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Abstract: This paper proposes an adaptive control for the nonlinear boost inverter with non-
resistive load in order to cope with unknown resistive load as well as unknown inductive load.
The adaptive control is accomplished by using a state observer to one side of the inverter
with a quadratic Lyapunov function and by measuring the states variables. The stability of the
complete system is analyzed by means of singular perturbation analysis. The adaptation of the
both parameters is tested by using simulations.

1. INTRODUCTION

The control of switched-mode power converters (SMPC)
with AC output is usually accomplished tracking a ref-
erence (sinusoidal) signal Sanchis et al. [2005], Vazquez
et al. [2003]. The use of this external signal makes from
the mathematical point of view the closed-loop control sys-
tem to be non-autonomous and thus, making its analysis
involved. A different approach was used in Pagano et al.
[2005]: a control law was designed for stabilizing a limit
cycle corresponding to the desired behavior. No external
signals were needed. In Albea et al. [2006] this idea was
applied to the boost inverter Caceres and Barbi [1999].
A Phase-Lock Loop (PLL) is added to the control law
in order to achieve synchronization between both parts of
the circuit as well as synchronize the voltage output with a
pre-specified signal, e.g. synchronization with the electrical
grid. Only the case of known resistive load was considered.

The unknown load problem in SMPC is usually dealt with
adaptation mechanisms combined with other techniques
such as discontinuous feedback regulators, backstepping
with passivity-based controllers, sliding mode, El Fadil
et al. [2003], Tan et al. [2005]. In Pagano et al. [2005] is
computed an adaptive control for the case of the boost
converter. The controller used in such paper follows the
idea given above. The fact that the boost inverter model
is 4-dimensional and nonlinear makes the design of the
adaptation law more involved. A state observer for some
of the converter variables is designed even when the state
variables are measured. In order to analyze the stability
of the full system singular perturbation analysis is used
Khalil [2002]. For simplicity, the PLL is not considered in
this analysis.

The case of non-resistive load was studied in Albea and
Gordillo [2007], but only for known load. In this paper,

⋆ This work was supported by the MEC-FEDER grant DPI2006-
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the previous results are extended to case of unknown and
non-resistive load using the adaptation mechanism from
Albea et al. [2007], adapting the parameters of the load at
the same time. Singular perturbation analysis was used
to prove the stability of the full system. The resultant
adaptive control is tested by means of simulations.

The rest of the paper is organized as follows: in Sect. 2 the
model of the double boost converter (boost inverter) is
presented. Section 3 states the problem, which is solved
in Sect. 4 by means of the design of the adaptation
mechanism. Section 5 is devoted to the stability analysis
and Sect. 6 presents some simulation results. The paper
closes with a section of conclusions.

2. BOOST INVERTER MODEL

The boost inverter Caceres and Barbi [1999] is specially
interesting because it can generates an ac output voltage
larger than the its dc input Caceres and Barbi [1999]. It
is composed of two dc-dc converters and a load connected
across of them. Each converter produces a dc-biased sine
wave output, v1 and v2, so that each source generates
an unipolar voltage. Voltages v1 and v2 should present
a phase shift equal to 180◦, which maximizes the voltage
excursion across the load. The circuit implementation is
shown in Fig. 1. By this mean it is possible to generate an
oscillatory signal without bias. In Albea et al. [2006] the
load was resistive, and in Albea and Gordillo [2007] was
studied this same circuit with a RL load.

Here it is assumed that:

• all the components are ideal and the currents of the
converter are continuous,

• the inductances L = L1 = L2, and the capacitances
C = C1 = C2, are known and symmetric,

• the load R0 and LR0 are unknown, and it has to be
estimated.
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Fig. 1. Boost inverter model

The boost dc-ac converter can be simplified as shown in
Fig. 2. This simplification lets see clearer the bidirectional
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Fig. 2. Simplified Boost inverter model

current of each boost dc-dc converter.

The circuit in Fig. 1 is driven by the transistor ON/OFF
inputs Qi. This yields two modes of operation illustrated in
Appendix A. Formally this yields a switched model which
is more involved. For control purposes, it is common to use
an averaged model described in terms of the mean currents
and voltages values. This model is more suited for control
because it is described by a “continuous” time smooth
and nonlinear ODE. Following Albea et al. [2006], this
averaging process yields the normalized model described
below.

