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Abstract: Recently, an alternative to achieve a robust controller that provides a straightforward and 
intuitive design and tuning of its parameters named Indirect Variable Structure Model Reference Adaptive 
Controller (IVS-MRAC) was presented for relative degree one LTI plants, suggesting to be globally 
asymptotically stable with superior transient behavior and disturbance rejection properties. Its novelty is in 
the procedure to obtain the bounds for the relay’s amplitudes, used in the switching laws. These bounds are 
now associated with the plant parameters, instead of the controller parameters. In this paper, a modification 
is made on the plant high frequency gain switching law, in order to develop a first formal stability analysis, 
considering the presence of input disturbances and unmodeled dynamics. It is shown that the overall 
system error is stable with respect to some small residual set. 

 

1. INTRODUCTION 

The acronym VS-MRAC designates the class of variable 
structure (VS) controllers (Utkin, 1992) which require only 
input/output measurements to be implemented, first proposed 
in (Hsu and Costa, 1989), for relative degree one plants, then 
extended in (Hsu, 1990), for the general case. The main 
interest of the VS-MRAC relies on its remarkable stability 
and performance robustness properties (Costa and Hsu, 1992; 
Hsu et al., 1994). Since (Hsu and Costa, 1989), several 
developments have been made and the VS-MRAC already 
was applied to SISO linear and nonlinear systems (Min and 
Hsu, 2000) and MIMO linear and nonlinear systems (Cunha 
et al., 2003). Practical aspects, as chattering elimination 
(Peixoto et al., 2001) and simplified algorithms (Hsu et al., 
1994) has been studied. All these works are based on the 
direct adaptive control approach, where the switching laws 
are designed for the controller parameters. In the controller 
design for higher order plants, the bounds for the controller 
parameters may become harder to find, mainly due to the 
increasingly complexity of the matching equations, which, by 
the way, depend on the nominal plant parameters and their 
respective uncertainties. 

 In view of this fact, a natural solution would be design 
switching laws for the plant parameters instead of the 
controller parameters, as in the direct case. Thus, it was 
presented in Oliveira and Araujo (2004) a redesign for the 
VS-MRAC using the indirect adaptive control approach. It 
was named Indirect VS-MRAC (IVS-MRAC). The IVS-
MRAC leads to a straightforward design for the relays 
amplitudes, since they are related with the plant parameters, 
which present uncertainties that can be known easier than in 
the direct approach, considering that they are related with 

physical parameters, as inertia moments, friction coefficients, 
resistances, capacitances and so on. Likewise the direct VS-
MRAC, simulations have suggested fast transient and 
external disturbance rejection. Moreover, experimental 
results (Oliveira and Araujo, 2004), besides its feasibility, 
have suggested the robustness of the controller in the 
presence of unmodeled dynamics. The robustness of the 
direct VS-MRAC to unmodeled dynamics and external 
disturbances was considered in (Costa and Hsu, 1992), based 
on the singular perturbation approach (Kokotovic and Khalil, 
1986). 

It is noteworthy that indirect variable structure controllers  
proposed by Stotsky (1994) differs from the VS-MRAC 
essentially in the structure, dynamical behaviour and stability 
properties. It uses a least-squares-like adaptation mechanism 
on the plant parameters for ideal parameter matching and 
introduces a discontinuous term in the control law. 
Controllers that present integral adaptation are often 
associated with the necessity of some richness condition to 
achieve the control goal. This persistent excitation condition 
may be undesirable or even impossible to obtain in certain 
applications. 

The procedure of deriving the IVS-MRAC switching laws 
from the conventional integral laws for the plant parameters 
estimates used in the indirect MRAC (Ioannou and Sun, 
1996) generates a compound discontinuous function at the 
plant high frequency gain ( )pk . This type of function is also 
called “nested” discontinuity and is outside the scope of 
Filippov’s theory. Some works on combined sliding modes 
observer-controller introduce some low-pass filtering to 
handle it (Weiwen and Gao, 2003). In this paper, the direct 
handling with this function is avoided, by a suitable 
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modification on the pk  VS law. It is substituted by an 
integral law and, then, not only the nested discontinuity but 
also an inherent algebraic loop is overcome. In doing this, the 
IVS-MRAC becomes a combined algorithm, as in Stotsky 
(1994), but in a different point of view. The combined IVS-
MRAC has parametric adaptation restricted to only one 
system parameter, which guarantees and preserves the non 
oscillatory and fast transient provided by VS based 
algorithms, as well as their robustness properties. Simulations 
are presented to reinforce and clarify the results.  

