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Abstract: Most experimental and decoding algorithm studies of brain neural signals assume that neurons 
transmit information as a rate coding, but recent studies on the fast cortical computations indicate that 
temporal coding is probably a more biologically plausible scheme used by neurons. We introduce spiking 
neural networks (SNN) which consist of spiking neurons propagate information by the timing of spikes to 
analyze the cortical neural spike trains directly without temporal information lost. The SNN based 
temporal pattern classification is compared with the conventional artificial neural networks (ANN) based 
firing rate analysis. The results show that the SNN algorithm can achieve higher accuracy, which 
demonstrates that temporal coding is a viable code for fast neural information processing and the SNN 
approach is suitable for recognizing the temporal pattern in the cortical neural signals. 

 

1. INTRODUCTION 

To help the people who suffered neurological diseases and 
injuries to enhance or replace their impaired or lost motor 
functions, researches have proposed to establish an 
alternative non-muscular communication and control channel 
between motor cortical neurons and artificial actuators 
(Taylor, Helms Tillery, and Schwartz, 2002; Wolpaw, 
Birbaumer, McFarland, Pfurtscheller, and Vaughan, 2002). 
For this purpose, it is important to decode the information 
contained in neural signals and convert it to operate motor 
prosthetic devices.  

Biological neurons send information in the form of a 
sequence of spikes. Traditionally the firing rate of the spike 
train is viewed as the representation of neural activity. Many 
algorithms have been used to extract the useful information 
from the neural rate coding data (Fang, Wang, Huang, and He, 
2006; Georgopoulors, Schwartz and Kettner, 1986; Schwartz, 
Taylor, and Helms Tillery, 2001; Wessberg et al., 2000), for 
example, population vector algorithm (PVA), artificial neural 
networks (ANN), and support vector machines (SVM). 

However, in the last few years, an increasing number of 
researches have shown that at least with regard to fast cortical 
computations, the rate coding itself has become questionable. 
For instance, visual pattern analysis and classification can be 
carried out by the primate in just 100 ms (Perrett, Rolls and 
Caan, 1982; Thorpe and Imbert, 1989), in spite of the fact 
that it involves a minimum of 10 synaptic stages from the 
retina to the temporal lobe. This means that each individual 
processing stage would need to operate in not much more 
than 10 ms. Whereas the firing rates of neurons involved in 
these computations are usually below 100 Hz, this period is 
so short that few neurons will fire more than one spike in this 

time. Thus the rate coding scheme seems quite dubious in the 
context of fast cortical computations. 

On the other hand, experimental evidence has accumulated 
during the last few years which indicates that many 
biological neural systems use the timing of spikes to encode 
information (Kempter, Gerstner, Van Hemmen and Wagner, 
1996; Lestienne, 1996; Thorpe and Imbert, 1989). These 
mean that the temporal coding is more biologically plausible 
than the rate coding. Furthermore, the experimental results 
from neurobiology have lead to the investigation of a new 
neural network model, spiking neural networks (SNN), which 
employ spiking neurons as computational units (Maass, 
1997a). Spiking neural networks differ from traditional 
artificial neural networks in that spiking neurons propagate 
information by the timing of individual spikes, rather than by 
the rate of spikes. By the inherent property closer to 
biological neurons than sigmoidal ones, the SNN with 
temporal coding have more computational power than ANN 
with sigmoidal activation functions in theory (Maass, 1997b). 

We would attempt to extract arm movement directional intent 
from the timing of spike trains by the SNN algorithm. The 
motor cortical neural signals were recorded simultaneously 
with kinematics of arm movement while the monkey 
performed two directions (left and right) reaching tasks. The 
spike trains can be inputted into spiking neural networks 
directly, no need to be transformed into firing rates that 
largely excludes temporal information in the neural signals. 
In this study, an error-backpropagation (BP) learning rule 
which is analogous to the BP rule in ANN is applied to train 
the SNN algorithm. For comparison, an artificial neural 
network trained with BP rule is used to analyze the firing 
rates of the spike trains.  
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The rest of this paper is organized as follows: in Section 2, 
we introduce the SNN algorithm briefly and present the one-
layer spiking neural network we use. Then, we decode the 
cortical neural signals by using the SNN approach in Section 
3. The results of analyzing timing of spike trains by the SNN 
algorithm is compared with that of analyzing firing rate of the 
same spike trains by the ANN method in Section 4. The 
results are discussed in Section 5. And conclusions and future 
work follow in Section 6. 