2.1 Normalized averaged model

In order to simplify the study, we can yield a normalized
model by using the change of variables:

x1 =
1

Vin

√
L

C
iL1

x2 =
v1

Vin

x5 =
1

Vin

√
L̂R

C
iL1

and defining the new time variable with t̃ = 1√
LC

t.

Assuming an unknown RL load with a averaged current
x5, a normalized model in terms of the averaged current
x1 and the averaged voltage x2, for one side of the inverter
(see, Albea and Gordillo [2007]), is:

ẋ1 =−u1x2 + 1 (1)

ẋ2 = u1x1 − bx5 (2)

ẋ5 =−θ1x5 + θ2cx2 − θ2cx4 + a
˙̂
θ2x5 (3)

where θ1 = R
√

LC
LR

, θ2 = 1
LR

,θ̂2 = 1

L̂R

, a = 1
2 L̂2

RV in
√

C,

b =
√

L

L̂R

and c =
√

LL̂R and the respective normalized

model for the other side is obtained similarly by symmetry

ẋ3 =−u2x4 + 1 (4)

ẋ4 = u2x3 − bx5 (5)

where ui ∈ [0, 1], i = 1, 2 describes the control inputs.
Note that they are also normalized and reflect the mean
duty-cycle activation percent of each circuit. They are here
treated as “continuous” variables. Parameters a, b and c
depends on the estimation of LR and is assumed to be
known. θ1 and θ2 depends on the unknown load which is
unknown.

3. PROBLEM FORMULATION

The control problem is to design a control law for u1, and
u2, for the system (1)–(3) and (4)–(5) in order to make
the output y to oscillate as a sinusoidal signal with a given
amplitude i.e.

y = x2 − x4 → yr = A cos(ωt + ϕ)

with a pre-specified value for A and ω. The phase shift ϕ
is not specified.

Under the assumption that a, b, c, θ1 and θ2 are constants
and knowns, in Albea and Gordillo [2007] a nonlinear
control law based on Hamiltonian approach was proposed.
The design is based on the following change of coordinates:

η1 =
x2

1 + x2
2

2
(6)

η2 = x1 − bx2x5 + η20 (7)

η3 =
x2

3 + x2
4

2
(8)

η4 = x3 + bx4x5 + η40 (9)

The controller recalled further below, has as an objective
to render the following functions tend to zero

Γ1 ≡ ω2(η1 − η10)
2 + (η2 − η2

20)
2 − µ = 0 (10)

Γ2 ≡ ω2(η3 − η30)
2 + (η4 − η2

40)
2 − µ = 0 (11)

orbitally stable. The parameters η10, η20 and η30, η40 define
the respective ellipse centers and ω, µ are related to their
size. Based on this definition, the nonlinear control law as
proposed in Albea and Gordillo [2007] has the following
form:

u = k(x, θ1, θ2) =

[
u1

u2

]
=

[
k1(x, θ1, θ2)
k2(x, θ1, θ2)

]
u ∈ R

2

with k1(x, θ1, θ2), k2(x, θ1, θ2) given in Appendix B.

The design is completed with an additional outer loop
(PLL) that has the function of achieving a phase shift
equal to 180◦ between the two voltages v1, and v2 reaching
in that way the desired objective. The goal here is to extent
this work to the case of unknown load.

4. ADAPTATION LAW LOAD DESIGN

In this section we propose an adaptive law (or a load
observer) to cope with load variations and/or uncertainties
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on the load parameters θ1, and θ2. This observer is de-
signed based only on one-side of the circuit, which contains
enough information to make this parameter observable.
Therefore the use of the full two-side circuit is not neces-
sary at this stage.

The one-side (left) circuit (1)-(3), can be rewritten com-
pactly as:

ẋl = Ulxl + bBlx5 + cθ2Cly + (aθ̂2 − θ1)Clx5 + El(12)

y = x2 − x4 (13)

with xl = [x1, x2, x5]
T , and

Ul =

[
0 −u1 0
u1 0 0
0 0 0

]
, Bl =

[
0
−1
0

]
, El =

[
1
0
0

]
, Cl =

[
0
0
1

]

where θ1 and θ2 are disturbed parameters.

In what follows, we assume that both voltages and currents
are measurable (either analogically or numerically), and
thus accessible for control use.

