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Abstract: In this paper, we consider dynamical models and we study the preservation of
solvability for the Disturbance Rejection by Measurement Feedback (DRMF) problem under
sensor failure in a structural framework. We consider a linear structured system and we wonder
if the DRMF problem remains solvable in case of some sensor failure. More precisely we will
characterize among the sensors some of those which are critical i.e. which failure leads to
solvability loss, and some of those which are useless for solvability purpose.
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1. INTRODUCTION

This paper is concerned with linear systems which are
affected by unmeasurable disturbances and we look for a
measurement feedback which rejects these disturbances.
When this problem is solvable we wonder if the problem
remains solvable in case of sensor failure. The problem
of disturbance rejection by state feedback is a very well
known problem. In the case where the state is not avail-
able for measurement the problem is more complex. The
problem of disturbance rejection by measurement feedback
has been solved in an elegant way in geometric terms, see
Schumacher [1980], Willems and Commault [1981].
We consider here linear structured systems which repre-
sent a large class of parameter dependent linear systems.
Generic properties for such systems can be obtained from a
graph naturally associated with the system. This approach
was pioneered by Lin [1974]. In this framework the Dis-
turbance Rejection by Measurement Feedback (DRMF)
problem has been solved via a graph approach in van der
Woude [1993], Commault et al. [1997]. The graph approach
generalizes the intuitive idea that the DRMF problem is
solvable if and only if the measurements contain enough
information to compute the effect of disturbances on the
outputs, the control inputs are powerful enough to com-
pensate these effects and in the context of discrete time
systems, the time for the disturbances to affect controlled
outputs should be longer than the time for measuring plus
the time to annihilate the effect of the disturbance on
the output. In this paper we focus our interest on the
DRMF problem in case of potential sensor failures. It
is clear that the solvability of this problem highly relies
on the availability of the sensors. We will then tackle
the problem of sensor classification with respect to their
criticity for the DRMF problem under sensor failure. We
wonder if the DRMF problem remains solvable in case of
some sensor failure. More precisely we will characterize
among the sensors some of those which are critical i.e.

which failure leads to solvability loss, and some of those
which are useless for solvability purpose. A similar sensor
classification has already been studied for two other prob-
lems, the observability in Commault et al. [2006] and the
Fault Detection and Isolation problem in Commault et al.
[2007].
For the problem under consideration we determine using
simple graph methods, sets of essential or useless sensors.
The outline of this paper is as follows. First of all, we
formulate the problem of sensor classification in section
2. The linear structured systems are presented in section
3. In section 4 we study the disturbance rejection by mea-
surement feedback problem. The classification of sensor for
disturbance rejection by measurement feedback problem
is considered in section 5. In section 6 we work out an
illustrative example. Some concluding remarks end the
paper.

2. PROBLEM FORMULATION

In this paper we focus our interest on the Disturbance
Rejection by Measurement Feedback (DRMF) problem in
a structural framework. When the problem is solvable it
is clear that the solution of this problem highly relies on
the availability of the sensors. We will then tackle the
problem of sensor classification regarding their criticity for
the DRMF problem under sensor failure.
We define a failing sensor as a sensor which is down
i.e. whose measure is no more available. We point out
two main classes of sensors: the essential ones which are
compulsory to preserve the property and the useless ones
which do not play any role for solving the problem.
Definition 1. Let Σ be the linear system defined by:

Σ
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) , (1)
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where u(t) ∈ Rm is the input vector, x(t) ∈ Rn is the
state vector and y(t) ∈ Rp the output vector provided
by a set of sensors, and a property P which is satisfied
for this system. We call solution for P a set of sensors
V ⊂ Y = {y1, y2, . . . , yp} such that P remains satisfied
with the output set V . For P, a sensor y∗ can be classified
as follows:

(1) y∗ is called a useless sensor if for any solution V
containing y∗, {V \y∗} is still a solution for P. A
sensor which is not useless is called a useful sensor.

(2) y∗ is called an essential sensor if y∗ belongs to any
solution V . The set of essential sensors is a subset of
the set of useful sensors.

Another classification of sensors has been introduced in
Staroswiecki et al. [2004]. The authors introduce the
notion of minimal sensor set (MSS). A minimal sensor
set is a set of sensors such that the property P is satisfied
for this set of sensors but not for any proper subset. The
authors define also critical sensor subsets which are sets
of sensors whose simultaneous failure results in property
loss. The notions presented in this paper are related with
the above notions in the following way:

• A useless sensor is a sensor which does not belong to
any minimal sensor set of the system.

