xn‖ =

= ‖Hn Xn‖ − ‖Xn‖ ≤ (‖Hn ‖ − 1)‖Xn‖. (A.2)

The fulfilment of the condition (18) provides the correct-
ness of the equality ‖Hn ‖ = 1, hence ∆vn = 0 in (A.2)
and the system (16) is stable by Lyapunov.

Next, we shall prove the asymptotic stability of the system
(16) in the set X. Aiming this, we shall select the following
subsequence of the norms of state vectors,

‖Xn‖, ‖Xn+m‖, ‖Xn+2m‖, . . . , (A.3)
out of the sequence {‖Xn+i‖ : i = 0, . . .}. The dynamics
of the subsequence (A.3) is described by the equation

Xn+m = H m
n Xn, (A.4)

where
H m

n = Hn+m−1 Hn+m−2 · · ·Hn .

Define the first extended difference of the function (A.1)
for the system (A.4) as follows,

∆vn+m = vn+m − vn = ‖Xn+m‖ − ‖Xn‖ =

= ‖H m
n Xn‖ − ‖Xn‖ ≤ (‖H m

n ‖ − 1)‖Xn‖. (A.5)
Due to the fulfilment of inequality (??) and the equality
‖Hn ‖ = 1, one obtains

‖Xn+1‖ = ‖Xn‖. (A.6)
Hence the inequality analogous to (??) remains fulfilled
for the step (n + 1) due to (A.6).

The aforesaid is correct also for each step n + k, where
1 ≤ k ≤ m− 1, because of the fulfilment of the equality

‖Xn+k‖ = ‖Xn‖, 1 ≤ k ≤ m− 1. (A.7)

Since the conditions of lemma are fulfilled, the inequality
‖H m

n ‖ ≤ q < 1, (A.8)
take place and one obtains from (A.5) and (A.8) the
desired inequality

∆vn+m < 0, (A.9)
The inequality (A.9) provides the convergence of subse-
quence (A.4) to zero. This result together with the equality
(A.7) provides the required convergence of state vectors in
norm,

lim
n→∞

‖Xn‖ = 0.

Remark. As it results from (A.7) and (A.9), a strictly
monotone convergence of the sequence {‖Xn‖} does not
take place.
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