4.1 Adaptation law

The proposed adaptation law is composed by: state ob-
servers, plus adaptation laws for θ1 and θ2. It has the
following structure:

˙̂x = Ulx̂ + bBlx5 + cθ̂2Cly + (aθ̂2 − θ̂1)Clx5 + (14)

El + K(xl − x̂) (15)

˙̂
θ1 = β1(xl, x̂) (16)

˙̂
θ2 = β2(xl, x̂) (17)

where K ∈ R
3×3 is a constant design matrix, and θ1(xl, x̂)

and θ2(xl, x̂) are the adaptation laws to be designed. Note,
that even if x is accessible, the adaptation law designed
here requires the additional (or extended) state observer.
This will become clear during the analysis of the error
equation system, as studied below.

4.2 Error equation

Assume that θ1 and θ2 are constant parameters (θ̇1 = 0

and θ̇2 = 0) (or that change slowly θ̇1 ≈ 0 and θ̇2 ≈ 0) and
define the following error variables:

x̃ = xl − x̂, θ̃1 = θ1 − θ̂1,
˙̃
θ1 = −

˙̂
θ1 θ̃2 = θ2 − θ̂2,

˙̃
θ2 = −

˙̂
θ2

Error equation are now derived from (12)–(13) together
with (15)–(17)

˙̃x = −Kx̃ + cθ̃2Cly − θ̃1Clx5 (18)

˙̃θ1 = −β1(xl, x̂) (19)

˙̃θ2 = −β2(xl, x̂) (20)

(21)

Let K be of the form,

K = αI, α > 0

and P = I be the trivial solution of PKT + KP = −Q,
with Q = −2αI.

Now introducing

V = x̃T P x̃ +
θ̃2
1

γ1
+

θ̃2
2

γ2
(22)

it follows that

V̇ = x̃
T

Qx̃ + 2θ̃1

(
−x̃

T
PClx5 +

˙̃
θ1

γ1

)
+ 2θ̃2

(
x̃

T
PcCly +

˙̃
θ2

γ2

)

= x̃
T

Qx̃ + 2θ̃1

(
−x̃

T
PClx5 −

˙̃
θ1

γ1

)
+ 2θ̃2

(
x̃

T
PcCly −

˙̃
θ2

γ2

)

The adaptation laws are now designed by canceling the
terms in square brackets, i.e.

˙̂
θ1 = γ1(−x̃T PClx5) (23)

˙̂
θ2 = γ2x̃

T PcCly (24)

The stability properties of the observer and the adaptive
law error equations were discussed in Albea et al. [2007]
reaching to:

Lemma 1. Consider the open-loop system (12)–(13), and
assume that its solutions are bounded. The extended
observer (15)–(17) has the following properties:

i) The estimated states x̂, θ̂1, θ̂2 are bounded.
ii) limt→∞ x̂(t) = x(t).

iii) limt→∞ θ̂1(t) = θ1 ⇐⇒ y(t) 6≡ 0, x5(t) 6≡ 0 ∀t ≥ 0.

iv) limt→∞ θ̂2(t) = θ2 ⇐⇒ y(t) 6≡ 0, x5(t) 6≡ 0 ∀t ≥ 0.

5. STABILITY OF THE FULL CLOSED-LOOP
EQUATIONS

The stability of the complete system (the system state
variables plus the observer extended) is analyzed in this
section.

The open-loop two-sides inverter (1)-(3) and (4)-(5), can
be compactly rewritten as:

ẋ = Ux + bBx5 + cθ2Cy + (aθ̂2 − θ1)Cx5 + E (25)

y = x2 − x4 (26)

with x = [x1, x2, x3, x4, x5]
T
, and

U =





0 −u1 0 0 0

u1 0 0 0 0

0 0 0 −u2 0

0 0 u2 0 0

0 0 0 0 0



 , B =





0

−1

0

1

0



 , C =





0

0

0

0

1



 , E =





1

0

1

0

0





5.1 Tuned System

The tuned system is defined as the ideal closed-loop sys-
tem under the action of the tuned feedback law u∗ =
k(x, θ1, θ2), computed with the exact value of x, θ1 and
θ2.

The tuned systems given in Albea and Gordillo [2007]
writes

ẋ = U(u∗)x + bBx5 + cθ2Cy + (aθ̂2 − θ1)Cx5 + E

= U(k(x, θ1, θ2))x + bBx5 + cθ2Cy + (aθ̂2 − θ1)Cx5 + E

= f(x)
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and it achieves an asymptotically orbitally stable periodic
solutions, i.e.

x∗(t) = x∗(t + T )

In Albea et al. [2006] it has been shown that the func-
tions Γ1 and Γ2 defined in (10)–(11) tend to zero. They
correspond to periodic sinusoidal solutions with period
T = 2π/ω. Consequently, y∗ = x∗

2 − x∗
4 is also sinusoidal.

