

XML Based Graphical User Interface Editor and Runtime Parser
for ISO 11783 Machine Automation Systems

M. Öhman*, J. Kalmari**, A. Visala***

*Helsinki University of Technology, Espoo, 02150, Finland (e-mail: matti.ohman@tkk.fi)
**Helsinki University of Technology, Espoo, 02150, Finland (e-mail: jouko.kalmari@tkk.fi)
***Helsinki University of Technology, Espoo, 02150, Finland (e-mail: arto.visala@tkk.fi)

Abstract: Graphical user interface design is a very visual process which requires graphical tools. Modern
integrated development environments have text editors for writing code and graphical user interface
editors for designing the user interface. In ISO 11783 systems this distinction between the program logic
and the user interface elements is even more pronounced as the program is executed by the electronic
control unit on the agricultural implement while the user interface is being loaded to the virtual terminal in
the tractor cabin. The ISO 11783 standard defines a binary format for loading user interfaces to the virtual
terminal. However, using XML format for manipulating and storing user interfaces has many advantages.
XML files can be validated and parsed by standard tools and libraries. They are human readable which
makes debugging relatively easy. XML files can also be extended to contain new information without
breaking existing implementations. Most importantly, describing user interfaces as structured documents
allows efficient reuse of composite user interface objects such as entire displays.

1. INTRODUCTION

Developing ISO 11783 (ISO, 2004) compliant electronic
control units (ECUs) is a multidisciplinary task that requires
specialized skills in areas such as distributed embedded
software development, graphical user interface (GUI) design,
hardware development for the ECU, and filter and controller
design for machine controls. This paper discusses the user
interface design issues that are relevant for developing ISO
11783 applications. This paper also presents our XML based,
GUI editor called PoolEdit. PoolEdit is used as a case study
to demonstrate one way of solving various user interface
design issues. Finally this paper presents component based
software architecture1 for ISO 11783 machine control
systems. The core component of that architecture is a runtime
XML parser which adapts the user interface description to
match virtual terminal (VT) capabilities.

1.1 ISO 11783-6

The ISO 11783-6 standard defines the properties of virtual
terminal and the CAN messages it uses for communication.
The standard leaves a considerable amount of freedom to
terminal manufacturers. A virtual terminal must have a
square graphical display area with at least 200x200 pixels.
The display can be black and white, 4-bit color or 8-bit color.
The number, layout and dimensions of soft keys can also vary
between terminals. It is the responsibility of the electronic
control unit to query these properties from the terminal and
adapt the user interface objects accordingly before uploading
them to the terminal.

1 This paper discusses only the GUI related aspects of the
machine control system architecture.

The terminal supports 31 different user interface object types.
These objects include top-level objects such as masks and
containers, button and soft key objects, input and output
fields, geometric shapes, three meter objects, bitmap graphics
object, variable objects, attribute objects, and other miscella-
neous objects. The object types are shown in Table 1.

Table 1. ISO 11783-6 user interface objects.

 Working set Polygon
 Data mask Meter
 Alarm mask Linear bar graph
 Container Arched bar graph
 Soft key mask Picture graphic
 Soft key Number variable
 Button String variable
 Input boolean Font attributes
 Input string Line attributes
 Input number Fill attributes
 Input list Input attributes
 Output string Object pointer
 Output number Macro
 Line Auxiliary function
 Rectangle Auxiliary input
 Ellipse

Every user interface object is identified by a unique 16-bit
object ID. For example, when the operator presses a soft key,
the terminal sends a soft key activation message containing

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 1578 10.3182/20080706-5-KR-1001.1092

the object ID of the pressed soft key to the ECU. Also when
the ECU wants to change the value of a meter object, it sends
a change value message containing the object ID to the VT.