• An essential sensor is a sensor which belongs to any
minimal sensor set.

• An essential sensor can also be characterized as a
critical sensor subset of cardinality one.

In the following, we will apply these notions to classify
the sensors for the solvability of Disturbance Rejection
by Measurement Feedback problem. More specifically, we
determine some sets of useless sensors as well as some
essential sensors.

3. LINEAR STRUCTURED SYSTEMS

In this part, we recall some definitions and results on linear
structured systems. More details can be found in Dion
et al. [2003]. We consider linear systems of type (1) with
parameterized entries and denoted by ΣΛ as follows:

ΣΛ

{
ẋ(t) = AΛx(t) + BΛu(t)
y(t) = CΛx(t) , (2)

This system is called a linear structured system if the

entries of the composite matrix JΛ =
[

AΛ BΛ

CΛ 0

]
are either

fixed zeros or independent parameters (not related by
algebraic equations). Λ = {λ1, λ2, . . . , λk} denotes the set
of independent parameters of the composite matrix JΛ.
For such systems, one can study generic properties i.e.
properties which are true for almost all values of the pa-
rameters collected in Λ, see Murota [1987]. More precisely
a property is said to be generic (or structural) if it is
true for all values of the parameters (i.e. any Λ ∈ Rk)
outside a proper algebraic variety of the parameter space.
A directed graph G(Σ) = (V ′,W ′) can be associated with
the structured system ΣΛ of type (2):

• the vertex set is V ′ = U ∪ X ∪ Y where U , X
and Y are the input, state and output sets given by

{u1, u2, . . . , xm}, {x1, x2, . . . , xn} and {y1, y2, . . . , yp}
respectively,

• the arc set is W ′ = {(ui, xj)|BΛ,ji 6= 0} ∪
{(xi, xj)|AΛ,ji 6= 0} ∪ {(xi, yj)|CΛ,ji 6= 0}, where
AΛ,ji (resp. BΛ,ji, CΛ,ji) denotes the entry (j, i) of
the matrix AΛ (resp. BΛ, CΛ).

Let V1, V2 be two nonempty subsets of the vertex set V ′
of the graph G(ΣΛ). We say that there exists a path from
V1 to V2 if there are an integer q and vertices i0, i1, . . . , iq
such that i0 ∈ V1, iq ∈ V2, it ∈ V ′ for t = 0, 1, . . . , q and
(it−1, it) ∈ W ′ for t = 1, 2, . . . , q. We call the path simple
if every vertex on the path occurs only once. The path is
then denoted (i0, i1), (i1, i2), . . . , (iq−1, iq). If i0 ∈ X and,
iq ∈ Y , the path is called a state-output path. If i0 ∈ U
and, iq ∈ Y , the path is called a input-output path.
Two paths from V1 to V2 are said to be disjoint if they
consist of disjoint sets of vertices. We call r paths from V1

to V2 disjoint if they are mutually disjoint, i.e. each two
of them are disjoint. We call a set of r disjoint and simple
paths from V1 to V2 a linking from V1 to V2 of size r. Since
there are only a finite number of linkings, there obviously
exist linkings consisting of a maximal number of disjoint
paths. We call such linkings maximal (size) linkings.

4. DISTURBANCE REJECTION BY
MEASUREMENT FEEDBACK

We consider a system of type (1) with an additional
input d(t) ∈ Rq which is called disturbance and which
we would like to have no effect on the output. We assume
that the disturbance is completely unavailable for control
purposes. In general the state is not completely available
for feedback, but we only have access to a measured output
z = Hx, which can be seen as a partial state. Hence, we
consider the system Σdz given by:

Σdz

{
ẋ(t) = Ax(t) + Bu(t) + Ed(t)
y(t) = Cx(t)
z(t) = Hx(t)

, (3)

where z(t) ∈ Rν and d(t) ∈ Rq. For such a system, we have
the transfer matrix:

[
y(s)
z(s)

]
=

[
G(s) K(s)
M(s) N(s)

] [
u(s)
d(s)

]
(4)

The problem of disturbance rejection then amounts to find
a dynamical measured output feedback:

Σzu

{
ẇ(t) = Lw(t) + Mz(t)
u(t) = Nw(t) + Pz(t) , (5)

or in transfer matrix terms a dynamic compensator (see
Fig 1) u(s) = F (s)z(s) with F (s) a proper rational matrix,
such that the closed loop system transfer matrix from
disturbance d to controlled output y is identically zero:

G(s)F (s)(I −M(s)F (s))−1N(s) + K(s) = 0 (6)

This problem has a very elegant solution in geometric
terms, see Schumacher [1980]. A necessary and sufficient
solvability condition for disturbance rejection by measure-
ment feedback is:
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Fig. 1. Control with a dynamic feedback compensator

N∗ ⊂ V∗ (7)
where N∗ is the minimal (H, A)-invariant subspace con-
taining Im E and V∗ is the maximal (A,B)-invariant
subspace contained in Ker C.
In the context of linear structured system, we can trans-
form the system of type (3) into a system with parameter-
ized entries of type (2) as follows:

ΣΛdz

{
ẋ(t) = AΛx(t) + BΛu(t) + EΛd(t)
y(t) = CΛx(t)
z(t) = HΛx(t)

, (8)

With ΣΛdz, we can associate a graph G(ΣΛdz) = (V, W )
as previously with V = V ′ ∪ D ∪ Z where D and Z
are two news sets of vertices D = {d1, d2, . . . dq}, Z =
{z1, z2, . . . zν} and the corresponding arc set is W = W ′ ∪
{(di, xj)|EΛ,ji 6= 0} ∪ {(xi, zj)|HΛ,ji 6= 0} where EΛ,ji

(resp. HΛ,ji) denotes the entry (j, i) of the matrix EΛ

(resp. HΛ).
Definition 2. Consider ΣΛdz a structured system of type
(8) with associated graph G(ΣΛdz). Denote I∗ the set of
vertices:
I∗ = {xi ∈ X | the maximal size of a linking in G(ΣΛdz)
from U ∪ xi to Y is the same as the maximal size of a
linking in G(ΣΛdz) from U to Y, and the minimal number
of vertices in X ∪ U is the same for both such maximal
linkings }
The set I∗ corresponds to the states for which, a distur-
bance affecting directly these states, can be rejected by
state feedback. In a dual way, we can define the set of
vertices J∗ which will be useful later:
Definition 3. Consider ΣΛdz a structured system of type
(8) with associated graph G(ΣΛdz). Denote J∗ the set of
vertices such that:
J∗ = {xj ∈ X | the maximal size of a linking in G(ΣΛdz)
from D to Z ∪ xj to is the same as the maximal size of a
linking in G(ΣΛdz) from D to Z, and the minimal number
of vertices in X ∪ Z is the same for both such maximal
linkings}
The set J∗ corresponds to the states which can be es-
timated from the measured outputs through an observer
independently from the disturbance. From the definitions
of I∗ and J∗, the geometric condition for disturbance
rejection by measurement feedback can be translated for
linear structured system as follows: van der Woude [1993],
Commault et al. [1997]
Theorem 4. Consider ΣΛdz a structured system of type
(8) with associated graph G(ΣΛdz). The problem of dis-
turbance rejection by measurement feedback is generically
solvable if and only if:

I∗ ∪ J∗ = X (9)

5. SENSOR CLASSIFICATION FOR THE DRMF
PROBLEM

In this section we will classify the sensors with respect to
the solvability of DRMF.

5.1 Useless sensors

In this subsection we will characterize some useless sensors
for the DRMF problem. We will prove in particular that
sensors measuring variables only out of I∗ are useless. This
proof will need some preliminary results.
Lemma 5. Consider ΣΛdz a structured system of type (8)
with associated graph G(ΣΛdz). Let LDZ be a maximal
linking in G(ΣΛdz) from D to Z having a minimal number
of vertices in X∪Z denoted nXZ . Let J∗ be as in Definition
3. Then for any xi ∈ LDZ , xi /∈ J∗ .

Proof: From the calculation of J∗ it follows directly, by
considering xi as a new measurement, that the size µ of
the maximal linking from D to Z cannot be reduced. So
we have two cases:
1. If µ increases, xi /∈ J∗ by Definition 3.
2. If µ remains the same, the path from D to Z through
xi which is needed for the construction of the linking LDZ

is now ended at xi, so nXZ reduces at least by 1. Then
xi /∈ J∗.¥
Remark 6. The reverse is not true i.e. a vertex which is
not in LDZ may belong to X \ J∗.