5.2 Closed-loop system

How it is seen in Albea et al. [2007], note that control

law depends on the estimation as û = k(x, θ̂1, θ̂2). Note
that this control law depends on the state x and not on
its estimation x̂, because the state x is directly measured.
The role of x̂ is then just to make possible the design of
the adaptation law for θ1 and θ2.

The closed-loop equation resulting from the use of û =

k(x, θ̂1, θ̂2) writes, as

ẋ = U(û)x + bBx5 + cθ2Cy + (aθ̂2 − θ1)Cx5 + E ± U(u∗)x

= f(x) + [U(û) − U(u∗)] x

= f(x) − U(ũ)x

where ũ = u∗− û. Note that U(ũ) = U(x̃, θ̃1, θ̃2), captures
the mismatch between the estimated and the true value
of the load (see Albea et al. [2007]). This term has the
following property:

Property 1. Let M = {(x, θ̃1, θ̃2) : ||x − x∗|| < ǫx, |θ̃1| <

ǫθ1
, |θ̃2| < ǫθ2

}, be a compact domain including the
asymptotic periodic solutions of the tuned system and the
exact load. Then, the function U(ũ) = U(x, θ̃1, θ̃2) has

∀(x, θ̃1, θ̃2) ∈ M, the following properties:

i) it is continuous, analytic, and free of singularities
ii) it has the following limits:

lim
ũ→0

U(ũ) = lim
θ̃1→0
θ̃2→0
x̃→x

U(x, θ̃1, θ̃2) = 0

Putting together the closed-loop equation resulting from
(25) with the observer error system give the complete set,
with y = y(x)

ẋ = f(x) − U(x, θ̃1, θ̃2)x (27)

˙̃x = −αx̃ + c(θ̂2)θ̃2Cly − θ̃1Clx5 (28)

˙̃
θ1 = γ1(−x̃T PClx5) (29)

˙̃
θ2 = γ2x̃

T Pc(θ̂2)Cly (30)

we have substituted K = αI. The stability consideration
discussed here will be based on the time-scale separation.
The main idea is that with the suited choice of gains (as
discussed latter) the observer equation (28)-(30) can be
seen as the fast variables and the equation (27) as the
slow subsystem. Note again, that this time-scale separation
should be enforced by a particular choice of the observer
and adaption gains: α, γ2 and γ1.

5.3 Singular perturbed form

To put the system above in the standard singular pertur-
bation form, we follow the next steps:

• introduce θ̄1 = θ̃1

α
, θ̄2 = θ̃2

α

• select γ = γ1 = γ2 = α2

• define ε = 1
α

With these considerations, we achieve,

ẋ = f(x) − U(x, b̄, c̄)x

ε ˙̃x =−x̃ + c(θ̄2)θ̄2Cly − θ̄1Clx5

ε ˙̄θ1 =−x̃T PClx5

ε ˙̄θ2 = x̃T Pc(θ̄2)Cly

where ε > 0 being the small parameters. Note that this
particular selection of gains imposes relationships for the
adaptation γ. The target system for the slow variables,
defined after the change of coordinates (6)–(9) Albea et al.
[2006], is

η̇1 = ωη2

η̇2 =−ωη1 − kη2Γ(η1, η2).

Dividing this equations by ω2 they achieve a similar form
to fast variables equations. As we want that variable x is
much slower than x̃, θ̄1 and θ̄2, we have to impose

ε ≪ 1

ω
, ε ≪ 1

k
.

This means that the adaptation gain γ as well as the tuning
parameter k should be related to the desired frequency as:

γ ≫ ω2, γ ≫ k2

Letting z = [x̃, θ̄1, θ̄2]
T gives the general form

ẋ = f(x) − U(ũ)x (31)

εż = g(x, z) (32)

with, x(t0) = x0, x ∈ R
5, z(t0) = z0, z ∈ R

5, and
g(z, x) = ε[x̃, θ̄1, θ̄2]

T According to the singular pertur-
bation analysis, we need to follow the next steps:

(1) Find a stationary solution of the fast subsystem (32)
by finding roots of the equation g(x, z) = 0, i.e.
z = φ(x)

(2) Substitute this solution in the slow subsystem (31),
and find a the resulting slow system

ẋ = f(x) − U(ũ(x, φ(x)))x

(3) Check the boundary layer properties of the fast sub-
system along one particular solution of ẋ = f(x) −
U(ũ(x, φ(x)))x.