1.2 Extensible Markup Language

Extensible Markup Language (XML2) is a simple yet very
flexible text format for describing structural documents.
XML uses tags to describe information. The tags are not
defined in the XML recommendation. Instead, the tags are
chosen to match the application domain. XML Schema
defines the structure, content and semantics of an XML
document. XML Schema is a machine readable document
which can be used for validating XML documents.

Table 2. A sample of PoolEdit generated XML.
<container height="53" name="pressuremeter"
 width="64">
 <ellipse ellipse_type="closedsection"
 end_angle="220" height="64"
 name="background" pos_x="0" pos_y="0"
 start_angle="320" width="64">
 <include_object name="black"
 role="fill_attributes"/>
 <include_object name="grey1"
 role="line_attributes"/>
 </ellipse>
 <outputstring background_colour="white"
 height="8" width="6"
 horizontal_justification="middle"
 name="label0" options="transparent"
 pos_x="9" pos_y="42" value="0">
 <include_object name="white6x8"
 role="font_attributes"/>
 </outputstring>
</container>

A sample of XML code is shown in Table 2. All XML
documents must have a single root element. XML element
has an opening and closing tags. The opening and closing
tags of an empty element can be replaced by a single, self-
closing tag. Elements can contain other elements and they
can also have attributes. Attribute values must be in quotes.
XML files are usually processed using either SAX or DOM
application programming interfaces (APIs).

2. EDITOR DESIGN

There are several major GUI editor design decisions that will
affect the GUI design process. These decisions also have a
significant impact on the integration of the resulting GUI to
the program logic.

2.1 Symbolic Names and Software Tool Integration

Managing object IDs in the program logic becomes quickly
very tedious and error prone. In modern integrated
development environments (IDEs), graphical components are
referenced by their symbolic names in the program code as
they are easier to remember than numerical IDs. Another

2 XML is a W3C Recommendation (W3C, 2007).

advantage of using symbolic names is that they can have
hierarchical structure which is essential for managing large
name spaces. Symbolic names can also be used for
integrating separate tools. As long as the tools can share
name-to-ID mappings they can hide the object IDs from the
programmer and still generate compatible code. Tools can
also give compile time warnings, if the programmer tries to
reference a name that is not defined or if the defined names
are not unique.

2.2 Validation of Object Pools

The ISO 11783-6 standard specifies many rules that the
object pool definitions must follow. The object pool forms a
directed acyclic graph (DAG) structure which means that a
single user interface object can have multiple parents. For
example, this feature allows the same meter object to be
shown on multiple displays. This is quite unlike in many
other systems, which require the user interfaces to be tree
structures where every object has only one parent. The graph
has to be acyclic as having cycles would create infinite loops
in the rendering engine3.

A good software tool can have two different approaches to
protect the GUI designer from these kinds of errors. The tool
should make it impossible to create certain types of errors.
For example, the tool should not allow the designer to create
object references that would create a loop in the object graph.
However, the editor must tolerate the types of errors that are
inevitable during the editing process. For example, it is
unrealistic to assume that a new object has valid default
values for its reference fields if there are no appropriate
objects to refer to. The editor should check for these types of
errors before saving the object pool or when the GUI
designer executes a separate validation command.

There are many other aspects of object pools that can be
checked with a proper software tool but they are beyond the
scope of this paper. The important thing to keep in mind is
that the more errors are caught in the GUI editor the less
likely the system is going to fail at runtime. Even if caught,
many runtime errors are very difficult to recover from.

2.3 Consistent and Orthogonal User Interface

The operations the editor provides to the designer should be
consistent and orthogonal. Operations are consistent if there
are no contradictions between them. If the operations are
consistent they will have predictable results. Orthogonal
operations affect only one aspect of the system and have no
side effects. Choosing orthogonal operations facilitates the
compactness of the editor design: as in mathematics only
orthogonal vectors can form the basis of a vector space which
is also the minimal spanning set for that vector space4. The
same principles of consistency and orthogonality should be
applied to new GUIs when using the editor!