II   PROBLEM STATEMENT 

2.1 Plant Parameterization and Assumptions 

This paper considers the control of the linear, single 
input/single output, relative degree one plant ( )1n* =  with a 
singularly perturbed state space representation given in 
“actuator form” (Kokotovic and Khalil, 1986) as 

( )
( )
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where nRx ∈  is the state vector, kRz ∈  is the vector 
associated with the parasitics, u is the input, y  is the output , 
d  is some input disturbance and µ  is a small positive 
constant. Any system in the general form 
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with µ  sufficiently small and 22A  nonsingular, can be 
transformed to the actuator form (1) by the transformation 

ζ+= Lxz , where L  is one solution of the algebraic Riccati 
equation LLALALAA0 12221121 µ−−µ+=  and 

'
111222212111 bb,LAAA,LAAA =µ+=−=  and 

'
1

'
22 Lbbb µ+= . This parameterization is quite suitable for 

analysing systems with simultaneous fast and slow dynamics 
(Costa and Hsu, 1992). 

The nominal model of the plant used in the controller design 
is given by a reduced order approximation of the plant (1) 
obtained by formally making 0=µ , that is 

( )
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T
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where 2
1

2121r1r bAAbb,AA −−==  and TT
r hh = . The 

corresponding transfer function is denoted by 
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where ( ).bAAbhbhk 2
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−−==  is the high 
frequency gain of the plant. The matrix rA  and vectors  

rr h,b  are uncertain, but belong to known sets. From (3), rn  
and rd  are monic polynomials written as  
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The reference model is defined by 
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where my  is the output. The reference signal r is assumed 
piecewise continuous and uniformly bounded. As in (4)-(5), 

mn  and md  are given by 
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From (3)-(5), the vector of nominal plant parameters is 
defined as 

[ ]TT
1

T
pp k ααβ=θ  (9) 

where 1nR −∈β  contains the elements ( )1,...,1nii −=β  of  

(4), R1 ∈α  is the element 1α  of (5), 1nR −∈α  contains the 
elements ( )1,...,1ni1i −=α +  of (5) and, similarly, it is defined 

m1,mm ,, ααβ , with respect to (6)-(8). The following 
assumptions regarding the plant and the reference model are 
made: 

(A1) the reduced model is observable and controllable with 
degree ( ) nd r =  and degree ( ) 1nn r −= , n known; 
(A2) )k(sign)k(sign mp =  (positive, for simplicity); (A3) 

( )sn r  is Hurwitz, i.e., ( )sWr  is minimum phase; (A4) 
)s(M has the same relative degree of ( )sWr  and is chosen to 

be strictly positive real (SPR); (A5) both ( )tr  and )t(d  are 
assumed piecewise continuous and uniformly bounded, i.e., 

( ) rtrsup ≤  and ( ) dtdsup ≤  for some constants r  and d ; 
(A6) upper bounds for the nominal plant parameters are 
known; (A7) the neglected dynamics is stable, i.e., 

( )( ) 0AeigRe 2 < . 

The control aim is to achieve asymptotic convergence of the 
output or tracking error 

)t(y)t(y)t(e mo −=  (10) 
to zero or, despite the presence of input disturbance (bounded 
but not necessarily small) and unmodeled dynamics, 
guarantee that every signal in the resulting closed-loop 
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system remains uniformly bounded and the output error oe  
becomes ultimately small in some sense. 

2.2 Error Equation 

From standard MRAC, the plant input and output filters are 
given by 

gyvv,guvv 2211 +Λ=+Λ= &&  (11) 

where 21 v,v , [ ]T00g γ= K  1nR −∈ , 0>γ  and Λ  is 
chosen such that )s(n)sIdet( m=Λ− . The regressor vector is 

[ ]TT
2

T
1 rvyv=ω . When the plant is perfectly known, a 

control law which achieves matching between the system 
closed-loop transfer function and ( )sM  is given by (Sastry 
and Bodson, 1989) 
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T**
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where the nominal controller parameters vector is   

[ ]Tn2
T

2vn
T
1v θθθθ=θ  (13) 

From this control parameterization, it is convenient that (12) 
satisfies the inequality t;K)t(supK)t(usup

tt
∀+ω≤ δω , 

where 0K,K >δω . This prevents the finite time escape. 