2. SPIKING NEURAL NETWORKS 

2.1  Spiking Neuron Model 

The spiking neuron is closer to the biological neuron than the 
sigmoidal one, see Fig. 1. The input and output of a spiking 
neuron is described by the timing of spike trains. We model 
the behavior of the spiking neuron according to the Spike 
Response Model (SRM) (Maass and Bishop, 1999). The 
SRM formally describes how the incoming spike trains are 
processed to produce a new spike train leaving the neuron. 
The state of spiking neuron j in the SRM is described by its 
potential . When this membrane potential reaches a 
threshold 

( )ju t
θ  from below the neuron fires a spike, that is 

describes by its spike time f
jt . We will set the threshold θ  to 

1 for all our simulations. 

The output of neuron j is thus fully characterized by the array 
of spike-times: 

  (1) { ,1f
j jt f= ≤ ≤F }n

where n denotes the number of spikes. The spike train is 
chronologically ordered; so if 1 f g n≤ < ≤ , then f g

j jt t< . 

The potential of neuron j is influenced not only by the spikes 
of its presynaptic neurons jΓ , but also by the spikes produced 
itself: 

 ( ) ( ) ( )
f g

jj ij i

f g
j j ji i

it t

u t t t w t t dη ε
∈Γ∈ ∈

= − + − −∑ ∑ ∑
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ji  (2) 

where jiw is the weight from neuron i to neuron j and 

jid denotes the axonal delay. ε is a standard post synaptic 
potential (PSP) caused by a presynaptic spike, and can be 
described by the following spike response function: 

 ( ) exp 1 ( )t ttε
τ τ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

H t  (3) 

where denotes the Heavyside step function: ( )tH ( ) 0t =H for 
and for . The time constant 0t ≤ ( ) 1t =H 0t > τ which 

determines the rise and decay of the function is set to 7 ms. 

After a neuron emitted a spike, the potential decreases 
instantly to the resting potential, which is defined as zero. 
And it is more difficult for the neuron to generate a second 
spike shortly afterwards, the so-called refractoriness. This is  

Σ Σ
,ji jiw d

 

Fig. 1. The input and output of a spiking neuron are series of 
firing-times called spike trains. The firing-times are 
represented by vertical bars. 

modelled by the η function, for which we use a simple 
exponential decay: 

 ( ) exp ( )
r

ttη θ
τ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
H t  (4) 

where the time constant rτ  is set to 10 ms and θ  is again the 
threshold of the neuron. 

2.2  Network Architecture 

The network architecture we use is a simple one-layer 
feedforward network with multiple delays per connection, as 
described in Fig. 2(A). The first layer, called input-layer, acts 
as the input of the network. In our case of spiking neurons the 
input-neurons are not involved in real processing, but fire 
predefined spike trains. The second layer is the output-layer. 
The spike trains of these neurons form the output of the 
network. In between the input- and output-layer there could 
be any number of hidden layers, which are not used in this 
study. The set of connections between two layers of neurons 
can also be seen as a layer. It is the convention to denote 
layered network by the number of these layers and not by the 
number of layers of neurons. So, the network we use is a one-
layer network without hidden-layers. 

We use multiple synapses per connection. Every synapse has 
an adjustable weight and a different delay, see Fig. 2(B). 
These different delays provide a way for the presynaptic 
neuron to influence the postsynaptic neuron on a longer time- 
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Fig. 2. (A) One-layer feedforward SNN, (B) connection 
consisting of multiple delayed synapses which all have an 
adjustable weight. 
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scale than the time-interval of the spike-response and on a 
more detailed level. All connection consist of a fixed set of l 
delays: . The corresponding weight is 

denoted with

{ ,1kD d k l= ≤ ≤ }
k
jiw . Equation (2) can thus be rewritten as: 

 . (5) 
1

( ) ( ) ( )
f g

jj ij i

l
f k

j j ji i
i kt t

u t t t w t t dη ε
∈Γ =∈ ∈

= − + − −∑ ∑ ∑ ∑
F F

g k

2.3  Learning Algorithm 

The learning algorithm has to change the weights of the 
synapses in such a manner to minimize the difference 
between the actual output and the desired output-pattern. The 
network could also be learned by changing other parameters, 
like the synaptic delays (Schrauwen and Van Campenhout, 
2004). Here, we choose to keep them fixed. We use the same 
weight update method with that used by Booij and Nguyen 
(2005), which is based on the error-backpropagation rule for 
conventional neural networks and can cope with spiking 
neurons that emit more than one spike. The weight-change 
for synapse k from neuron i to neuron j is denoted by 