3 It is not nice to have a user interface object that contains one
of its grandparents as its child.
4 If there is a minimal spanning set…

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1579

3. EDITOR SUPPORT FOR GUI DESIGN PROCESS

In our opinion, it is not enough that the editor supports
building user interfaces from the basic GUI objects. That
would mean starting essentially from scratch every time. The
GUI editor must also support reasonable GUI design process
which imposes additional requirements on the GUI editor.

The design of a graphical user interface is done a top-down
manner. Based on the application requirements, the designer
decides what displays are needed and chooses appropriate
navigation logic for the user interface. The requirements for
each display are then considered separately: What
information is relevant for the machine operation? What
controls need to be operated? How information and different
controls are presented to the operator?

When the detailed display design is complete, the GUI
objects are created with the editor. The GUI objects can be
created in a bottom-up manner. Individual meters, graphical
symbols, buttons and keys are created first. For example, a
complex meter object can be build from a container object
which holds the basic meter object and suitable label objects
showing the scale values. These composite objects are then
used to create even more complex composite objects, such as
panels and tables and finally entire displays.

3.1 Composite GUI Objects

The ISO 11783-6 standard defines one component which is
particularly useful for creating composite objects, namely the
container GUI object. Its sole purpose is to group other
objects together5. However, composite objects are not limited
to container objects as any object that can hold other objects
can be used to create composite objects. Virtual terminals are
designed to work with hierarchical objects pools. In fact, they
require some level of hierarchy because each GUI object can
reference no more than 255 child objects.

To support the creation of composite objects, the only thing
the editor has to implement is a deep copy operation.
However, implementing the deep copy operation will have
some implications. If an object and all its children are copied,
there will be naming conflicts. Selecting a new, unique name
for the parent object is reasonable, but renaming all child
objects is probably not a good idea. For example, copying a
container object called “table1” could result a new container
object called “table2” but if “table1” contained a string
object “row1col1” it should still be called the same in
“table2” as the program logic could depend on the fact that
table elements are named in a certain fashion. This implies
that the object pool cannot have a flat, global name space.

3.2 Actual Objects and Links

The ISO 11783-6 GUI objects contain only references to
other GUI objects – not the other GUI objects themselves.
This means that the memory structure of an object pool is
essentially flat: all the objects reside in the same big chunk of

5 It can also be hidden, which is useful for hiding objects.

memory and their relations become apparent only by
following their object IDs. Even though this linear structure
is an efficient runtime presentation of the GUI, it is not
particularly useful for editing purposes. However, it is
possible to construct the GUI editor so that the objects can
contain actual objects as well as links to root level objects.

The editor should also support the DAG nature of the ISO
11783-6 object pools. This means that a single object can
have multiple parents. One way to implement this is to
require that the objects with multiple parents must reside at
the root level of the object pool so that the other objects may
create links to them. The objects with only one parent can be
“embedded” in their parent object. This way they do not litter
the root level name space. The names at the root level must
be unique for linking to work correctly.

3.3 GUI Object Libraries

The most consistent way of supporting composite object
libraries is to make the editor support multiple document
interface (MDI). Component libraries are collections of GUI
objects just in the same way as graphical user interfaces are
collections of GUI objects. Created composite GUI objects
can be sorted by category on multiple data mask objects to
create graphical displays of related objects. For example, one
display could contain a collection warning symbols and
another one could contain an assortment of buttons.

The most convenient way for copying components from the
library to the new GUI design is by dragging and dropping
with a mouse. The most consistent way of implementing this
is to use the same deep copy operation that is used copying
components within a single document. Linking GUI objects
between documents might also be useful but it has not been
tried as it could have unwanted side effects.