5.4 Slow sub-system

Proceeding to the steps 1 and 2 above requires to find the
roots of g(x, z) = 0, which are calculated from

x̃ = c(θ̄2)θ̄2Cly − θ̄1Clx5

0 =−(c(θ̄2)θ̄2Cly − θ̄1Clx5)
T PClx5

0 = (c(θ̄2)θ̄2Cly − θ̄1Clx5)
T Pc(θ̄2)Cly

If the initial conditions are such that y 6≡ 0, x5 6≡ 0,
then z = φ(x) = [x̃, θ̄1, θ̄2]

T = 0 become an isolated
root. Then for this particular solution, and noticing that
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θ̄1 = θ1−θ̂1

α
= 0 and θ̄2 = θ2−θ̂2

α
= 0, e.i. θ̂1 = θ1 and

θ̂2 = θ2 the slow model writes as:

ẋ = f(x) − U(x, 0)x = f(x), (33)

which is nothing else than the tuned system whose solu-
tions x(t) = x∗(t) are sinusoidal.

5.5 Boundary layer fast subsystem

For the evaluation of the boundary layer system in the
finite time interval t ∈ [t0, t1] Albea et al. [2007], we
consider a particular solution of y and x5 expressed in
the stretched time coordinates τ = (t − t0)/ε: y∗ =
y∗(τ, ω, ε, t0) and x∗

5 = x∗
5(τ, ω, ε, t0), the fast subsystem

(32) evaluated along such particular solution is,

d

dτ
˘̃x1 =−˘̃x1

d

dτ
˘̃x2 =−˘̃x2

d

dτ
˘̃x5 =−˘̃x5 + c(˘̄θ2)

˘̄θ2Cly
∗ − ˘̄θ1Clx

∗
5

d

dτ
˘̄θ1 = x̃5x

∗
5

d

dτ
˘̄θ2 =−c(˘̄θ2)x̃5y

∗

we can compactly rewrite them as:

d

dτ
z̆ = J(y∗, x∗

5)z̆ = J(τ, ω, ε)z̆ (34)

with

J =





−1 0 0 0 0
0 −1 0 0 0

0 0 −1 −x∗
5 c(˘̄θ2)y

∗ +
αL ˘̄θ2y

∗

2
√

L
˘̄θ2

˘̄θ2
2

0 0 x∗
5 0 0

0 0 c(˘̄θ2)y
∗ 0 − αL˘̃x5y

∗

2
√

L
˘̄θ2

˘̄θ2
2)





And the autonomous linear system
d

dτ
z̆ = J(τ, ω, 0, )z̆ = J(y∗

0 , x5
∗
0)z̆ (35)

Consider the y∗
0 , x∗

50 ∈ Dx, with Dx , {x : |y| = |x2 −
x4| > δ0 > 0, |x̌5| > δ1 > 0}, being δ0 and δ1 are constants.
the above system has the following properties.

Property 2. The eigenvalues of J(y∗, x∗
5), for [t, x̌∗, z] ∈

[t0, t1] × Dx × R
5, are all strictly negative.

By the Routh stability criterion is proved that the eigen-
values are strictly negative.

Tikhonov’s theorem, see Khalil [2002], can now be advo-
cated to summarize the previous result.

Theorem 1. There exists a positive constants ε∗ such that
for all y∗

0 ∈ Dx, and 0 < ε < ε∗, the singular perturbation
problem of (31)-(32) has a unique solution x(t, ε), z(t, ε)
on [t0, t1], and

x(t, ε) − x∗(t) = O(ε) (36)

z(t, ε)− ẑ∗(t/ε) = O(ε) (37)

hold uniformly for t ∈ [t0, t1], where ẑ∗(τ) is the solution
of the boundary layer model (35). Moreover, given any
tb > t0, there is ε∗∗ ≤ ε∗ such that z(t, ε) = O(ε) holds
uniformly for t ∈ [tθ1

, t1] whenever, ε < ε∗∗.

Extension of this result to infinite time interval, requires
prove that the boundary layer system is exponential stable
in a neighborhood of the tuned slow solution x∗(t) for all
t ≥ t0. This may not be a trivial demonstration, and it will
be left for further investigation. Instead, we showed below
using simulation the effectiveness of this approach.