 ,k
ji k

ji

Ew
w

κ ∂
Δ = −

∂
 (6) 

here is the learning rate. The network error is defined to be 
the mean squared error (MSE) of the first spike of the output 
neurons J, so later spikes of these neurons are ignored: 

κ

 1 1 21 (
2 j j

j J
E t t

∈

= −∑ )  (7) 

where 1
jt denotes the desired spike time. Because the weight 

k
jiw only influences the spike-times of output-neuron j, the 

chain rule can be used to expand the second factor of (6) to 

 
1

1
j
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=

∂ ∂ ∂
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The first factor on the right-hand side is easy to compute by 
(7): 

 1 1
1 j j
j

E t t
t

∂
= −

∂
. (9) 

The second factor of (8) is calculated using the SpikeProp 
algorithm (see Bohte, Kok, and La Poutré, 2002). 

 
1 1

1

( ) 1
( )

j j j
k k 1
ji ji j j

t u t
w w u t
∂ ∂ −

=
∂ ∂ ∂ ∂ jt

. (10) 

Both the derivatives on the right-hand side can be derived 
using (5). Because 1

jt is the first spike-time, we do not have to 
worry about the refractoriness-term η . Thus the partial 
derivatives of the potential with respect to the weight and 
with respect to the first spike-time are respectively given by 
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Combing the results of (8) to (12) we can express the formula 
for the weight-change (6) in a concrete way: 
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2.4  Solving of No Spiking 

If the membrane potential of a neuron is unable to reach the 
threshold, the neuron will not spike. All the learning rules fail 
once a neuron stops firing. Some methods have been used to 
handle the problem, for example, increasing the weight with 
a small amount and lowering the threshold of the 
postsynaptic neuron (Moore, 2002; Schrauwen and Van 
Campenhout, 2004). In our study, we use the following 
approaches. First the weights should be initialized so high 
that every neuron initially fires, and that the membrane 
potential does not surpass the threshold too much. Then we 
use a small enough learning rate to lower the weights 
generally to values that minimize the network error, but 
which do not cause a neuron to stop firing. 

3. THE SNN BASED TEMPORAL PATTERN 
CLASSIFICATION OF CORTICAL NEURAL SPIKE 

TRAINS 

In this section we use the SNN algorithm to classify the 
temporal pattern in cortical neural spike trains. First the 
biological experimental design is introduced. Then we brief 
the ways to acquire neural data which are used to analyze by 
the SNN method. Finally the simulation setup of the SNN 
algorithm is described in detail. 

3.1 Biological Experimental Design 

)g k
j ik

tji

u t
t t d

w
ε

∈

∂
= − −

∂ ∑
F

, (11) 

Rhesus monkeys were trained to perform the visually guided 
three-dimensional (3-D) reach-to-grasp task on an apparatus 
(see Fig. 3). The apparatus consists of a central holding pad 
that serves as the initial position, and two rectangular targets 
positioned at approximately shoulder height in the frontal 
plane. The two targets (left and right) are fitted with touch 
sensors on both sides, and can be rotated in three orientations 
( , , ). Each movement trial started with monkeys’ 
fingers holding on the central holding pad when the central 
light was on for a random duration (200-700 ms). Then the 
central light went off and one of the two targets turned on. 
The monkeys needed to release the central holding pad, reach 
for the indicated target, and make a whole-hand grasp so that 
both sides of the target were contacted. After the target light 
went off, the animals got a few drops of water as a reward. 
The target orientation changed randomly after every 3 
successful trials to each target. Eighteen trials for one 
combination of target location and orientation were obtained 
for most neurons studied. The average duration of cue 
reaction time (CRT), which is from the illumination of the 
target light to the central pad release, was 230 90 (SD) ms. 

o45 o90 o135

±
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Fig. 3. The front view of the experimental apparatus. It shows 
two targets and the target orientation definition. 

