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Abstract: In this study, a new hierarchical decision-making and decision-fusion mechanism is introduced 

for solving decision making problems in a consistent manner. This mechanism is constructed by using a 

genetic algorithm. The proposed mechanism employs fuzzy logic and a performance index determined 

based on the performance of decision-making agents at successive hierarchical levels. The mechanism is 

such that the decisions in previous levels are influential on the current level decisions according to the 

performance index introduced. This mechanism is tested on an artificial problem, namely finding the 

amount of faults in a four tank water system.  

1. INTRODUCTION 

Decision making is an important area where different kinds 

of decision making and fusion approaches are available: In 

most of the common applications, fuzzy sets and fuzzy logic 

are coupled with different machine learning techniques. A 

decision making problem could be formulated and solved in 

many different ways. But the main issue is the determination 

of the method to be used in solving the decision making 

problem. In (Xu, 2007) intuitionistic preference relations are 

put forward by intuitionistic fuzzy sets and they are used to 

develop a method in group decision making process. (Ben-

Arieh et al., 2007) deals with reaching a consensus in group 

decision making among different experts having different 

amount of influence. (Martinez et al., 2007) is about handling 

and processing data from different sources of knowledge 

having different domains and scales. Some problems are 

carried out using more than one decision making techniques 

as proposed in (Kahraman et al., 2007). In (Ralescu et al., 

2007) applicability of optimal aggregation of fuzzy concepts 

to introduce a framework for decision making is studied. In 

(Jin et al., 2007) a genetic algorithm (GA) is used to update 

fuzzy feature transformations in a decision making about a 

classification problem of bioinformatics. (Xu et al., 2007) is 

about multiple attribute group decision making under fuzzy 

environment. (Xu et al., 2007) is useful especially when 

attribute weights are partially known. It gives an answer to 

the question of how decision makers can update their 

preferences. In (Wang et al., 2006) weights of fuzzy opinions 

are optimized using two different measures. (Lu et al., 2006) 

concerns with a general framework for organizing the 

relations between decision makers at different hierarchical 

levels such that the leader’s decision is influenced not only 

by its followers but also the followers influence the decisions 

of each other. In (Tsiporkova et al., 2006) alternative 

decisions are evaluated by assigning a list of values 

demonstrating the expert’s preference for the alternatives to 

satisfy a multi-criterion situation; Next, these alternatives are 

aggregated via some weights which accounts for the relative 

opinion of the decision maker about the relative importance 

of the related criteria. (Pei et al., 2006) is about different 

ways to extract fuzzy decision rules from a fuzzy information 

system. (O et al., 2006) is a study where a decision-making is 

handled from the point of view of a machine learning 

technique. (Lee et al., 2006) is about construction of a genetic 

fuzzy agent for a scheduling system. (Pasi et al., 2006) is a 

study about group decision making. It concerns the 

construction of a majority opinion from individual opinions 

by two different techniques. The first one uses aggregation of 

different individual opinions by some aggregation operators. 

The second one concerns the majority opinion as a fuzzy 

subset. In (Li, 2005) fuzzy multi-attribute decision making 

problems with uncertainty are studied. The property of this 

study is that the proposed method both concerns and in a way 

demonstrates the subjective judgment and objective 

information. It also gives insight about determination of 

membership degrees and weights. The advantage of the 

proposed hierarchical decision making and decision fusion 

approach in comparison with the studies refereed is that our 

hierarchical approach is very flexible. While determining the 

final decisions, one could provide the basic relations between 

the hierarchical levels in many different ways: Construction 

style for performance index, and the style of the decision 

fusion between hierarchical levels can be selected, the use of 

different data representation and evaluation techniques with 

different optimization algorithms could be organized and 

changed depending on the requirements of the decision 

making problem in any hierarchical level. The main outcome 

of our approach is the flexibility it provides in allowing the 

composition of different problem solving utilities when 

necessary.  

In this study, a hierarchical decision making method is 

constructed in order to solve decision making problems “as 

efficiently as desired”. In this method, the decision making 
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agents are developed successively at consecutive hierarchical 

levels by: The decision made in the lower level by a lower 

level decision maker is carried to upper level and new 

decision is taken by newly developing decision maker whilst 

considering the lower level decision taken via a measure of 

reliability determined by a performance graph demonstrating 

the partial success of lower level decision. The lower level 

decision is an integral part of development of upper level 

decision maker. For the proposed problem the decision 

makers are made of rules in terms of IF..THEN statements. 