Defining ubzA:F 22 +=  and [ ]T
2

T
1

TT vvxX = , the 
plant (1) and the filters (11) can be represented as 

dbFz
dbFAubXAX

2

112

+=µ
+++=

&

&
 (14) 

where  

.
0
0
b

b,
0
0
AA

A,
0
g
b

b,
0gh

00
00A

A
1

1

1
212

12

r

T

1
















=

















=















=

















Λ
Λ=

−

 

Now, adding and subtracting ωθ
T*b  in (14) and using the 

relation WXr =ω , where W  is a constant matrix with 
elements 0 or 1, one has 

dbFA)u(brbXAX 112
T*

cc ++ωθ−++=&  (15) 

where WbXAA
T*

rc θ+=  and *
n2c bb θ= . The above 

equation is valid only for the direct case (Costa and Hsu, 
1992). Since IVS-MRAC derives from indirect MRAC 
(Ioannou and Sun, 1996), (15) must be rewritten to explicitly 
include the plant parameters. Let ααβ ˆ,ˆ,ˆ,k̂ 1p  be the 

estimated values for ααβ ,,,k 1p . Defining the error on the 
plant parameters vector as 

[ ]TT
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T
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111 ˆ~;ˆ~ α−α=αα−α=α  (18) 

and adding and subtracting uk̂ p  in the third term of (15), 
using (12) and their respective matching equations (Ioannou 
and Sun, 1996) given by 
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the following error system description arises 
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where ζ  is an auxiliary signal vector given by 
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with R, 1p ∈ζζ , 1nR, −
βα ∈ζζ  and 0,, p1 >γγγ . Therefore, 
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III DESIGN OF THE IVS-MRAC 

Recently (Oliveira and Araujo, 2004), it was proposed a 
controller similar to direct VS-MRAC (Hsu and Costa, 1989), 
but with the VS laws designed for the plant parameters (PP), 
whereas in direct case they are on the controllers parameters 
(CP). The idea is to simplify the design, mainly in the stage 
of tuning the relays amplitudes, since that now the 
uncertainties on the PP can be known easier, making their 
adjustment more intuitive. Instead of parametric adaptation 
(Andrievsky et al., 1996), the IVS-MRAC relies on signal 
synthesis, being the control signal generated from a switching 
mechanism (Utkin, 1992). It was proposed the following VS 
laws for (9): 

( )pop
nom
pp esgnkkk̂ ζ−=  (26) 

( ) 1n,...,1i,esgnˆ
ioii −=ζβ−=β β  (27) 

( )1o11 esgnˆ ζα−=α  (28) 
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( ) n,...,2i,esgnˆ
ioii =ζα−=α α  (29) 

where the auxiliary signals in ζ  are given as in (22)-(25) and 
nom
pk  was introduced to guarantee assumption (A2), due to 

its switching behavior. A first attempt to formalize the 
stability properties of the IVS-MRAC is presented in this 
paper. Initially, one sees that, expanding (26) and using (22) 
and (27), one has 
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The pk̂  VS law presents a “nested” discontinuity of the form  

( )( )321p
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pp ksgnkksgnkkk̂ +⋅+−=  (31) 

with 1k , 2k  and 3k  defined from (30). This type of 
compound function is outside the scope of the Filippov’s 
theory and is common in sliding modes observer-controller 
schemes (Wang and Gao, 2003), where they overcome it by 
an appropriate filtering. Others avoid it, using continuous 
weighted VS laws (Nunes et al., 2004). In this paper, the 
direct handling with it is avoided through a suitable 
substitution, called −pk modification. Equation (26) will be 
replaced by a simple integral adaptation law (Ioannou and 
Sun, 1996) as  
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where 0k)0(k̂ 0p >≥  and 0k  is a known lower bound for 
*
pk . This combined IVS-MRAC differs from traditional 

combined algorithms (Andrievsky and Fradkov, 2003), since 
the adaptation is restricted to only one parameter. The further 
analysis and simulations will show that the fast transient of 
the VS algorithms is preserved.  

 
IV STABILITY ANALYSIS 

In the following, ic  denote positive constants. 