And the average duration of movement time (MT), which is 
from central pad release to target hit, was 263 62 (SD) ms. ±

3.2  Neural Data Acquisition and preprocessing 

The activity of single neurons in the motor cortex of monkeys 
was recorded extracellularly by multi-channel micro-drive 
electrodes when they performed the 3-D reach-to-grasp tasks. 
In this paper we use the words “units” and “cells” 
interchangeably to refer to these neurons. The neurons related 
with tasks are selected to study. A two-way analysis of 
variance (ANOVA) is used to evaluate whether changes in 
the average cell discharge in CRT are significantly modulated 
by target orientation (a = 3), or movement direction (b = 2), 
or their interaction effect (P < 0.05). Of the 613 neurons 
studied, 100 (16.3%) are direction-related-only neurons. 
Their discharge frequency during CRT to one of the targets is 
significantly higher (ANOVA, effect of movement direction, 
P < 0.05) than that to the other target. And the difference in 
the neuronal discharge patterns caused by movement 
direction is consistently observed among movements to the 
three different target orientations. Thus, for the purpose of 
extracting directional intent from neural signals, we only 
analyze the data of the 100 direction-related-only neurons 
that recorded in the trials to the target orientation   in the 
following. 

o45

We use a bin size 50 ms and systematically vary window 
position (from 200 ms before movement onset to 100 ms 
after) that was used to extract the neural spike trains. A 
single-input SNN analysis is performed to find the optimal 
window position for each direction-related-only neuron. We 
randomly split the data-set of single neurons into a training-
set (50%) and a test-set (50%), and repeat the procedures four 
times.  The window position that maximized the average test-
set classification accuracy is the optimal parameter for each 
unit. Figure 4 shows the distribution of the optimal window 
position for 100 direction-related-only neurons. Most neurons 
reached their maximum accuracy with -50 ms (time zero is 
set at movement onset) window position, so we used that as 
the optimal window position in the following analysis. 

3.3  Simulation Setup 

According to the analysis above, we get the spike train data 
from 75 ms before center release to 25 ms before center 
release for each direction-related-only neuron and each trial. 
The spike trains in the 50 ms bin are inputted into the one-
layer SNN. And all spike-times are expressed in milliseconds. 
In some case there is no spike in the bin, so we add a bias 
input spike (fired at 0t = ) in each spike train to designate the 
reference start time. The network output-layer consists of 
only one spiking neuron, that is trained to fire an early spike 
at = 51 ms if the movement direction is “left” and a late 
spike at = 56 ms if the movement direction is “right”. Each 
input-neuron is connected to the output-neuron with 28 
synapses with delays {1, 3, … , 55} ms. The weights are 
randomly initialized between 0 and 0.1, and only positive 
weights are allowed. The learning rate is set to

t̂
t̂

κ 510− . The 
training phase will be stopped if the MSE drops below 3 or it 
reaches its maximum number of epochs, which is set to 150. 
The simulation step is 0.1 ms. 

After training, the evaluation of the output is done as follows. 
If the output-spike is closer to the early spike-time (t < 53.5) 
then the classification of the network is “left”, and if the 
output-spike is closer to the late spike-time (t > 53.5) or there 
is no output-spike the classification of the network is “right”. 
If the output is exactly in the middle (53.5), a first order 
approximation of the potential around t = 53.5 is performed 
to get a real valued approximation of the spike-time (Bohte, 
Kok, and La Poutré, 2002). 

4. RESULTS 

To investigate the case under normal recording conditions, 
multi-input-neurons were picked up randomly from the 100 
direction-related-only neurons. Instead of running all of the 
thousands of possible combinations, we randomly pick 20 
groups of input-neurons and run the SNN analysis for each 
group. We calculate the average classification accuracy over 
the 20 groups with SDs. Every neuron has 36 spike trains (18 
for “left” and 18 for “right”) in the data-set. We randomly 
partition half of the data-set i.e. 18 patterns into a training-set, 
and the other half into a test-set. Such procedures are 
repeated for four times, i.e., the accuracy of each group of 
input-neurons is calculated by averaging over the four times. 

 

Fig. 4. Distribution of the optimal window positions for 100 
direction-related-only neurons. Time zero is set at movement 
onset (i.e. center release). 
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To compare with the SNN based temporal pattern 
classification, we use a one-layer ANN trained with BP rule 
to analyze the average firing rates of the 50 ms bin spike 
trains. A tan-sigmoid activation function is used by the 
output-neuron. The “left” class is represented by an output of 
+1, and the “right” class is represented by -1. In the test stage, 
if the output value is greater than 0 the classification is “left”, 
and if the output value is less than or equal to 0 the 
classification is “right”.  

Figure 5 shows the classification accuracy averaged over the 
20 groups with SDs as a function of the number of neurons. 
In Fig. 5(A), it is obvious that the training-set accuracy by 
using the SNN algorithm to analyze the timing of spike trains 
is much higher than that by using the ANN approach to 
analyze the firing rate of spike trains. The training accuracy 
of the SNN algorithm increases with the number of neurons 
and can achieve 87% by using 10 neurons, which are 
randomly picked from the 100 direction-related-only neurons, 
as input-neurons. However, the change of the training 
accuracy of the ANN algorithm is small, and 10 neurons can 
but classify 60% of the training-patterns correctly. Figure 5(B) 
shows the test-set accuracy of the SNN is also higher than 
that of ANN. And the maximum accuracy of SNN by using 
10 neurons is 65%, while that of ANN is 55%. 