For a given fuzzy membership distribution these rules are 

updated using genetic algorithm. The fusion of decisions of 

lower level and newly developing upper level depends on an 

averaging operation via the use of performance graph 

obtained for the lower level. This paper is organized as 

follows: In section 2 the proposed structure of the 

hierarchical decision making method is given in details. In 

section 3 the model problem is explained. In section 4 the 

hierarchical decision making approach is applied to the 

problem and the obtained results are demonstrated. In the 

conclusions part the influence of proposed method and future 

studies in this area are discussed. 

2. THE STRUCTURE OF DECISION MAKING METHOD 

A decision making problem is set initially. The decision 

making structure consists of different hierarchical levels. In 

the first level there exists a decision maker. The decision 

maker performs its decisions and these decisions are 

transferred into second level about the decision making 

problem. Meanwhile the performance of the decisions taken 

by the first level decision maker is demonstrated by a 

performance measure. The second level decision maker uses 

the decisions of first level decision maker and the 

performance of first level decisions to generate its own 

decisions: The outputs of second level decision maker is an 

updated version of first level decisions. The second level 

decision maker works such that the first level decisions which 

are possibly consistent are not affected much but the first 

level decision which may be weak are possible to be 

improved: This is accomplished using the performance 

measure indices for the first level decisions. The level by 

level hierarchical approach continues until N
th

 level in the 

same manner similar to the relation between first level and 

second level. The decision makers in all the hierarchies are 

developed using machine learning techniques. The main idea 

in this decision fusion technique is that the higher level 

decision makers are used in order to operate in the regions 

where the lower level decision maker is not so successful. 

The proposed hierarchical decision making method is 

summarized in Fig. 1. 

3. THE EXAMPLE PROBLEM 

The hierarchical decision making and decision fusion 

approach is tested in an example problem: Finding the 

amount of artificially created faults in a chosen tank in a four 

tank water system in single and multiple fault scenarios. 

Determination of fault amounts in this system is designed as 

a decision making problem. The structure of the system is 

shown in Fig. 2. The parameters of this system and the 

variables and the dynamic equations of the system with and 

without fault are given in (KDlDç, 2005). 

 

Fig. 1. The scheme for the hierarchical decision making 

method. 

Fig. 2. Four tank water distribution system. 
 

Failures are artificially created at the bottom of the tanks 

(there are two ways to create the failures: Either the holes at 

the bottom of the tanks increase or decrease in size) in the 

simulations. There are seven different level faults created. 

These levels are negative-big fault (means that the hole at the 

bottom of the tank is totally closed), negative medium fault 

(the nominal hole size is decreased 66 % percent), negative 

small fault (the nominal hole size is decreased 33 %), zero 

fault, positive small fault (the nominal hole size is increased 

33 %), positive medium fault (the nominal hole size is 

increased 66%), positive big fault (the nominal hole size is 

doubled). The combination of all fault characteristics of all 

the four tanks is called as a scenario. The faults created in a 

scenario after some time instance ‘t’ remain the same after 

this time instance. 170 different scenarios are created having 

single and multiple fault structures. For each scenario,  the 

water height levels of tanks due to original system equations 

and water height levels of tanks due to different scenarios are 

recorded for each time elapse of 0.1 seconds from time 

instance 0 to 20 (totally 201 height level data for each 

scenario). 

The input for the decision making mechanism is the water 

height level differences between the original system and the 

system with fault for each scenario. The observed (system 

with fault) tank water height levels are subtracted from the 
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should be observed (system without fault) tank water height 

levels to obtain the error data which is used as the input for 

decision making mechanism for each scenario for each time 

instance. This error data is normalized between the maximum 

and minimum height values for each tank so that each indices 

of error data is fixed between 1 and -1. The initial conditions 

for each tank water height values are taken the same for each 

scenario. The parameters related to tanks are unchanged 

through the simulations (ex the potential applied to the 

tanks). Eventually, for each scenario a normalized error data 

is obtained. The structure of the normalized error data 

(briefly error data) is shown in Table 1. In this table ‘e1’, ‘e2’, 

‘e3’ and  ‘e4’ symbolized the difference between the observed 

and should be observed water levels in each tank 

respectively, ‘t’ represents the time instance these error 

values are taken (for two consecutive time instance the time 

elapse is 0.1 seconds), Scenario_1 represents the first 

scenario and Scenario_170 represents the last scenario. 