THEOREM 1 Consider system (1), the overall system error 
(21), the VS laws (27)-(29) and the integral law (32). If all 
assumptions (A1)-(A7) are satisfied, and, in (27)-(29), one 
has *

11 α>α , 1n,...,1i,*
ii −=β>β  and n,...,2i,*

ii =α>α , 

then every trajectory of the system enters an invariant 
compact residual set 
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in some finite time, where 0>δ  is arbitrarily small. 

REMARK 1 The following auxiliary Lemma is necessary. 

LEMMA 1 (Jiang, 1988) – The matrix 
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PROOF – THEOREM 1 This proof follows closely Costa 
and Hsu (1992). It is proposed the following candidate 
Lyapunov function 
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From (37), two cases must be considered. 
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Since 2A  is Hurwitz then there exist matrices T
11 PP =  and 

0QQ T
11 >=  such that 
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T
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By choosing 1PS α=  with 0>α  sufficiently large one can 
satisfy (34) and simultaneously assure that the quadratic term 
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where the bound for the second term of (36) was neglected. 
The auxiliary matrices in (38) are given by 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13124



 
 

     

 

( )
( ) WbSAR

RAHˆRb
k
RbQ

T
r212

c
T*

prprc
m

c
3

θ++

+θ−θ=
 

( ) 12
T

8
*
pp

m

c
7

216c35

bPbRQ;kk̂
k
Rb

Q

SbbRQ;RAQQ

+=−=

+=−=
 

(39) 

where 

























γ
β−
γ

γ

−

=

T
mT

*
p

0h

100

0
k

0

H . Defining z:z~ µ=  and 

using suitable upper bounds of each term of (39) gives 

.dekz~kdz~k

z~kz~ekz~kek)k
~

,z,e(V

7p65

43
2

2
2

1p

+ζµ+µ+

+µ+




 µ+−−≤&

 (40) 

The signal pζ  in (40), since it depends on the control 

signal, is easily proven to be bounded and is also associated 
with µ  and d . It is clear that there exists 0>µ  sufficiently 

small such that ( ) 0~kz~ekz~kek 83
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COROLLARY 1 – If the trajectory of the system is inside 
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Thus, the Theorem 1 and the Corollary 1 are also valid. 

V SIMULATIONS RESULTS 

Using the notation introduced in (3)-(8), the following 
example is considered: 

10s3s
3s

ss
sk)s(W 2

21
2

1
pr −+

+
=

α+α+
β+

=    

1s
1

s
k)s(M

1,m

m

+
=

α+
=   ; v =  yvv,uvv 2211 +−=+−= &&   

( )
1s
1ss

+µ
+µ−

=∆ ; ( ) ( ) ( )sWssW r∆=  

The relays amplitudes for the VS laws (27)-(29) are easily 
adjusted from rW , obeying the sufficient conditions of the 

Theorem 1. The used parameters are 5.3,5.3 11 =α=β  and 
112 =α . The design parameters for the adaptation law are 
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1p =γ=γ  and 8.0k)0(k̂ 0p == . Initial condition is 

( ) 10y = . The integration step is 310h −=  and the derivatives 
are approximated by Euler method.  The multiplicative 
parasitics ( )s∆  makes the system non minimum phase. 

 
Fig 1.Reference tracking in the ideal case ( 0d;0 ==µ )                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Simultaneous effect of parasitics with 005,0=µ  and step 
disturbance (d=5) introduced at t=3s 

 
Fig. 1 shows the output of the system free of input 
disturbances and parasitics in the tracking mode.  In Fig. 2, 
the simultaneous presence of unmodeled dynamics and 
disturbance is shown. In all figures, one sees the absence of 
oscillations and overshoot during the transient, being 
preserved its fast behaviour. This fact is according to 
Theorem 1, since pk

~
 in the steady-state is small. When the 

sufficient conditions for the relays amplitudes are obeyed 
(always considered a fact in practice), the integral adaptation 
has little influence in the performance. 

VI CONCLUSIONS 

The Combined IVS-MRAC is shown to be remarkably robust 
with respect to disturbances and unmodeled dynamics, even 
when an integral adaptation law acts on the high frequency 
gain of the plant. This adaptation does not affect the 
performance if the sufficient conditions for the relays 
amplitudes are obeyed. This new combined algorithm 
preserves the fast transient response, inherent in VS schemes. 

The stability analysis has shown that the system is globally 
asymptotic stable with respect to a small residual set. Further 
works will deal with the nested discontinuity, in order to 
design an IVS-MRAC totally based on signal synthesis and 
with an equivalent structure to the direct case.  
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