Looking more closely at the outcome of each group of 
neurons, it becomes clear that the accuracy of some groups is 
very low and even below 50%, while that of others is very 
high and up to 100%. Partly this has to do with differences of 
the number of spikes in the 50 ms bin we studied. Some 
neurons have not a spike in some trials actually, while the 
maximum number of spikes is 11. And the spike train in the 
50 ms bin consists of on average 2.24 spikes. Because of so 
few spikes, some groups of neurons’ patterns are very 
difficult to classify. 

5. DISCUSSIONS 

It is clear that the simple one-layer SNN can perform the 
recognition of the directional information in the cortical 
neural spike trains, which are extracted from a short 50 ms 
bin before the movement onset. Thus we can use the SNN 
algorithm to predict the target location (left or right) before 
the monkey releasing the central pad to reach for the 
indicated target. This result is significant for using the 
cortical neural signals to control motor prosthetic devices to 
bypass spinal cord injuries. 

The results of the comparison between the analysis of the 
temporal patterns and that of the firing rates of the same 
spike trains demonstrate that temporal coding is a viable code 
for fast neural information processing. On the other hand, the 
average of number of spikes in the 50 ms bin is so few (2.24) 
that the instantaneous firing rate in the short time window is 
difficult to estimate correctly on the order of 10 neurons 
(Gautrais and Thorpe, 1998). These mean that the temporal 
coding is more biologically plausible than the rate coding. 

 

(A) 

 

(B) 

Fig. 5. Comparison of classification accuracy of the SNN and 
the ANN algorithm versus the number of neurons. The 
accuracy is calculated in training-set (A) and test-set (B) 
respectively. The thick solid curves show the average 
accuracy of 20 random combination groups. The thin dotted 
and dashed curves show the SDs of the SNN and the ANN 
respectively. 

The spike train data we use are from 75 ms before center 
release to 25 ms before center release. It is the optimal 
window position with which most neurons reached their 
maximum accuracy, see Fig. 4. However, only 27 (27%) 
neurons distribute in this optimal window. And we randomly 
pick input-neurons from all 100 direction-related-only 
neurons. Thus it is possible that the useful information of 
some neurons is not contained in the spike trains we use 
actually. And the neural signals sampled at 40 kHz are easy 
to disturbed by noise. We can record more neurons and 
choose those with more useful temporal data to improve the 
accuracy of the SNN recognition.  But that is not the goal of 
this study, which aims to provide a new way of analyzing the 
temporal pattern in cortical neural spike trains. 

Another thing that can be improved is the network 
architecture. The one-layer network in fact has only one 
spiking computational unit (i.e. the only output-neuron). 
Because of the higher computational power of multiple-layer 
networks (Booij, 2004; Maass, 1997c), we can use one or 
more hidden-layers between the input- and output-layer, that 
is left for future work. 
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6. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduced the spiking neural networks to 
analyze the temporal patterns in cortical neural signals. A 
one-layer spiking neural network trained by back-propagating 
the temporal error at the output was used to classify the 
timing of spike trains, which were recorded from the 
monkeys’ motor cortex when they performed a two targets 
reaching task. We used the spike trains in a short time 
window (50 ms) to predict the indicated target before 
movement onset. The results were acceptable, although the 
maximum test accuracy by using 10 neurons is only 15% 
above the 50% expected by chance. There is certainly room 
for improvement, not only by using more useful temporal 
data of more neurons but also by improving the network 
architecture of SNN. That is left for future work. 

The temporal pattern recognition by the SNN algorithm was 
compared with the firing rate analysis by the ANN approach. 
Our aim is not to compare the computational power between 
SNN and ANN algorithm, but to find a feasible way to 
decode the information in neural signals. The comparison 
results are consistent with the recent development about the 
neural coding that temporal coding is a viable code for fast 
neural information and more biologically plausible than the 
rate coding. On the other hand, the results indicated that the 
SNN approach could achieve reasonable temporal pattern 
classification by using a small number of neural signals and 
with only a single spiking computational unit.  Therefore, we 
can conclude that the SNN algorithm is a promising method 
to analyze the neural signals and holds hope for designing the 
neuroprosthetic devices to add quality to the life of paralyzed 
people. 
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