An intuitive yet not completely rigorous explanation for
the good resultant behavior can be given with the help of
Fig. 3. Notice that the Hurwitz character of Jacobian (5.5)
is only lost when y = 0 and x5 = 0 at the same instants.
Since the fast motion, z, evolves with almost constant y
and x5 (see Fig. 3), y and x5 will not reach the value zero
during this motion provided that the initial condition is
such that y and x5 are far enough from zero. Once the
slow manifold is reached, the slow variable will evolve in
the domain z = 0. This domain corresponds to the case
when the adaptation mechanism has reached its objective
and parameter θ1 and θ2 are correctly estimated. In this
domain y and x5 may reach the value zero but, intuitively,
we can think that the system, once the adaptation law has
reached the correct value, will present a behavior that is
similar to the case of known load. For this last case stability
is proved in Albea et al. [2006].

−0.5

0

0.5

4

4.5

5

5.5

6

−2

−1

0

1

2

3

4

5

6

x 10
−3

‖z
‖

x1x2

Fig. 3. Evolution of (x1, x2, ‖z‖). The last part of the
trajectory is in the plane ‖z‖ = 0

6. SIMULATIONS

The following simulations are made considering V in =
20V , R0 = 100Ω, L1 = L2 = 1.5mH , C1 = C2 = 100µF .
The desired output of the circuit is Vout = 40 sin 50t V .

In order to obtain this voltage, the parameters are θ1 =
0.122, θ2 = 66.66, ε = 10−8, ω = 0.122, A = 1, k = 1.2
and η20 = η40 = 0. The ellipse parameters result according
to Albea and Gordillo [2007] are η10 = η30 = 12.875, µ =
0.372. The load parameters are perturbed in two times,
corresponding to the transitory and stationary states. In
the instant t = 0s, the estimated value of parameter θ1

and θ2 will be θ̂1 = 0.135 and θ̂2 = 71.43 (R0 = 110Ω and
LR0 = 14mH), i.e., a 15.35% and 10% error, respectively.
Later, in the instant t = 6.12s the parameters take the
real value of R0 = 110Ω and LR0

= 14mH .
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Fig. 4 shows the output voltage evolution at the instant of
the perturbation. Note that the output does not suffer any
perturbation. The adaptation of the parameters θ1 and θ2

are represented in the Fig. 5 and Fig. 6, respectively.
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Fig. 4. Output voltage with adaptation of a perturbation
of a 15.35% for θ1 and 10% for θ2 at the instant of
the perturbation.
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Fig. 5. Time-evolution of the fast variable θ̄1 − θ̄1
∗
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Fig. 6. Time-evolution of the fast variable θ̄2 − θ̄2
∗

7. CONCLUSIONS

An adaptive control for an unknown RL load is presented
for a nonlinear boost inverter. The method is based on us-
ing a state observer and a quadratic Lyapunov function to
one side of the inverter and by knowing that the state vari-
ables are measured. The stability of the complete system is
proved putting the system in the standard singular pertur-
bation form, hence we obtained a relationship between the
adaptation gains, γ, the observer matrix parameter, α, and
the perturbed variable parameters, ε. Another important
relationship between the perturbed variable parameter, ε,
and the system frequency, ω, was achieved in the analysis

of the boundary layer fast subsystem. Finally, the stability
is established by means of Tikhonov’s theorem.

Open problem is the extension of this result to infinite time
interval.
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Appendix A. OPERATION MODES

The equations of two operation modes of the boost inverter
system are

L
diL1

dt
=−uv1 + Vin

C
dvC

dt
= uiL1

− iR

LR

diLR

dt
= v1 − v2 − iRR

Appendix B. CONTROL LAW

k1(x, θ1, θ2) =
2(1 + b2x2

5
− bcθ2x2(x2 − x4) + bθ1θ2x5x2 − baθ̇2x5x2)

2(x2 + bx1x5)

+
−cθ̇2x2x5 + 2kΓ(η2 − η20) + 2ω2(η1 − η10)

2(x2 + bx1x5)

k2(x, θ1, θ2) =
2(1 + b2x2

5
+ bcθ2x4(x2 − x4) − bθ1θ2x5x4 + baθ̇2x5x4)

2(x4 − bx3x5)

+
cθ̇2x4x5 + 2kΓ(η4 − η40) + 2ω2(η3 − η30)

2(x4 − bx3x5)
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