We show now that discarding sensors measuring only
variables of J∗ does not change the set J∗.
Lemma 7. Consider ΣΛdz a structured system of type (8)
with associated graph G(ΣΛdz) and the set J∗ of Definition
3. Assume that the disturbance rejection by measurement
feedback has a solution. Let zj ∈ Z be such that for any
xi with (xi, zj) ∈ W , we have xi ∈ J∗.
Consider the subsystem Σzj

Λdz obtained from ΣΛdz by delet-
ing in G(ΣΛdz) the vertex zj and the adjacent edges.
Denote J∗(Σzj

Λdz) the set J∗ of Definition 3 for Σzj
Λdz. One

has:

J∗(Σzj
Λdz) = J∗

Proof: For ΣΛdz, we have a set J∗ and a maximal linking
LDZ of size µ containing a minimum of nXZ vertices
belonging to X ∪ Z. By Lemma 5 any xi, xk in J∗ are
such that xi, xk /∈ LDZ , so the suppression of zj and
adjacent edges does not modify LDZ as all its previous
vertices belong to J∗. In other words, J∗ is not modified.¥

We prove now that the sensors measuring only variables
in J∗ are not essential.
Proposition 8. Consider ΣΛdz a structured system of type
(8) with associated graph G(ΣΛdz). Assume that the
Disturbance Rejection by Measurement Feedback problem
has a solution. Let zj ∈ Z be such that for any (xi, zj) ∈
W , xi ∈ J∗. Then zj is not essential for the solvability of
the problem.
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Proof: As zj measures only vertices in J∗, the suppression
of zj does not change J∗ following Lemma 7. Furthermore,
the set of vertices I∗ is independent from Z, so the solv-
ability of DRMF problem is held.¥

The previous results allow us to prove that the sensors
measuring only variables outside of I∗ are indeed useless.
Theorem 9. Consider ΣΛdz a structured system of type
(8) with associated graph G(ΣΛdz). Assume that the
Disturbance Rejection by Measurement Feedback problem
has a solution. Let zj ∈ Z be such that for any (xi, zj) ∈
W , xi ∈ Ī∗ = X \ I∗. Then zj is useless for DRMF.

Proof: Let zj ∈ Z be such that for any (xi, zj) ∈ W ,
xi ∈ Ī∗. Let V , a subset of the sensor set containing zj ,
be a solution of the problem in the sense of Definition 1.
Denote J∗V the corresponding set J∗, then

I∗ ∪ J∗V = X (10)
from Theorem 4 and because I∗ does not depend on the
sensor set. Therefore, zj measures only vertices in J∗V ⊂ Ī∗.
From Proposition 8, it follows that there exists another
subset of V not containing zj which is a solution. From
Definition 1, this means that zj is useless.¥

5.2 Essential sensors

In this subsection we will characterize some essential
sensors for the DRMF problem. In this part, we will
assume that each sensor measures only one state.
Definition 10. Consider a structured system of type (8)
with associated graph G(ΣΛdz). Denote FI∗ , the frontier
of I∗ as the set of vertices:
FI∗ = {xi ∈ I∗ | ∃(xi, xj) ∈ W , xj /∈ I∗}.
We prove now that a sensor measuring a state of FI∗ which
is directly affected by a disturbance acting on this state,
but not acting on another measured state, is essential.
Proposition 11. Consider ΣΛdz a structured system of
type (8) with associated graph G(Σdz). Assume that
the disturbance rejection by measurement feedback has
a solution. Let xi ∈ FI∗ and zj ∈ Z be such that there
exists (xi, zj) ∈ W . Assume that there exists dk ∈ D such
that there exists (dk, xi) ∈ W and no xl 6= xi such that
(dk, xl) ∈ W and zξ 6= zj such that (xl, zξ) ∈ W . Then zj

is essential for DRMF problem.