Table 1.  The configuration of error data 

(normalized error data) 

Error 

Data 

Scenario_1 … Scenario_170

t e1 e2 e3 e4 e1 e2 e3 e4

1-  

…

201-  

4. THE METHOD 

4.1 First Level Simulation 

A first level agent is developed using GA in the first level 

simulation. This simulation constitutes the first level of 

hierarchical decision making procedure. The chromosomes of 

the GA population is coded to represent the rules of the rule-

base to accomplish the decision making task. All the potential 

rule-bases are created from 30 IF...THEN statements. The 

best chromosome obtained at the end of this simulation is 

declared as the first level prediction agent. This agent is used 

in order to predict the fault levels in each scenario at every 

time instance in the related tank. The agent yields an output 

for every time instance according to the input it is assigned 

from the normalized error data. This output is a normalized 

prediction of the related fault amount for the related scenario 

and for the corresponding time instance of the rule base using 

fuzzy logic principles (evaluating the related data using fuzzy 

evaluation according to the rule base enclosed in the body of 

the chromosome). There are totally 34170 time instances to 

be checked (170 scenario × 201 time instances for each 

scenario). The simple structure of a rule is show below: 

 IF (e1,t=‘att1’ AND e2,t=‘att2’ AND e3,t=‘att3’ AND e4,t=

‘att4’) THEN (pt= ‘att5’) 

In this rule structure ‘e1,t’, ‘e2,t’, ‘e3,t’ and ‘e4,t’ are input 

variables of the rule that take input from the normalized error 

data at time instance ‘t’, ‘pt’ is the output variable of the rule. 

It shows the prediction (decision) determined by that rule for 

the time instance ‘t’. In the simulation the input variables 

‘e1,t’, ‘e2,t’, ‘e3,t’ and ‘e4,t’ may be assigned 8 different 

attribute values. These attribute values are ‘negative-big’, 

‘negative-medium’, ‘negative-small’, ‘zero’, ‘positive-small’, 

‘positive-medium’, ‘positive-big’ and ‘not important’. 

Different from the input variables the output variable may be 

assigned 7 different attribute values excluding ‘not 

important’. The distribution of membership functions for the 

input variable et,1 is shown in Fig. 3. The distribution of 

membership functions for other variables (both input and 

output) is the same as the distribution of membership 

functions of et,1.
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Fig. 3. Membership function distribution of each attribute for 

the variable et,1.

In the explained rule structure, the ‘AND’ operation works as 

taking the minimum of the membership values assigned to 

the inputs according to the associated membership function 

distribution. A simple example for ‘AND’ operation and its 

usage is shown in Fig. 4. If an input variable is assigned ‘not 

important’, this means whatever input the variable takes that 

variable is inactive and the membership value for that 

variable is assigned as 1 through the evaluation of the output 

of the rule. In a rule structures there exists 5 variables and 

there are totally 30 rules in a rule base enclosed in a 

chromosome. So there are totally 150 genes (30×5) in a 

simple chromosome. The aggregation of rules and 

determination of the output surface for the input using a rule 

base for a time instance is summarized in the example shown 

in Table 2: First the normalized error data corresponding to a 

time instance ‘t’ is assigned as the input of the rule base 

enclosed in the chromosome. The rule base determines an 

output attribute and a membership degree for the output 

attribute for each of its rules using the same procedure briefly 

explained in Fig 4. For the rules which yields the same output 

attribute the maximum values of the membership degrees is 

assigned as the membership degree of the related output 

attribute. After finding the maximum membership values of 

the output attributes (there are totally 7 output attributes): 

according to the membership function distribution for these 7 

attributes and the obtained maximum membership values for 

each attribute a maximum surface is determined. The centre 

of area of the maximum surface is declared as the normalized 

fault prediction for the considered time instance ‘t’. The 

centre of area defuzzification is summarized in (1).  
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In (1) f(x) symbolizes the surface equation of the obtained 

surface by membership functions and ‘pre’ symbolized the 

normalized prediction for the time instance ‘t’.  

 

Fig. 4. Example: The membership value assignment 

procedure for the output variable of a rule due to an input. 

Table 2.  Example: Determination of 

membership values of all the 7 attributes (pos-

big…neg-big) for a rule base having 7 rules. 