3.4 Software Generated Components

The number of basic GUI object types supported by virtual
terminals is fixed and the objects are very basic. In many
cases it is enough to create a composite GUI object and put it
in a library so that it can be reused. However, sometimes the
desired object type has so many different variations that the
library based approach is not enough. For example, the basic
meter object does not have a numerical scale, but creating a
meter with a scale from 0 to 50 km/h and placing it to a
component library does not solve the problem because the
next application might need a meter with a scale from 0 to 30
km/h. Another example is a table component showing tabular
data. Creating a nice table with 3 rows and 4 columns does
not accomplish much because the next application might
need a table with 4 rows and 3 columns.

This problem can be solved by using “object wizards” that
are small programs that automatically generate GUI objects
according to the GUI designer’s specifications. For example,
to create a nice looking meter object, the GUI designer would
specify the minimum and the maximum values of the scale,
the number of values in the scale as well as other properties

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1580

and then the program would generate the appropriate basic
GUI objects that make up the composite meter object.

3.5 Application Domain Level Design Guidelines

By using his own GUI object libraries the GUI designer can
create user interfaces that have a consistent look. If he sticks
to his own design guidelines, the resulting user interfaces will
also have consistent feel to them. However, the ISO 11783
standard is currently missing application domain level design
guidelines. Having and following those design guidelines
would give all ISO 11783 applications a consistent look and
feel. Design guidelines would be, as the name very clearly
suggests – just guidelines, and unlike the standard they
should not be followed to the letter. But even if half of the
designers would follow the design guidelines half of the time,
the machine control systems would provide a much more
consistent user experience to the operators.

4. POOLEDIT

PoolEdit is XML based, graphical editor for developing ISO
11783-6 graphical user interfaces. PoolEdit is open source
software developed in the Automation technology laboratory
at Helsinki University of Technology as a part of the Farmix
project. PoolEdit is written in the Java programming
language which makes it platform independent. The editor
implements a multiple document interface and it has been
tested on both Windows and Linux operating systems.

4.1 Editor Layout

PoolEdit provides many views and other components for
managing and editing object pools. The default layout is
shown in Fig. 1. All views are dockable and the GUI designer
can adjust them freely to best suit his working practices.

Fig. 1. PoolEdit’s default layout.

1) Menus are used for issuing file operations, running
wizards and adjusting various settings.

2) New objects are created by dragging them from the object
toolbar to the tree model.

3) The object view shows how the objects will be rendered on
the virtual terminal’s display. The object view can be zoomed
and scrolled and it has various options for precise placement
of objects. It is also possible to delete, resize and move
objects in this view.

4) The tree view shows the objects in a single object pool.
Although object pools are inherently DAGs, they can be
visualized as trees. The tree view shows the types of objects,
their names and how those objects are related. Multiple
object pools can be open at the same time. Objects can be
easily copied between and within the trees.

5) The XML view can be used for directly editing the
generated XML code. This is useful for debugging but not
needed for normal use. The message view (not visible in Fig.
1) is for displaying warning and other messages.

6) The attribute table shows the attributes and the attribute
values of the selected object. The table has also different
editors for editing different attribute types. For example, the
GUI designer can select a color by picking it from a color list.
Object attributes include things like object’s width and color
while link attributes specify the position of the object or the
role it plays in its parent object.

4.2 XML File Formats

PoolEdit uses three different XML flavors for different
purposes. Its native format is PoolEdit XML which is based
on the IsoAgLib XML format (Spangler and Wodok, 2007).
The biggest difference is that in PoolEdit XML only special
link elements are used for linking, while in IsoAgLib XML
many attributes are also used for linking. In PoolEdit XML
links can only point to objects on the root level and only root
level names have to be unique. A small sample of the
generated PoolEdit XML is shown in Table 2.

Embedded XML is designed so that it can be transformed to
ISO 11783 binary format and sent to a virtual terminal. It is
derived from the PoolEdit XML format, but there are a few
differences. Embedded XML files include base64 encoded
bitmap data which removes the need for separate image files.
In addition, every object has been given a unique object ID
which makes subsequent processing very efficient.