Sketchy proof: By hypothesis, any path from dk to any
sensor different from zj , must be longer than the path
dk → xi → zj . For example, on the Figure 2, one has the
path dk → xr → xs → . . . → xt → zv. Then, we can prove
that the arc (xi, zj) belongs to any maximal linking LDZ

with minimal number of vertices in G(ΣΛdz).
By the definitions of I∗ and FI∗ , each xi ∈ FI∗ has at
least one successor denoted xm such that (xi, xm) ∈ W ,
xm /∈ I∗. As the DRMF problem has a solution then
xm ∈ J∗.
From this point, for any solution V ⊂ Y of the DRMF
problem which contains the measure zj , we can prove that
discarding zj rejects xm out of J∗ since in this case, xm

plays the role of a new sensor. Since I∗ does not change, we
still have xm /∈ I∗. Finally xm /∈ I∗∪J∗ then I∗∪J∗ 6= X.
In other words, if V is any solution of the DRMF problem

which contains zj , V minus zj is no longer a solution, then
zj is essential.¥

Fig. 2. Disturbance affecting directly a state of FI∗

6. ILLUSTRATIVE EXAMPLE

6.1 The system and the solvability of the DRFM Problem

Consider the thermal process which is described in Figure
3. This process consists of five tanks, each tank is fed by a
fixed water flow (F1, F2 and F1 + F2). The system control
input is the heating power w. The regulated output is T5,
the temperature of the fifth tank. The disturbance is the
feeding temperature T0 and the measured output is z = T2.
This process can be linearized as a system of type (3) with

Fig. 3. The five tank system

x = [ T1 T2 T3 T4 T5 ]T , d = T0, u = w and y = T5. We
have the following state space matrices:

A =




−F1

C1
0 0 0 0

0
−F2

C2
0 0 0

F1

C3
0

−F1

C3
0 0

0
F2

C4
0

−F2

C4
0

0 0
F1

C5

F2

C5

−F1 − F2

C5




,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11302



B =




0
0

1/C3

0
0


 , E=




F1/C1

F1/C2

0
0
0


 ,

C = [ 0 0 0 0 1 ] ,H=[ 0 1 0 0 0 ] ,

where Ci is the calorific capacity of the ith tank.
This model exhibits clearly the physical structure of the
process. Notice that this model is not structured because
some dependencies exist between the matrix entries. Nev-
ertheless, to illustrate our approach, we will consider the
following structured system of form (8):

AΛ =




λ1 0 0 0 0
0 λ2 0 0 0
λ3 0 λ4 0 0
0 λ5 0 λ6 0
0 0 λ7 λ8 λ9


 , BΛ =




0
0

λ10

0
0


 ,

EΛ =




λ11

λ12

0
0
0


 , CΛ = [ 0 0 0 0 λ13 ] ,

HΛ = [ 0 λ14 0 0 0 ]

, (11)

This system has the same zero/nonzero structure as the
physical system. The associated graph is depicted in Fig-
ure 4. From Definitions 2 and 3, we have I∗ = {x1, x2}

Fig. 4. Graph of the five tank system

and J∗ = {x3, x4, x5}. As I∗ ∪ J∗ = X, the Disturbance
Rejection by Measurement Feedback problem is solvable
for this system. Indeed, on this model the measurement of
x2 allows to get an early information on the disturbance
d and to compensate on time with u for the effect of this
disturbance on the output y.

6.2 Sensor classification

In this case the classification is rather simple. Because the
DRMF problem is solvable and we have only one sensor,
it is clear that this unique sensor is essential.
As seen previously I∗ = {x1, x2} then the frontier FI∗

is also equal to {x1, x2}. From Proposition 11 the sensor
z = x2 is essential.
Assume now that all the variables x1, . . . x5 are available
for measurement. From Theorem 9, the measurements of
x3, x4 and x5 are useless for solving the DRMF problem.
These measurements would have provided us with a too

late information. From the previous theoretical results one
cannot conclude directly concerning the classification of
the measurements x1 and x2. But as previously shown,
when only x2 is available for measurement the DRMF
problem is solvable and this measure is essential. The same
analysis could be performed when only x1 is available for
measurement, the DRMF problem is solvable and this
measure is also essential. Therefore when x1 and x2 are
both available, x1 and x2 are both useful but not essential.

7. CONCLUDING REMARKS

In this paper, we revisited the Disturbance Rejection by
Measurement Feedback (DRMF) problem for structured
systems. Using a graph approach we focused our attention
on solvability preservation of this problem under sensor
failure and have determined sets of sensors which are essen-
tial and sets of sensors which are useless for the solvability
of the DRMF problem. It is a first step towards a complete
characterization and classification of the sensors respective
to their criticity for solving the DRMF problem. The pro-
posed approach is well suited for structural analysis prior
to computation of the dynamic output feedback controller.
More over, its numerical implementation is simple as the
computation of useless and essential sensors can be per-
formed in polynomial time. The interest of the proposed
approach is illustrated on a simple example.
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