Rules of the rule base 

Rule 

no: 

Output 

variable 

attribute 

Membership 

degree of output 

variable 

1 Negative-big 0.35 

2 Positive-small 0.17 

3 Negative-big 0.05 

4 Positive-small 0.13 

5 Zero 0.11 

6 Positive-small 0.05 

7 Zero 0.14 

Assigned membership values for output 

attributes  

Output attribute Membership degree 

Negative-big max(0.35,0.05)=0.35 

Negative-medium 0 (inactive) 

Negative-small 0 (inactive) 

Zero max(0.11,0.14)=0.14 

Positive-small max(0.17,0.13,0.05)=0.17

Positive-medium 0 (inactive) 

Positive-big 0 (inactive) 

The defuzzified output is declared as the predicted 

normalized fault amount in the analyzed tank in the 

simulation. The output is a value between -1 and 1 and it 

shows how much normalized change has occurred in the 

tank. To give example if the output is 0 this means there is no 

change in the nominal hole size (0% change), if it is 1 this 

means the hole size is doubled (100% positive change in hole 

size)or if it is -1 this means the hole is totally closed (100% 

negative change in hole size). The other output values are 

obtained by a linear relation between these two extreme 

values 1 and -1.  

For a chromosome the cost function is obtained by taking the 

sum of absolute differences between the predicted normalized 

fault amounts and real normalized fault amounts as in (2). 

��
= =

�=

170

1

201

1

)(__)(
k t

tt kfaultnorrealkpreCost  (2) 

In (2) ‘Cost’ represents the cost obtained for a chromosome 

pret(k) represents the normalized prediction for the time 

instance ‘t’ for k
th

scenario, real_nor_faultt(k) represents the 

normalized real fault value for time instance ‘t’ for k
th

 

scenario. The fitness of a chromosome is obtained by taking 

the reciprocal of the cost function. The parameters and the 

obtained results for the first level GA simulation for Tank 1 

are as below: 

The number of chromosomes in a population: 40 

The number of genes in a chromosome: 150. 

Crossover operation: At each 25 gene one point crossover.  

Crossover ratio: 90% 

Reproduction: 10 % (with elitist method) 

Gene mutation rate: 2% (Only applied to chromosomes 

which are crossovered. If the best fitness of generation does 

not exceed previous level best chromosome for 8 consecutive 

generations the crossover rate is increased to 10 % until an 

improvement in the best chromosome in the population is 

improved. Mutation rate is returned to its nominal value after 

the improvement.) 

The fitness value of best chromosome at each generation is 

shown in Fig.5. 
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Fig. 5. Fitness of best chromosome in the population at each 

generation. 

Input= [0.1 -0.7 0.8 -0.5] 

Rule-1: If (e1,t=‘zero’, e2,t=‘neg-big’ 

e3,t=‘pos-big’ e4,t=‘pos-med’) ise (p1,t= ‘pos-

sml’) 

Membership values for the input variables are 

calculated 

µ (e1,t)=0.5, µ(e2,t)=0.5,  µ(e3,t)=1 µ(e4,t)=0.25. 

(µ symbolizes the membership value) 

The minimum of the membership values is 

assigned as membership value of output variable 

µ (pt)=(0.5 MIN 0.5 MIN 1 MIN 0.25) 

pt= ‘pos-sml’ with membership value µ (pt)=0.25. 
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From the results it can be concluded that the cost function is 

minimized in a moderate amount. In the second level 

simulations this cost function is minimized much further 

using the hierarchical decision making technique and the 

decision fusion approach explained in the previous part. 

4.2  Second Level Simulation and Decision Fusion in the 

Hierarchy: 

In order to obtain the second level decisions first level 

decisions obtained for every time instances are used. In this 

part the main aim is to fuse the decisions obtained at the first 

level simulations with the decisions of a newly being 

developed rule base. The fusion technique in this level has a 

very simple structure. The first level decisions are transferred 

to second level simulations with an activation amount. The 

second level simulation agent used the decisions of first level 

agent, the activation values obtained for the decisions of the 

first level agent and the decision of the rule base and fuse 

them through the activation value of the first level decision 

and second level decisions are obtained. The second level 

agent is also as a result of an optimization. The fusion of 

previous level decisions and the decisions of newly 

developing rule base is a simple averaging operation 

according to the activation value o the pervious level 

decisions. For second level decisions a new rule base is 

proposed: This rule base could be assigned input from the 

current and one previous time instance of the normalized 

error data. The rule base is used to make decision for the 

current time instance using the fuzzy evaluation principle 

explained in first level simulation. The rules in the rule base 

could be briefly summarized as follows: 

IF (e1,t=‘att1’ AND e2,t=‘att2’ AN D e3,t=‘att3’ AND e4,t=‘att4’

AND e1,t-1=‘att5’ AND e2,t-1=‘att6’ AND e3,t-1=‘att7’ AND e4,t-

1=‘att8’) THEN pt=’att9’