Every object in Embedded XML is classified as a mask
object or as a designator object. Mask objects are displayed
on data and alarm masks. Designator objects can appear on
working set, soft key and other designators. The classification
makes object scaling easier if different scale factors are used
for mask and designator objects. Using the same object on
both mask and designator areas will generate a warning.

For compatibility, PoolEdit can read and write IsoAgLib
XML files. We have not used the IsoAgLib library or done
any compatibility testing. There are some minor issues and
limitations but in principle PoolEdit can be made to work
with the IsoAgLib library.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1581

4.3 Wizards

Wizards are small programs that generate GUI objects
according to user’s specifications. The meter wizard is used
to create meters with numeric scales and solid backgrounds.
The meter wizard dialog is shown in the Fig. 2. The figure
also compares the resulting composite meter object to a basic
meter object.

Fig. 2. Meter wizard dialog and the resulting meter object
(top right) compared to the basic meter object (bottom right).

Other implemented wizards include the table wizard for
creating tables and the trend wizard for creating trend
displays. These other wizards are very similar to the meter
wizard and are not discussed in this paper.

5. RUNTIME XML PARSER

The graphical user interface is loaded into the machine
control system as an Embedded XML file. When the virtual
terminal is detected on the network, the control system
queries its properties, parses the XML file, and then loads an
adjusted object pool to the VT. It is very useful to have the
user interface in a separate XML file instead of having it in
the executable. For example, it is possible to change the
layout and the appearance of the GUI without recompiling or
even restarting the control system!

Another possibility is to use an external tool to convert the
XML file into source code. The generated code can be
compiled into the executable by including it to source files.
The IsoAgLib library uses this approach. It has a conversion
tool called vt2iso which parses XML files and generates C++
header and code files. The conversion tool is also responsible
for extracting bitmap data from separate image files. The
generated C++ files are then compiled with other source files
to create the executable.

Sometimes it is desirable to compile the object pool directly
into the executable. The XML file can be included into the
source code as a rather long string. Although XML is noto-
rious for its verbosity6, the use of a compression algorithm,
such as GZIP, can greatly reduce memory requirements. The

6 XML documents waste both memory and bandwidth.

results from a simple experiment are shown in Table 3. The
compressed XML file is over ten times smaller than the
original. It is even smaller than the binary presentation!

Table 3. Test pool size in different formats.
Test Pool Format Pool Size [kB]
PoolEdit XML + image files 258
Embedded XML 263
Embedded XML compressed (GZIP) 24.6
Binary pool size on the virtual terminal 34.7

The Embedded XML format is designed so that in can be
processed with a simple runtime parser in a single pass. The
lightweight, open source Expat7 parser is used for parsing
XML files. Because VT resolution and color depth are known
when the parsing starts, the parser can use this information to
adapt the generated binary presentation accordingly. The
parser scales objects and reduces their color depth to mach
the capabilities of the terminal.

6. CONTROL SYSTEM ARCHITECTURE

The machine control system is implemented with RTI's
Constellation software development system. Constellation is
an UML8 (OMG, 2007) based tool which is especially
designed for implementing control systems. It provides a
framework for building control systems from reusable
software components. The control system design process and
the Constellation tool are described in more detail in (Öhman
and Visala, 2006).

Fig. 3. Control system top-level components.

The top-level components of a simple control system are
shown in Fig. 3. The PeakDriver component encapsulates the
CAN driver, which is needed for sending and receiving CAN
messages. The FileAccess component hides the details of file
operations and defines the default paths.

7 See project’s home page at http://expat.sourceforge.net
8 UML (Unified Modeling Language) is OMG's (Object
Management Group) most-used specification which has been
accepted as an international standard (ISO/IEC 19501).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1582

The IsobusManager component contains the XML parser and
other ISO 11783 functions, such as address management,
packet transport protocols and VT initialization. It provides
an interface for connecting GUI components that are proxies
for VT user interface objects. The StartKey component is a
proxy for a key object. The signal coming out of the
component indicates the state of the key. The SpeedIndicator
component is a proxy for a meter object. The signal going
into the component indicates the reading on the meter.