In this rule structure ‘e1,t’, ‘e2,t’, ‘e3,t’ and ‘e4,t’ represent input 

variables which take input from the current time instance of 

normalized error data, ‘e1,t-1’, ‘e2,t-1’, ‘e3,t-1’ and ‘e4,t-1’

represent the input variables which take input from one 

previous time instance or normalized error data and pt stands 

for the output variable representing the output for the 

considered time instance. The rule base consisting of these 

new rules uses the same membership value assigning 

principles as the first level simulation and the distribution of 

the membership functions for all the variables are the same as 

first level simulation. In order to find the output of the rule 

base for any time instance ‘t’ same principles are used as in 

first level simulation.  

In order to fuse the decision of first level agent and the 

decision obtained using this new rule base to obtain the 

second level decisions, an approximate performance graph is 

used showing the capability of the first level agent at 

different situations (different places of prediction). This 

performance graph is obtained as follows: First, the total sum 

of absolute differences between the real normalized fault 

amount and the predicted fault amount are calculated for each 

data corresponding to its class attribute (negative-big, .., 

positive-big).  These sums are divided by the number of data 

in the corresponding class that shows the error amount for the 

corresponding class. If these error amounts are subtracted 

from 1, approximate success rates of the first level agent for 

different classes are obtained. By a spline interpolation the 

success rates obtained for different classes are combined and 

an approximate performance graph is obtained. This 

performance graph shows approximate consistency of any 

decision made.  In Fig. 6 the performance graph for the first 

level decisions made is shown.  
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Fig. 6. The performance graph showing the reliability of the a 

first level prediction. 

 

It could be observed from the performance graph that a 

prediction of ‘0’ (the prediction is that there is no fault in the 

tank) has a confidence between 0.95 and 1. For example a 

prediction of 0.2 has a confidence between 0.9 and 0.95. For 

every prediction performed its confidence value is the 

activation value of that prediction. 

The fusion of the first level prediction with the prediction of 

the new rule base to yield the second order prediction is given 

in (4)  

 

))_1(()_( flpactnrbpflpactflpslp �×+×= (4) 

 

In (4), ‘slp’ is the second level prediction, ‘flp’ is the first 

level prediction, ‘act_flp’ activation value of the first level 

prediction, ‘nrbp’ is the prediction of new rule base.  Second 

level prediction operation is an integral part of optimization 

procedure. Optimization includes both the prediction of the 

new rule base and the fusion between the first order 

predictions and the predictions of new rule base. The cost 

function for the second level simulation is shown in (5).  

��
= =

�=
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1
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1

)(__)(
k t

tt kfaultnorrealkslpCost  (5) 

In (5) ‘slpt(k)’ represents second level prediction performed 

for the time instance ‘t’ for the ‘k
th

’ scenario, 

‘real_nor_faultt(k)’ represents the real normalized fault value. 

The Fitness function is the reciprocal of the cost function.  

The new rule structure has 8 input variables and 1 output 

variable. The rule base is made of 10 rules. This means a 

chromosome enclosing a rule base should have 90 genes (10× 

(8+1)). The second level simulation has the same GA 
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parameters as the first level simulation. The obtained results 

for Tank1 are as follows: 

Fitness of best chromosome at the end of simulation: 

2.621×10
-4

.

Cost of the best chromosome at the end of simulation: 3815 

Amount of fault per data: 3815/34170 = 0.1116. 

The improvement in cost with respect to first level 

simulation: (|3974-3815|/3974) ×100 = % 4 

 

The fitness value of best chromosome at each generation is 

shown in Fig.7. 
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Fig. 7. The average fitness of population at each generation. 

 

It is observed that there is an improvement in the fitness 

values when second level simulation is compared with the 

first level simulation. This is an expected since the decisions 

performed at the first level simulations are transferred to the 

second level simulation with activation amounts showing 

their approximate performance to perform good decisions. 

The second level predictions become more successful due to 

optimization. It is possible to increase the success rate using 

new decision fusion techniques and rule base structures. 

5. CONCLUSIONS 

In this study, a hierarchical decision making technique is 

proposed. The interaction between the levels is provided by a 

decision fusion technique depending on performance criteria 

of the previous level decisions. The technique is tested over 

an example problem and its efficiency is demonstrated: There 

is an improvement in the decisions made from the first level 

to the second level. It is planned to vary the structure of the 

rule bases and investigate the performance of new decision 

fusion techniques in forthcoming studies.  
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