Fig. 4. FSM for sending change numeric value messages.

Internally, the proxy components are implemented as finite
state machines (FSMs). The FSMs in Constellation are
executable models that follow closely Harel’s statechart
semantics (Harel and Gery, 1997) which are also the core of
the UML state diagrams. Fig. 4 shows the internals of the
SpeedIndicator component. When the VT is detected on the
network, the FSM goes into the Active state where it sends a
message to VT which holds the initial value. When it receives
an acknowledgement it goes through a wait state into the
Updated state where it remains until the value is changed.

Together, the parser and the connected proxies form a
distributed XML parser. Every time the parser processes a tag
it notifies the connected proxies. When a proxy comes across
tag’s name attribute that matches its own name, it can learn
its own object ID by reading tag’s id attribute. In the same
way, the proxy can also learn its other properties, such as its
minimum and maximum values. This is immensely useful,
because GUI objects can be configured only once in the GUI
editor and the GUI proxies can learn their properties from the
tag stream broadcasted by the XML parser. This means that
the GUI proxies are basically configuring themselves and that
the configurations are always in synch with the GUI objects.

Because the Embedded XML has a real tree structure (i.e. it
is not flat like the binary object pools), everything said in the
previous paragraph can be generalized to composite GUI

objects. By listening the tag stream, a table proxy can learn
not only its own properties but also the properties of its
children. Table proxy’s own ID is not very interesting,
because the table itself is only a container – the table data is
stored in its children which are number field objects. Only by
learning the properties of those objects, the table proxy can
manipulate the table data.

6. CONCLUSIONS

The presented XML based graphical user interface editor is
designed to work with composite GUI objects. The editor
supports GUI object reuse by allowing created objects to be
stored in object libraries. Created library objects can be
sorted on graphical displays so that they can be found more
easily. In addition, the editor has some object wizards which
are small programs that generate GUI objects according to
user’s specifications. Describing user interfaces as structured
documents allows efficient reuse of composite user interface
objects such as entire displays.

A runtime parser can be used to process XML files. The use
of a compression algorithm, such as GZIP, can greatly reduce
memory requirements. A compressed XML file can be even
smaller than the binary object pool presentation. Because VT
properties are known when the parsing starts, the parser can
adapt the binary presentation accordingly.

In the presented control system architecture, the GUI objects
are represented by corresponding proxy components. This
architecture implements a distributed XML parser, which
makes the proxies self-configurable. Every time the parser
processes a tag it notifies the proxies. Proxies learn their
properties by listening the tag stream. In this architecture, it is
easy to create proxy components also for the composite GUI
objects. This is a nice match between reusable software
components and reusable GUI objects.

REFERENCES

Harel, D. and Gery E. (1997). Executable Object Modeling
with Statecharts, IEEE Computer, 30:7 (July), 31-42.

ISO (2004). Tractors and machinery for agriculture and
forestry – Serial control and communications data
network – Part 6: Virtual terminal (ISO 11783-6),
International Organization for Standardization, Geneva,
Switzerland.

OMG (2007). Unified Modeling Language: Superstructure –
Version 2.1.1. Object Management Group.

Spangler, A. and Wodok, M. (2007). IsoAgLib –
Development of ISO 11783 Applications in an Object
Oriented way. http://www.isoaglib.org (2007-02-18)

W3C (2007). Extensible Markup Language. The World Wide
Web Consortium, http://www.w3.org/XML (2007-05-08)

Öhman, M and Visala A (2006). Design and Implementation
of Machine Control Systems with Modern Software
Development Tools. In: Field and Service Robotics.
Corke, P. and Sukkarieh, S. Ed, 377-388. Springer,
Berlin.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1583

